PEMBUATAN SERBUK KARBON AKTIF DARI LIMBAH BAMBU SEBAGAI PENYANGGA KATALIS LOGAM DALAM SINTESIS BIOFUEL SECARA FISCHER-TROPSCH

Authors

  • Endah Kusuma Rastini Institut Teknologi Nasional Malang

DOI:

https://doi.org/10.26740/icaj.v2n1.p19-25

Keywords:

limbah bambu, serbuk karbon aktif, penyangga katalis

Abstract

Sintesis Fischer-Tropsch merupakan rute alternatif untuk konversi biomassa menjadi bahan bakar cair yang cukup menjanjikan karena produk biofuel yang dihasilkan memiliki karakteristik identik dengan bahan bakar fosil. Biomassa dikonversi menjadi gas sintesis (CO dan H2) melalui polimerisasi menjadi hidrokarbon rantai panjang (wax) dan selanjutnya dipotong-potong melalui proses perengkahan menghasilkan hidrokarbon rantai pendek (C5-C12) yang merupakan biofuel. Penggunaan karbon aktif sebagai penyangga dapat menghasilkan biofuel secara langsung. Penelitian ini bertujuan karakterisasi serbuk karbon aktif sebagai penyangga katalis logam yang akan digunakan dalam sintesis Fischer-Tropsch dan memanfaatkan limbah bambu sebagai sumber karbon aktif. Pembuatan karbon aktif dari bambu ini dilakukan dengan kombinasi aktivasi Karbonisasi-H3PO4 (A), Karbonisasi-H3PO4-Steam (B). Bambu dikecilkan ukurannya, dikeringkan dan diarangkan pada 5000C dengan aliran gas nitrogen dalam reaktor karbonisasi, diserbukkan, selanjutnya diaktivasi dengan H3PO4 85% dan dicuci sampai pH netral. Setelah pengeringan, sampel difungsionalisasi dengan HNO3 65%, dinetralkan, dikeringkan dan dikalsinasi pada 7000C. Struktur kristal pada karbon aktif dianalisa menggunakan XRD. Karbon aktif hasil berbagai urutan aktivasi memiliki profil XRD yang identik dan sudah menunjukkan spektra khas untuk karbon aktif. Karbon aktif yang dihasilkan sudah sesuai dengan struktur kristal berdasarkan sudut difraksi hasil analisis XRD. Aktivasi karbon yang diawali dengan steam kemudian ditreatment dengan asam fosfat (B) menunjukkan hasil yang lebih baik dalam hal terbentuknya gugus fungsi oksigen. Spektra gugus fungsi alkohol, fenol, karbonil, karboksilat muncul dengan intensitas yang cukup besar dibandingkan perlakuan aktivasi tanpa menggunakan steam. Hal ini menunjukkan bahwa kombinasi aktivasi fisik (steam) dan aktivasi kimia (asam fosfat) meningkatkan terbentuknya gugus fungsi oksigen dibandingkan proses fungsionalisasi menggunakan asam nitrat saja.

References

[1] S. Bessell, œInvestigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts, Appl. Catal. A, Gen., vol. 126, no. 2, pp. 235244, 1995.
[2] A. N. Pour, M. Zare, S. M. Kamali Shahri, Y. Zamani, and M. R. Alaei, œCatalytic Behaviors of Bifunctional Fe-HZSM-5 Catalyst in Fischer-Tropsch Synthesis, J. Nat. Gas Sci. Eng., vol. 1, no. 6, pp. 183189, 2009.
[3] M. J. Valero-Romero et al., œCarbon/H-ZSM-5 Composites as Supports for Bi-Functional Fischer-Tropsch Synthesis Catalysts, Catal. Sci. Technol., vol. 6, no. 8, pp. 26332646, 2016.
[4] T. Fu, Y. Jiang, J. Lv, and Z. Li, œEffect of Carbon Support on Fischer-Tropsch Synthesis Activity and Product Distribution over Co-Based Catalysts, Fuel Process. Technol., vol. 110, pp. 141149, 2013.
[5] H. Xiong, M. Moyo, M. A. M. Motchelaho, L. L. Jewell, and N. J. Coville, œApplied Catalysis A¯: General Fischer Tropsch Synthesis over Model Iron Catalysts Supported on Carbon Spheres¯: The effect of Iron Precursor, Support Pretreatment, Catalyst Preparation Method and Promoters, "Applied Catal. A, Gen., vol. 388, no. 12, pp. 168178, 2010.
[6] L. V Sineva, E. Y. Asalieva, and V. Z. Mordkovich, œThe Role of Zeolite in The FischerTropsch Synthesis over CobaltZeolite Catalysts, Russ. Chem. Rev., vol. 84, no. 11, pp. 11761189, 2015.
[7] T. Fu, Y. Jiang, J. Lv, and Z. Li, œEffect of carbon support on Fischer Tropsch synthesis activity and product distribution over Co-based catalysts, Fuel Process. Technol., vol. 110, pp. 141149, 2013.
[8] W. Ma, Y. Ding, J. Yang, X. Liu, and L. Lin, œStudy of Activated Carbon Supported Iron Catalysts for Teh Fischer-Tropsch Synthesis, vol. 84, no. 1, pp. 1119, 2005.
[9] I. W. Asma, J. Rafidah, E. Puad, and H. Shaharuddin, œProduction of Activated Carbon from Industrial Bamboo Wastes, vol. 23, no. 4, pp. 417424, 2011.
[10] B. H. Hameed, A. T. M. Din, and A. L. Ahmad, œAdsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, J. Hazard. Mater., vol. 141, no. 3, pp. 819825, 2007.
[11] E. L. K. Mui, W. H. Cheung, M. Valix, and G. Mckay, œActivated carbons from bamboo scaffolding using acid activation, Sep. Purif. Technol., vol. 74, no. 2, pp. 213218, 2010.
[12] B. G. Prakash Kumar, K. Shivakamy, L. R. Miranda, and M. Velan, œPreparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics, J. Hazard. Mater., vol. 136, no. 3, pp. 922929, 2006.
[13] J. L. Figueiredo and P. Serp, Carbon Material for Catalysis. Hobokem New Jersey: John Wiley & Sons, Inc, 2009.
[14] J. A. Bandosz, T. J.; Jagielo, J.; Amankwah, K. A. G.; Schwardz, œChemical and Structural Properties of Clay Minerals Modified by Inorganic and Organic Material, Clay Miner., vol. 27, no. 4, pp. 435444, 1992.
[15] I. I. Salame and T. J. Bandosz, œSurface Chemistry of Activated Carbons: Combining the Results of Temperature-Programmed Desorption, Boehm, and Potentiometric Titrations., J. Colloid Interface Sci., vol. 240, no. 1, pp. 252258, 2001.

Downloads

Published

2018-08-28

Issue

Section

Articles
Abstract views: 1344 , PDF Downloads: 822 , PDF Downloads: 0