A Review of Sentiment Analysis Applications in Indonesia Between 2023-2024

Main Article Content

boy setiawan

Abstract


The landscape of sentiment analysis applications in Indonesia is on the rise with the many published papers on the subject over the years. The need to predict sentiment coincides with the rise of social media and how the public uses it to express sentiments toward an interesting topic. The lack of tools for working with the Indonesian language has brought the invention of libraries to tackle the difficulty and uniqueness of the language on various topics from diverse data sources. The introduction of Sarkawi as a stemmer helps researchers overcome dimensionality problems commonly found with text processing, and boosts the performance of machine learning (ML) models. Using InSet as a lexicon dictionary capable of performing sentiment prediction has started gaining popularity for automatic labeling. The development of IndoBERT, an advanced neural network (NN) large language model (LLM) specifically trained from a large Indonesian text corpus capable of more than sentiment analysis, has gained traction both for automatic labeling and prediction models. Although the majority of research revolves around Naïve Bayes (NB), State Vector Machine (SVM), and K-Nearest Neighbor (KNN) the future of sentiment analysis applications in Indonesia could be heading towards a more advanced deep learning architecture. Finally, this study is intended as a basis for future research in the applications of sentiment analysis in Indonesia and the development of the language.


Article Details

Section
Articles

References

[1] A.G. Chifu and S. Fournier, “Sentiment Difficulty in Aspect-Based Sentiment Analysis,” Mathematics, vol. 11, no. 22, 2023, doi: 10.3390/math11224647.

[2] P. Sánchez-Núñez, C. de las Heras-Pedrosa, and J. I. Peláez, “Opinion Mining and Sentiment Analysis in Marketing Communications: A Science Mapping Analysis in Web of Science (1998–2018),” Soc. Sci., vol. 9, no. 3, 2020, doi: 10.3390/socsci9030023.

[3] S. Kemp, “DIGITAL 2024: INDONESIA.” [Online]. Available: https://datareportal.com/reports/digital-2024-indonesia

[4] S. Redjeki and W. Setyawan, “Comparison of Seven Machine Learning Algorithms in the Classification of Public Opinion,” J. TECH-E, vol. 5, no. 2, 2022, doi: 10.31253/te.v5i1.1046.

[5] M. A. Rosid, A. S. Fitrani, I. R. I. Astutik, N. I. Mulloh, and H. A. Gozali, “Improving Text Preprocessing For Student Complaint Document Classification Using Sastrawi,” IOP Conf. Ser. Mater. Sci. Eng., vol. 874, no. 1, p. 012017, Jun. 2020, doi: 10.1088/1757-899X/874/1/012017.

[6] B. S. Rintyarna et al., “Modelling Service Quality of Internet Service Providers during COVID-19: The Customer Perspective Based on Twitter Dataset,” Informatics, vol. 9, no. 1, 2022, doi: 10.3390/informatics9010011.

[7] Sherly Christina and Deddy Ronaldo, “A Survey of Sentiment Analysis Using Sentiwordnet on Bahasa Indonesia,” J. Teknol. Inf., vol. 12, no. 2, pp. 69–73, 2018.

[8] T. Walasary, “Survey Paper Tentang Analisis Sentimen,” J. Konstelasi, vol. 1, 2022, doi: 10.24002/konstelasi.v2i1.5378.

[9] A. J. Arifin and A. Nugroho, “Uji Akurasi Penggunaan Metode KNN dalam Analisis Sentimen Kenaikan Harga BBM pada Media Twitter,” Progresif J. Ilm. Komput., vol. 19, no. 2, pp. 700–709, 2023.

[10] Ferdi and V. Ayumi, “Analisa Sentimen Mengenai Kenaikan Harga BBM Menggunakan Metode Naïve Bayes dan Support Vector Machine,” JSAI J. Sci. Appl. Inform., vol. 6, pp. 1–10, Feb. 2023, doi: 10.36085/jsai.v6i1.4628.

