Prediksi Ketersediaan Air Embung Kolong Kebintik Sebagai Sumber Air Baku Menggunakan Jaringan Syaraf Tiruan

Authors

  • Adriyansyah adriyansyah Universitas Bangka Belitung
  • Saprizal Saprizal Kementerian PUPR

DOI:

https://doi.org/10.26740/proteksi.v6n1.p110-117

Keywords:

Air baku, Jaringan syaraf tiruan, Ketersediaan air, Kolong kebintik

Abstract

Jaringan syaraf tiruan merupakan salah satu metode deep learning yang proses kerjanya terinspirasi dari cara kerja otak manusia. Jaringan syaraf tiruan memiliki kemampuan dalam mengenali pola data dengan cara melakukan proses pelatihan dan pengujian. Pada proses pelatihan, metode jaringan syaraf tiruan akan memperbaharui nilai bobot sehingga nilai bobot tersebut terlatih untuk mengetahui pola data. Sedangkan pada proses pengujian, jaringan syaraf tiruan melakukan prediksi data yang menjadi target dalam pengujian. Penelitian ini menggunakan data ketersedian air Embung Kolong Kebintik dari bulan Januari 2009- Desember 2022. Data tersebut kemudian dibagi menjadi 90% data pelatihan dan 10% data pengujian. Metode feed-forward yang digunakan pada proses pelatihan yaitu Levenberg Marquardt dan LearnGDM. Aristektur jaringan yang digunakan yaitu arsitektur (12,144,1). Ketika dilakukan simulasi, diperlukan beberapa kali uji coba untuk mendapatkan arsitektur jaringan yang menghasilkan nilai MSE kecil. Hasil simulasi pada epoch 154 iterasi, menghasilkan nilai MSE = 0.0071 untuk pelatihan dan MSE = 0.010 untuk pengujian. Jika dilihat dari hasil prediksi ketersedian air Embung Kolong Kebintik bulan Januari 2023-Desember 2026, maka hasil prediksi cenderung menghasilkan nilai yang sama untuk prediksi dalam rentang waktu yang panjang. Nilai MSE yang kecil pada proses pelatihan dan pengujian, tidak menjamin bahwa hasil prediksi akan menghasilkan prediksi yang baik.

References

Abraham, A. 2005. “Artificial Neural Networks”, in Handbook of Measuring System Design. Wiley.

https://doi.org/10.1002/0471497398.mm421.

Alizadeh, C.O. and Najafi, M.S. 2018. Extreme weather events in Iran under a changing climate, Climate Dynamics, 50(1–2), pp.249–260.

https://doi.org/10.1007/s00382-017-3602-4.

Strukov, D., Indiveri, G., Grollier, J. and Fusi, S. 2019Building brain-inspired computing, Nature Communications. Nature Research.

https://doi.org/10.1038/s41467-019-12521-x.

Buyukyildiz, M., Tezel, G. and Yilmaz, V. 2014 Estimation of the Change in Lake Water Level by Artificial Intelligence Methods, Water Resources Management, 28(13), pp.4747–4763.

https://doi.org/10.1007/s11269-014-0773-1.

Fraga, H. et al. (2021) Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies, Agronomy. MDPI AG.

https://doi.org/10.3390/agronomy11010056.

Gorelick, S.M. and Zheng, C. 2015 Global change and the groundwater management challenge, Water Resources Research, pp. 3031–3051. https://doi.org/10.1002/2014WR016825.

Hassan, A.E., Bekhit, H.M. and Chapman, J.B. 2009. Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model, Environmental Modelling and Software, 24(6), pp. 749–763.

https://doi.org/10.1016/j.envsoft.2008.11.002.

Hassanzadeh, E., Zarghami, M. and Hassanzadeh, Y. 2012. Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling, Water Resources Management, 26(1), pp. 129–145.

https://doi.org/10.1007/s11269-011-9909-8.

Katimon, A., Shahid, S. And Mohsenipour, M. 2018. Modeling water quality and hydrological variables using ARIMA: a case study of Johor River, Malaysia, Sustainable Water Resources Management, 4(4), pp. 991–998.

https://doi.org/10.1007/s40899-017-0202-8.

Undang- Undang Republik Indonesia Nomor 17 .2019. Tentang Sumber Daya Air.

Mehonic, A. et al. 2020 .Memristors—From In‐Memory Computing, Deep Learning Acceleration, and Spiking Neural Networks to the Future of Neuromorphic andBio‐Inspired Computing, Advanced Intelligent Systems, 2(11).

https://doi.org/10.1002/aisy.202000085.

Meshram, S.G. et al. 2022. Streamflow Prediction Based on Artificial Intelligence Techniques”, Iranian Journal of Science and Technology - Transactions of Civil Engineering,46(3), pp.2393-2403.

https://doi.org/10.1007/s40996-021-00696-7.

Puah, Y.J. et al. 2016. River catchment rainfall series analysis using additive holt–Winters method, Journal of Earth System Science, 125(2), pp. 269–283.

https://doi.org/10.1007/s12040-016-0661-6.

Reddy, E.K. 2013. Neural networks for intrusion detection and its applications, in Proceedings of the World Congress on Engineering, pp. 3–5.

Rosytha, A., & Cristiyan, A. 2022. Perencanaan Sistem Distribusi Air Bersih Kecamatan Maduran Kabupaten Lamongan. Publikasi Riset Orientasi Teknik Sipil (Proteksi), 4(1), 48-58.

Sabri, F. and Adriyansyah .2020. Reliability analysis of the Kolong Kebintik as water resources for special economic zone in Tanjung Gunung, Pangkalan Baru District, Central Bangka Regency, in IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd.

https://doi.org/10.1088/1755-1315/599/1/012045.

Schoups, G. et al. 2010. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models, Water Resources Research,46(10).

http://doi.org/10.1029/2009WR008648.

Sulaiman, S.O. et al. 2019. Water resources management and sustainability over the Western desert of Iraq, Environmental Earth Sciences, 78(16).

https://doi.org/10.1007/s12665-019-8510-y.

Tabari, H. 2020. Climate change impact on flood and extreme precipitation increases with water availability, Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70816-2.

Wasko, C. et al. 2021. Evidence of shorter more extreme rainfalls and increased flood variability under climate change, Journal of Hydrology, 603, p. 126994.

Wasko, C. and Nathan, R. 2019. Influence of changes in rainfall and soil moisture on trends in flooding, Journal of Hydrology, 575, pp. 432–441.

https://doi.org/10.1016/j.jhydrol.2019.05.054.

Wisser, D. et al. 2010. The significance of local water resources captured in small reservoirs for crop production - A global-scale analysis, Journal of Hydrology, 384(3–4), pp. 264–275.

https://doi.org/10.1016/j.jhydrol.2009.07.032.

Yang, Q. et al. 2017. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China, Applied Water Science, 7(2), pp. 689–698.

https://doi.org/10.1007/s13201-015-0282-2.

Yu, Q. et al. 2014. A brain-inspired spiking neural network model with temporal encoding and learning, Neurocomputing, 138, pp. 3–13.

https://doi.org/10.1016/j.neucom.2013.06.052

Zebari, R.R. et al. 2021. A Review on Automation Artificial Neural Networks based on Evolutionary Algorithms, in 2021 14th International Conference on Developments in eSystems Engineering (DeSE). IEEE, pp. 235–240.

Published

2024-06-14
Abstract views: 35 , PDF Downloads: 15 , PDF Downloads: 4