Pengaruh Pemanasan Terhadap Kuat Tekan Mortar Geopolimer Berbahan Dasar Abu Terbang Kelas C

Authors

DOI:

https://doi.org/10.26740/proteksi.v1n1.p1-7

Keywords:

Abu terbang kelas C, geopolymer, kuat tekan, lama pemanasan, mortar

Abstract

Abstrak

Sebagai material utama penyusun beton, semen merupakan material yang kurang ramah terhadap lingkungan.  Penggunaan abu terbang merupakan salah satu alternatif untuk mengatasi hal tersebut. Namun kendala utama penggunaan abu terbang, khususnya abu terbang kelas F, adalah dibutuhkannya panas selama proses pembuatan mortar geopolimer. Penelitian ini bertujuan untuk mengetahui pengaruh pemanasan terhadap kuat tekan mortar geopolimer berbahan dasar abu terbang kelas C yang memiliki kandungan Ca dan Fe cukup tinggi dibandingkan kelas F. Bahan aktivator yang digunakan adalah kombinasi sodium silikat dan sodium hidroksida dengan molaritas 8M dan 12M. Proses pembuatan dilakukan pada temperatur 60OC dengan variasi lama pemanasan 3, 6, 18 dan 24 jam. Hasil penelitian menunjukkan bahwa lama pemanasan mampu meningkatan kuat tekan mortar geopolymer. Kuat tekan awal 3 hari telah mencapai 45.95 MPa (80%) dan 47.91 MPa (90%) pada lama pemanasan 24 jam. Kuat tekan usia 14 hari bahkan telah mencapai 98% dan 100% terhadap kuat tekan akhir pada molaritas 8M dan 14M. Meskipun pemanasan mampu meningkatkan kekuatan tekan mortar geopolimer, kekuatan yang dicapai mortar geopolimer tanpa pemanasan telah melebihi kuat tekan rencana dan mampu mengatasi permasalahan pemanasan yang terjadi pada abu terbang kelas F.

Kata Kunci: Abu terbang kelas C, geopolymer, kuat tekan, lama pemanasan, mortar

Author Biography

Arie Wardhono, Universitas Negeri Surabaya

Department of Engineering

References

<div><p><span style="font-size: medium;">Ahmaruzzaman, M., 2010, œA Review on The Utilization of Fly Ash, <em>Jurnal of Progress in Energy and Combustion Science</em>. Vol. 36, No. 3, pp. 327-363.<em></em></span></p><p><span style="font-size: medium;">ASTM Standard, 2004, œASTM C109: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.</span></p><p><span style="font-size: medium;">ASTM Standard, 2004, œASTM C618: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.</span></p><p><span style="font-size: medium;">Bakharev, T., Sanjayan, J.G., and Cheng, Y.B., 1999, œEffect of Elevated Temperature Curing on Properties of Alkali Activated Slag Concrete, <em>Cement and Concrete Research</em>. Vol. 29, No. 10, pp. 1619-1625.</span></p><p><span style="font-size: medium;">Davidovits, J., 1994</span><span style="font-size: medium;">, œProperties of Geopolymer Cements, </span><em><span style="font-size: medium;">Proceedings of 1</span><sup><span style="font-size: small;">st</span></sup><span style="font-size: medium;"> International Conference on Alkaline Cements and Concretes</span></em><span style="font-size: medium;">, </span><span style="font-size: medium;">Kiev: Scientific Research Institute on Binders and Materials, Kiev,Ukraine, pp. 131-149.</span></p><p><span style="font-size: medium;">Deb, P.S., Nath, P., and Sarker, P.K., 2014, œThe Effects of Ground Granulated Blast-Furnace Slag Blending with Fly Ash and Activator Content on The Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature, <em>Materials and Design</em>. Vol. 62, No. October, pp. 32-39.</span></p><p><span style="font-size: medium;">Gunasekara, C., Setunge, S., and Law, D.W., 2017, œLong-Term Mechanical Properties of Different Fly Ash Geopolymers, <em>ACI Structural Journal</em>. Vol. 114, No. 3, pp. 743-752.</span></p><p><span style="font-size: medium;">Hardjito, D., Wallah, S.E., Sumajouw, D.M.J., and Rangan, B.V., 2004, œOn the Development of Fly Ash-Based Geopolymer Concrete, <em>ACI Materials Journal</em>. Vol. 101, No. 6, pp. 467-472.</span></p><p><span style="font-size: medium;">Huntzinger, D.N. and T.D. Eatmon, 2009, œA Life-Cycle Assessment of Portland Cement Manufacturing: Comparing The Traditional Process With Alternative Technologies, <em>Journal of Cleaner Production.</em> Vol. 17 No. 77, pp. 668-675.</span></p><p><span style="font-size: medium;">Kong, D.L.Y. and Sanjayan, J.G., 2010, œEffect of Elevated Temperatures on Geopolymer Paste, Mortar and Concrete, <em>Cement and Concrete Research</em>. Vol. 40, No. 2, pp. 334-339.</span></p><p><span style="font-size: medium;">Li, C., Gong, X.Z., Cui, S.P., Wang, Z.H., Zheng, Y. and Chi, B.C., 2011, œ</span><span style="font-size: medium;">CO</span><sub><span style="font-size: small;">2</span></sub><span style="font-size: medium;">Emissions Due to Cement Manufacture, <em>Materials Science Forum</em>. Vol. 685 No. 1, pp. 181-187.</span></p><p><span style="font-size: medium;">Meyer, C., 2009, œThe Greening of The Concrete Industry, <em>Cement and Concrete Composites</em>. Vol. 31, No. 8, pp. 601-605.</span></p><p><span style="font-size: medium;">Nath, P. and Sarker, P.K., 2015, œ<a href="http://www.sciencedirect.com/science/article/pii/S0950061814005819">Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition</a>, <em>Construction and Building Materials.</em> Vol. 66, pp. 163-171.</span></p><p><span style="font-size: medium;">Peng, J.X., Huang L., Zhao, Y.B., Chen P., Zeng, L., and Zhen W., 2013, œModeling of Carbon Dioxide Measurement on Cement Plants, <em>Advanced Materials Research</em>. Vol. 610-613, pp. 2120-2128.</span></p><p><span style="font-size: medium;">Provis, J.L., 2014, œGeopolymer and Other Alkali Activated Materials: Why, How and What?, <em>Materials and Structures</em>. Vol. 47, No. 1-2, pp. 11-25</span></p><p><span style="font-size: medium;">Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K., 2015, œGeopolymer Concrete: A Review of Some Recent Developments, <em>Construction and Building Materials</em>. Vol. 85, No. June, pp. 78-90.</span><em></em></p><p><span style="font-size: medium;">Soutsos, M., Boyle, A.P., Vinai R., Hadjierakleous, A., and Barnett, S.J., 2016, œFactors Influencing The Compressive Strength of Fly Ash Based Geopolymers, <em>Construction and Building Materials</em>. Vol. 110, No. May, pp. 355-368.</span></p><p><span style="font-size: medium;">Wardhono, A., 2015, œThe Durability of Fly Ash Geopolymer and Alkali-Activated Slag Concretes, <em>Master Thesis</em>. Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia.</span></p></div>

Published

2019-01-25

Issue

Section

Articles
Abstract views: 1031 , PDF Downloads: 501