[11] A. Abdillah M. ,. Fikry, M. ,. Nazir and Insani, “Analisa Sentimen Terhadap Kenaikan BBM di Twitter (X) Menggunakan Naive Bayes Classifier,” J. CoSciTech Comput. Sci. Inf. Technol., vol. 5, no. 1, pp. 65–74, 2024.

[12] R. Salam, M. Jamil, Y. Ibrahim, R. Rahmaddeni, S. Soni, and H. Herianto, “Analisis Sentimen Terhadap Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM) Menggunakan Support Vector Machine: Sentiment Analysis of Cash Direct Assistance Distribution for Fuel Oil Using Support Vector Machine,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, pp. 27–35, May 2023, doi: 10.57152/malcom.v3i1.590.

[13] C. Yanti, N. Agustini, N. Ginantra, and D. Wulandari, “Perbandingan Metode K-NN Dan Metode Random Forest Untuk Analisis Sentimen pada Tweet Isu Minyak Goreng di Indonesia,” J. MEDIA Inform. BUDIDARMA, vol. 7, p. 756, Apr. 2023, doi: 10.30865/mib.v7i2.5900.

[14] R. Merdiansah, S. Siska, and A. Ali Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” J. Ilmu Komput. Dan Sist. Inf. JIKOMSI, vol. 7, no. 1, pp. 221–228, Mar. 2024, doi: 10.55338/jikomsi.v7i1.2895.

[15] A. S. Widagdo, K. N. Qodri, F. E. N. Saputro, N. A. R. Putri, and others, “Analisis Sentimen Mobil Listrik di Indonesia Menggunakan Long-Short Term Memory (LSTM),” J. FASILKOM, vol. 13, no. 3, pp. 416–423, 2023.

[16] Z. R. Hakim and S. Sugiyono, “Analisa Sentimen Terhadap Kereta Cepat Jakarta–Bandung Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor,” J. Sains Dan Teknol., vol. 5, no. 3, pp. 939–945, 2024.

[17] A. M. Siregar, “Analisis Sentimen Pindah Ibu Kota Negara (IKN) Baru pada Twitter Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” Fakt. Exacta, vol. 16, no. 3, 2023.

[18] D. Pramana, M. Afdal, M. Mustakim, and I. Permana, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara Menggunakan Algoritma Naive Bayes Classifier dan K-Nearest Neightbors,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1306–1314, 2023.

[19] C. Huda and M. Betty Yel, “Analisa Sentimen Tentang Ibu Kota Nusantara (IKN) Dengan Menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naïve Bayes,” J. Ilmu Komput. Dan Sist. Inf. JIKOMSI, vol. 7, no. 1, pp. 126–130, Feb. 2024, doi: 10.55338/jikomsi.v7i1.2846.

[20] C. Tupari; Abdullah, Syaukani; Chairani, “Visualisasi Data Analisa Sentimen RUU Omnibus Law Kesehatan Menggunakan KNN dengan Software RapidMiner,” J. Inform. J. Pengemb. IT, vol. 8, no. 3, pp. 261–268, 2023.

[21] Z. Ardika and A. D. Wowor, “Analisis Sentimen Masyarakat Terhadap Program Badan Penyelenggara Jaminan Sosial (BPJS) Menggunakan Data Twitter,” JIPI J. Ilm. Penelit. Dan Pembelajaran Inform., vol. 9, no. 1, pp. 90–99, 2024.

[22] N. Amalia, T. Suprapti, and G. Dwilestari, “Analisis Sentimen Pengguna Twitter Terhadap Pelaksanaan Kurikulum MBKM,” E-Link J. Tek. Elektro Dan Inform., vol. 18, no. 1, pp. 57–64, 2023.

[23] J. T. Kumalasari and A. Merdekawati, “Analisis Sentimen Terhadap Program Kampus Merdeka Pada Twitter Menggunakan Metode Naïve Bayes, Union dan Synthetic Minority Over Sampling Technique (SMOTE),” Satin-Sains Dan Teknol. Inf., vol. 9, no. 1, pp. 01–12, 2023.

