ANALISA GETARAN POROS POMPA SENTRIFUGAL PADA SISTEM PENYAMBUNGAN KOPLING SABUK DENGAN VARIASI DIMENSI UKURAN TEBAL DAN LEBAR SABUK

Authors

  • Aldo Can Departemen Teknik Mesin, Universitas Sumatera Utara
  • Ikhwansyah Isranuri Departemen Teknik Mesin, Universitas Sumatera Utara

DOI:

https://doi.org/10.26740/otopro.v20n1.p24-30

Keywords:

Multiple Degrees of Freedom, Belt Flanges, Natural Frequency, Forced Vibration

Abstract

Pump machines at the Regional Drinking Water Company can pump and deliver drinking water to homes for the community's needs. But in reality, pumping machines are not always 100% able to convert electrical energy into motion energy. The remnants of wasted energy are Vibration. Vibration can damage the engine components connecting to the pump, namely bearings, shafts and flanges. Another cause is misalignment in the flange connection of the motor and pump. The solution is to connect the two flanges with a flexible and elastic material, namely 4 belts. For this reason, this analysis uses the Spring Mass Model with a Multiple Degrees of Freedom System, which is 3 DOF. The thickness variations of the belt used are 4.5 mm, 6 mm and 7.5 mm and the width is 98 mm, 120 mm, and 145 mm. The results of the analysis of the belt with dimensions of 145 mm wide and 7.5 mm thick have the smallest acceleration, velocity, deviation values, namely 8.53 m⁄s2 , 0.42 m/s, 0.24 m, have mass, stiffness and the largest attenuation, which is 1.52 kg, 133 N/m, and 937.76 N⁄(m⁄s) and at Natural Frequency which is 7.5 mm thick, it means the best and most resistant among all variations of the thickness and width of the belt tested. and recommended to the Regional Water Company.

 

References

Harris, Piersol. Shock and Vibration Handbook. 5th Edition. The McGraw-Hill Companies. 2002.

R.S. Khurmi, J.K. Gupta. A Textbook of Machine Design. 11th Edition. Eurasia Publishing House Limited. 2004.

CHEN, X., LIU, Y., Finite Element Modeling and Simulation with ANSYS Workbench, 2 ed, Boca Ra-ton, Taylor & Francis Group. 2019.

W. Kang, Z. Zhang, K. Zhou, and Y. Chen, “The random vibration and force transmission characteristics of the elastic propeller-shafting system induced by inflow turbulence,” Ocean Eng., vol. 188, no. January, p. 106317, 2019, doi: 10.1016/j.oceaneng.2019.106317.

W. Yu-qin and D. Ze-wen, “Influence of blade number on flow-induced noise of centrifugal pump based on CFD/CA,” Vacuum, vol. 172, no. November 2019, p. 109058, 2020, doi: 10.1016/j.vacuum.2019.109058.

Girdhar, P. & Octo Moniz. Practical Centrifugal Pumps Design, Operation and Maintenance. Netherlands, IDC Technologie. 2005.

Pain, H. J. The Physics of Vibrations and Waves. 6th Edition. London, John Wiley & Sons, Ltd. 2005.

Scheffer, C. & Girdhar P. Practical Machinery Vibration Analysis and Predictive Maintenance. Netherlands, IDC Technologies.Fridman. 2004.

Dan, B. Mechanical Enginer’s Handbook. Department of Mechanical Engineering. Auburn University. 2001.

Hariharan, V. & Srinivasan, PSS. ”Vibration analysis of missaligned shaft-ball bearing sytem.” 2 45-50. 2009.

Martianis, E. Analisa Getaran pada Pompa Sentrifugal Sistem Penyambungan Kopling Sabuk untuk Monitoring Kondisi. Tesis. Universitas Sumatera Utara. 2012.

Sularso & Haruo Tahara. Pompa dan Kompresor Pemilihan, Pemakaian dan Pemeliharaan. Edisi Keenam, Jakarta, PT. Pradya Paramita. 2006.

Hajar,I..Studi Eksperimental Deteksi Fenomena Kavitasi Pada Pompa Sentrifugal Menggunakan Sinyal Getaran Untuk Condition Monitoring. Tesis. Medan, Universitas Sumatera Utara. 2010.

Thomson, William. Theory of Vibration with Applications. 4th Edition. Prentice-Hall International. 1993.

Downloads

Published

2024-11-26

How to Cite

Can, A., & Isranuri, I. (2024). ANALISA GETARAN POROS POMPA SENTRIFUGAL PADA SISTEM PENYAMBUNGAN KOPLING SABUK DENGAN VARIASI DIMENSI UKURAN TEBAL DAN LEBAR SABUK. Otopro, 20(1), 24–30. https://doi.org/10.26740/otopro.v20n1.p24-30

Issue

Section

Articles
Abstract views: 17 , PDF Downloads: 25