[24] F. N. Hidayat and S. Sugiyono, “Analisis Sentimen Masyarakat Terhadap Perekrutan PPPK Pada Twitter Dengan Metode Naive Bayes dan Support Vector Machine,” J. Sains Dan Teknol., vol. 5, no. 2, pp. 665–672, Dec. 2023, doi: 10.55338/saintek.v5i2.1359.

[25] A. Z. Ahmad, E. Asril, M. Sadar, Y. Turnandes, and others, “Analisis Sentimen Opini Terhadap Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Naïve Bayes dan Decision Tree,” ZONAsi J. Sist. Inf., vol. 5, no. 1, pp. 100–110, 2023.

[26] P. Arsi, I. Prayoga, and M. Asyari, “Klasifikasi Sentimen Publik Terhadap Jenis Vaksin Covid-19 yang Tersertifikasi WHO Berbasis NLP dan KNN,” J. MEDIA Inform. BUDIDARMA, vol. 7, p. 260, Jan. 2023, doi: 10.30865/mib.v7i1.5418.

[27] Kristiyanti, D. A. and Hardani, Sri “Sentiment Analysis of Public Acceptance of Covid-19 Vaccines Types in Indonesia using Naïve Bayes, Support Vector Machine, and Long Short-Term Memory (LSTM),” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 7, no. 3, Jun. 2023, doi: 10.29207/resti.v7i3.4737.

[28] M. Ridho, A. M. Husein, V. B. Halawa, N. A. Pasaribu, S. Kumar, and others, “Sentiment Analysis of Indonesia Covid-19 Vaccine on Twitter Using Naïve Bayes Classifier,” Data Sci. Indones. DSI, vol. 3, no. 2, pp. 90–97, 2023.

[29] S. Sulastri and F. A. Nur, “Analisa Sentimen Twitter Vaksin Covid-19 di Indonesia dengan Metode Support Vector Machine,” Kesatria J. Penerapan Sist. Inf. Komput. Dan Manaj., vol. 5, no. 3, pp. 1244–1252, 2024.

[30] A. Purnajaya and Y. Pernando, “Analisa Sentimen Informasi Hoaks Pasca Pandemi Covid-19 dengan Text Mining,” J. Comput. Syst. Inform. JoSYC, vol. 4, pp. 1–10, May 2023, doi: 10.47065/josyc.v4i3.3358.

[31] U. R. H. Baba, “Analisa Sentimen Menjelang Pemilihan Umum Presideen 2024 di Indonesia Menggunakan Perbandingan Performa Support Vector Machine (SVM) dan Naïve Bayes,” Innov. J. Soc. Sci. Res., vol. 4, no. 3, pp. 11972–11990, 2024.

[32] A. Hidayati and A. Fitriani, Analysis of 2019 Election Sentiment in Online News Titles Using the Logistic Regression Method: Analisa Sentimen Pemilu 2019 pada Judul Berita Online Menggunakan Metode Logistic Regression. 2023. doi: 10.21070/ups.493.

[33] L. Damayanti and K. Lhaksmana, “Sentiment Analysis of the 2024 Indonesia Presidential Election on Twitter,” Sinkron, vol. 8, pp. 938–946, Mar. 2024, doi: 10.33395/sinkron.v8i2.13379.

[34] L. Geni, E. Yulianti, and D. I. Sensuse, “Sentiment Analysis of Tweets Before the 2024 Elections in Indonesia Using Bert Language Models,” J. Ilm. Tek. Elektro Komput. Dan Inform., vol. 9, no. 3, pp. 746–757, Aug. 2023, doi: 10.26555/jiteki.v9i3.26490.

[35] M. R. Adipratama and N. Safriadi, “Analisis Sentimen Terhadap Rencana Penerapan E-Voting Pada Pemilu di Indonesia,” J. Linguist. Komputasional, vol. 7, no. 1, pp. 26–30, Mar. 2024, doi: 10.26418/jlk.v7i1.214.

[36] D. S. Nugroho, I. F. Hanif, M. A. Hasbi, F. Fredianto, A. M. Saputra, and R. Zildjian, “Analisis Sentimen Dugaan Pelanggaran Pemilu 2024 Berdasarkan Tweet Menggunakan Algoritma Naïve Bayes Classifier: Sentiment Analysis of Alleged 2024 Election Fraud Based on Tweets Using the Naïve Bayes Classifier Algorithm,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 3, pp. 1169–1176, 2024.

[37] S. A. Sutresno, “Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter,” Build. Inform. Technol. Sci. BITS, vol. 4, no. 4, pp. 1959–1966, 2023.

[38] Muhammad Fernanda Naufal Fathoni, Eva Yulia Puspaningrum, and Andreas Nugroho Sihananto, “Perbandingan Performa Labeling Lexicon InSet dan VADER pada Analisa Sentimen Rohingya di Aplikasi X dengan SVM,” Modem J. Inform. Dan Sains Teknol., vol. 2, no. 3, pp. 62–76, Jul. 2024, doi: 10.62951/modem.v2i3.112.

[39] H. Leidiyana, “Ensemble Stacking Dalam Analisa Sentimen Reaksi Veteran Militer AS Terhadap Pengambilalihan Afghanistan Oleh Taliban,” INTI Nusa Mandiri, vol. 18, no. 1, pp. 23–28, 2023.

[40] M. I. Ghozali, W. H. Sugiharto, and A. F. Iskandar, “Analisis Sentimen Pinjaman Online di Media Sosial Twitter Menggunakan Metode Naive Bayes,” KLIK Kaji. Ilm. Inform. Dan Komput., vol. 3, no. 6, pp. 1340–1348, 2023.

[41] R. N. Ikhsani and F. F. Abdulloh, “Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1667–1677, 2023.

[42] W. Purbasari, N. Setianti, and O. Krismonika, “Analisis Sentimen dan Analisis Jaringan (Network Analysis) Seks Pranikah di Indonesia Menggunakan Data Media Sosial Twitter,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 12, Oct. 2023, doi: 10.30591/smartcomp.v12i4.5671.

[43] L. Legito et al., “Penerapan Algoritma K-Nearest Neighbor untuk Analisis Sentimen Terhadap Isu Khilafah dan Radikalisme di Indonesia: Implementation K-Nearest Neighbor Algorithm for Sentiment Analysis on Khilafah and Radicalism Issues in Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, pp. 324–330, Nov. 2023, doi: 10.57152/malcom.v3i2.893.

[44] M. F. Setiamukti and M. F. Nasvian, “Social Network Analysis #Usuttuntas Pada Media Sosial Twitter (Data Twitter 11 November 2022),” Ekspresi Dan Persepsi J. Ilmu Komun., vol. 6, no. 1, pp. 124–137, 2023.

[45] Primandani Arsi, Pungkas Subarkah, and Bagus Adhi Kusuma, “Analisis Sentimen Game Genshin Impact pada Play Store Menggunakan Naïve Bayes Clasifier,” J. Ilm. Tek. Mesin Elektro Dan Komput., vol. 3, no. 1, pp. 161–170, Mar. 2023, doi: 10.51903/juritek.v3i1.1962.

[46] F. Rohmansyah and E. Poerwandono, “Analisis Data Sentimen Perbandingan Terhadap Game Online Mobile Legends dan PUBG Mobile Berdasarkan Tanggapan Masyarakat X Menggunakan Algoritma Naïve Bayes,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 7, pp. 1581–1587, Sep. 2024, doi: 10.31539/intecoms.v7i5.11824.

[47] S. Agung, “Implementasi Text Mining untuk Analisis Review pada Aplikasi Crowdfunding LX dan ST Menggunakan Metode Sentiment Analysis,” LANCAH J. Inov. Dan Tren, vol. 2, no. 1, pp. 124–130, 2024.

[48] Novi Lestari, Elin Haerani, and Reski Candra, “Analisa Sentimen Ulasan Aplikasi WeTV Untuk Peningkatan Layanan Menggunakan Metode Naïve Bayes,” J. Inf. Syst. Res. JOSH, vol. 4, no. 3, Apr. 2023, doi: 10.47065/josh.v4i3.3355.

[49] F. A. Indriyani, A. Fauzi, and S. Faisal, “Analisis Sentimen Aplikasi TikTok Menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” TEKNOSAINS J. Sains Teknol. Dan Inform., vol. 10, no. 2, pp. 176–184, 2023.

[50] C. Zai and A. Isnain, “Komparasi Algoritma Naïve Bayes dan Support Vector Machine (SVM) pada Analisis Sentimen Capcut,” INOVTEK Polbeng - Seri Inform., vol. 9, no. 1, 2024, doi: 10.35314/isi.v9i1.4054.

[51] A. Setyaningsih, D. Septiyani, and S. Widiasari, “Implementasi Algoritma Naïve Bayes untuk Analisis Sentimen Masyarakat pada Twitter mengenai Kepopuleran Produk Skincare di Indonesia,” J. Teknol. Inform. Dan Komput., vol. 9, pp. 224–235, May 2023, doi: 10.37012/jtik.v9i1.1409.

[52] R. A. Permana and S. Sahara, “Algoritma K-Nearest Neighbor Pada Analisa Sentimen Review Produk Router,” J. Sist. Inf. Dan Sist. Komput., vol. 8, no. 2, pp. 118–124, 2023.

[53] R. A. E. Virgana Sapanji, Dani Hamdani, and Parlindungan Harahap, “Sentiment Analysis of the Top 5 E-commerce Platforms in Indonesia Using Text Mining and Natural Language Processing (NLP),” J. Appl. Inform. Comput., vol. 7, no. 2, Nov. 2023, doi: 10.30871/jaic.v7i2.6517.

[54] A. Pramita and F. Nugraha, “Sistem Analisis Sentimen Produk Pada Aplikasi Lazada Menggunakan Metode Naïve Bayes,” J. Digit, vol. 14, p. 23, Jun. 2024, doi: 10.51920/jd.v14i1.362.

[55] F. Wulandari, E. Haerani, M. Fikry, and E. Budianita, “Analisis Sentimen Larangan Penggunaan Obat Sirup Menggunakan Algoritma Naive Bayes Classifier,” J. CoSciTech Comput. Sci. Inf. Technol., vol. 4, no. 1, pp. 88–96, 2023.

[56] Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes,” J. Sains Dan Teknol., vol. 5, no. 1, pp. 115–122, Aug. 2023.

[57] Y. Akbar, A. Regita, Sugiyono, and T. Wahyudi, “Analisa Sentimen Pada Media Sosial‘X’ Pencarian Keyword ChatGPT Menggunakan Algoritma K-Nearest Neighbors (KNN),” J. Indones. Manaj. Inform. Dan Komun., vol. 5, pp. 3291–3305, Sep. 2024, doi: 10.35870/jimik.v5i3.1016.

[58] D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indones. J. Comput. Sci., vol. 12, Aug. 2023, doi: 10.33022/ijcs.v12i4.3341.

[59] A. A. Munandar, F. Farikhin, and C. E. Widodo, “Sentimen Analisis Aplikasi Belajar Online Menggunakan Klasifikasi SVM,” JOINTECS J. Inf Technol Comput Sci Vol 8 No 2 P 77 2023 Doi 1031328jointecs V8i2 4747, 2023.

[60] R. Husen, R. Astuti, L. Marlia, R. Rahmaddeni, and L. Efrizoni, “Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning: Sentiment Analysis of Public Opinion on Twitter Toward BSI Bank Using Machine Learning Algorithms,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, pp. 211–218, Oct. 2023, doi: 10.57152/malcom.v3i2.901.

[61] Kurnia, I. Purnamasari, and D. Saputra, “Analisis Sentimen Dengan Metode Naïve Bayes, SMOTE Dan Adaboost Pada Twitter Bank BTN,” J. JTIK J. Teknol. Inf. Dan Komun., vol. 7, pp. 235–242, Apr. 2023, doi: 10.35870/jtik.v7i3.707.

[62] S. Saropah, R. Astuti, and F. M. Basysyar, “Algoritma Naïve Bayes Untuk Melakukan Analisa Sentimen Terhadap Aplikasi Axisnet Di Google Play,” JATI J. Mhs. Tek. Inform., vol. 7, no. 6, pp. 3655–3660, 2023.

[63] S. Butsianto, S. Fauziah, C. Naya, and F. Maulana, “Sentiment Analysis Of Indosat’s Mobile Operator Services On Twitter Using The Naïve Bayes Algorithm,” Brill. Res. Artif. Intell., vol. 4, no. 1, pp. 245–254, Jun. 2024, doi: 10.47709/brilliance.v4i1.4084.

[64] F. Syah, H. Fajrin, A. Afif, M. Saeputra, D. Mirranty, and D. Saputra, “Analisa Sentimen Terhadap Twitter IndihomeCare Menggunakan Perbandingan Algoritma Smote, Support Vector Machine, AdaBoost dan Particle Swarm Optimization,” J. JTIK J. Teknol. Inf. Dan Komun., vol. 7, pp. 53–58, Jan. 2023, doi: 10.35870/jtik.v7i1.686.

[65] D. Pratmanto, R. Rousyati, and A. Widodo, “Analisa Sentimen Persepsi Masyarakat Terhadap Aplikasi Bea Cukai Mobile Menggunakan Algoritma Naive Bayes Dan K-Nearest Neighbors,” EVOLUSI J. Sains Dan Manaj., vol. 12, Sep. 2024, doi: 10.31294/evolusi.v12i2.23576.

[66] Ratih Puspitasari, Y. Findawati, and M. A. Rosid, “Sentiment Analysis Of Post-Covid-19 Inflation Based On Twitter Using The K-Nearest Neighbor And Support Vector Machine Classification Methods,” J. Tek. Inform. Jutif, vol. 4, no. 4, pp. 669–679, Aug. 2023, doi: 10.52436/1.jutif.2023.4.4.801.

[67] A. D. Cahyani, “Analisa Kinerja Metode Support Vector Machine untuk Analisa Sentimen Ulasan Pengguna Google Maps,” J. Comput. Syst. Inform. JoSYC, vol. 4, no. 3, pp. 604–613, 2023.

[68] E. Tohidi, R. P. Herdiansyah, E. Wahyudin, and K. Kaslani, “Analisa Sentimen Komentar Video Youtube Di Channel Tvonenews Tentang Calon Presiden Prabowo Subianto Menggunakan Support Vector Machine,” JATI J. Mhs. Tek. Inform., vol. 8, no. 1, pp. 660–667, 2024.

[69] C.-H. Lin and U. Nuha, “Sentiment Analysis of Indonesian Datasets Based on A Hybrid Deep-Learning Strategy,” J. Big Data, vol. 10, no. 1, p. 88, May 2023, doi: 10.1186/s40537-023-00782-9.

[70] R. Sukmana and A. Rusydiana, “Social Media Sentiment Analysis on Waqf and Education,” Islam. Mark. Rev., vol. 2, Dec. 2023, doi: 10.58968/imr.v2i2.325.

[71] F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” in 2017 International Conference on Asian Language Processing (IALP), 2017, pp. 391–394. doi: 10.1109/IALP.2017.8300625.

[72] H. Imaduddin, F. A’la, and Y. Nugroho, “Sentiment Analysis in Indonesian Healthcare Applications using IndoBERT Approach,” Int. J. Adv. Comput. Sci. Appl., vol. 14, Jan. 2023, doi: 10.14569/IJACSA.2023.0140813.

[73] N. Royanti, I. Indrayanti, and B. Ismanto, “Analisa Sentimen Pelanggan pada Review Belanja Online Berbasis Text Mining Menggunakan Metode K-Means,” J. Inf. Syst. Res. JOSH, vol. 4, pp. 1441–1447, Jul. 2023, doi: 10.47065/josh.v4i4.3781.

[74] A. Adam and E. Setiawan, “Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU),” pp. 119–131, Mar. 2023, doi: 10.26555/jiteki.v9i1.25813.

[75] H. Setyawan, L. Azizah, and A. Pradani, “Sentiment Analysis of Public Responses on Indonesia Government Using Naïve Bayes and Support Vector Machine,” Emerg. Inf. Sci. Technol., vol. 4, pp. 1–7, May 2023, doi: 10.18196/eist.v4i1.18681.

[76] Y. Findawati, U. Indahyanti, Y. Rahmawati, and R. Puspitasari, “Sentiment Analysis of Potential Presidential Candidates 2024: A Twitter-Based Study,” Acad. Open, vol. 8, Aug. 2023, doi: 10.21070/acopen.8.2023.7138.

[77] D. Era, S. Andryana, and A. Rubhasy, “Perbandingan Algoritma Naïve Bayes Dan K-Nearest Neighbor pada Analisis Sentimen Pembukaan Pariwisata Di Masa Pandemi Covid 19,” J-SAKTI J. Sains Komput. Dan Inform., vol. 7, no. 1, pp. 263–272, 2023.

[78] A. Halim and Andri Safuwan, “Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naïve Bayes Berbasis Particle Swarm Optimization,” J. Inform. Teknol. Dan Sains Jinteks, vol. 5, no. 1, pp. 170–178, Feb. 2023, doi: 10.51401/jinteks.v5i1.2229.

[79] N. Habibah, E. Budianita, M. Fikry, and I. Iskandar, “Analisis Sentimen Mengenai Penggunaan E-Wallet Pada Google Play Menggunakan Lexicon Based dan K-Nearest Neighbor,” JURIKOM J. Ris. Komput., vol. 10, no. 1, pp. 192–200, 2023.

[80] E. Nurraharjo and others, “Analisis Sentimen Dan Klasifikasi Tweet Terkait Naiknya Kasus Omicron Menggunakan Naive Bayes Classifier,” J. Inform. Dan Rekayasa Elektron., vol. 6, no. 1, pp. 1–8, 2023.

[81] A. Fatkhudin, F. A. Artanto, N. A. Safli, and D. Wibowo, “Decision Tree Berbasis SMOTE dalam Analisis Sentimen Penggunaan Artificial Intelligence untuk Skripsi,” REMIK Ris. Dan E-J. Manaj. Inform. Komput., vol. 8, no. 2, pp. 494–505, 2024.

[82] M. R. Qisthiano, I. Ruswita, and P. A. Prayesy, “Implementasi Metode SVM dalam Analisis Sentimen Mengenai Vaksin dengan Menggunakan Python 3,” Teknol. J. Ilm. Sist. Inf., vol. 13, no. 1, pp. 1–7, 2023.

[83] M. R. Prasetyo and A. Fahrurozi, “Analisa Sentimen Pada Ulasan Google Untuk Hotel Gran Mahakam Jakarta Menggunakan Pendekatan Machine Learning,” J. Ilm. Inform. Komput., vol. 28, no. 3, pp. 203–217, 2023.

[84] Adetya Rizal Permana Putra Rizal and Jati Sasongko Wibowo, “Sentiment Analysis Twitter Sentiment Analysis of the 2024 Indonesian Presidential Candidates Using the KNN Method,” Elkom J. Elektron. Dan Komput., vol. 17, no. 1, Jul. 2024, doi: 10.51903/elkom.v17i1.1603.

[85] I Komang Andi Sugiarta, P. Anugrah Cahya Dewi, and Nengah Widya Utami, “Analisa Sentimen Mahasiswa Terhadap Layanan Stmik Primakara Menggunakan Algoritma Naive Bayes Dan K-Nearest Neighbor,” J. Inform. Teknol. Dan Sains Jinteks, vol. 5, no. 3, pp. 364–372, Aug. 2023, doi: 10.51401/jinteks.v5i3.3159.