Modifikasi Elektroda Pasta Karbon dengan Antrakuinon untuk Identifikasi Nikotin pada Rokok Komersial

Authors

  • Nuril Khoiriyah Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya Jalan Ketintang, Surabaya 60231
  • Pirim Setiarso Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Surabaya Jalan Ketintang, Surabaya 60231

Abstract

Penelitian mengenai modifikasi elektroda pasta karbon dengan antrakuinon untuk identifikasi nikotin dalam rokok komersial telah dilakukan. Nikotin, 3-(1-metil-2-pirolidinil) piridin, merupakan suatu basa yang mudah menguap sehingga dalam identifikasinya memerlukan perlakuan khusus. Penelitian ini bertujuan untuk mengetahui komposisi terbaik elektroda pasta karbon termodifikasi antrakuinon, pH, dan waktu deposisi sehingga dapat digunakan untuk mengidentifikasi nikotin dalam rokok komersial secara voltametri siklik. Hasil penelitian menunjukkan bahwa nikotin menghasilkan puncak tunggal oksidasi pada komposisi terbaik EPKA 3:3:4 dengan jumlah antrakuinon yang lebih banyak dari karbon dan minyak parafin. pH optimum pengukuran berada pada pH 9 dengan waktu deposisi 30 detik. Kadar nikotin dalam tiga merk rokok A, B, C berturut-turut yang terukur dengan EPKA secara voltametri adalah 0,62; 1,12; 1,24 mM. Hasil penelitian divalidasi dengan metode pengukuran lain. Pengukuran secara HPLC menunjukkan hasil yang tidak jauh berbeda dengan selisih rata-rata 0,074 M untuk konsentrasi sampel nikotin dalam rokok.

 

The research about modifying carbon paste electrode by anthraquinone for nicotine identification in commercial cigarettes has been developed. Nicotine, 3-(1-methyl-pirolidin-2-yl) piridine, is a volatile base that its identification needs particular treatment. This research aims to determine the best condition of carbon paste electrode modified anthraquinone include composition, pH, and deposition time that could be applied in identifying nicotine from commercial cigarettes by cyclic voltammetry. The result shows that nicotine yields single oxidation peak at best composition of CPE-A 3:3:4 with the amount of anthraquinone is more than two other materials. Optimum pH at pH 9with deposition time 30 s. Quantity of nicotine in three cigarettes products A, B, C that measured with CPE-A voltammetrically were 0.62; 1.12; 1.24 mM, consecutively. The result has been validated with another measurement. A measurement by HPLC shows not much different result with the average difference 0.074 M.

References

Henningfield JE, London, ED., Pogun, Sakire, 2009. Nicotine Psychopharmacology. Berlin: Springer.

Iwai M. Ogawa, Tadashi. Hattori, Hideki. Zaitsu, Kei. Ishii, Akira. Suzuki, Osamu. dan Seno, Hiroshi, 2013. Simple and Rapid Assay Method for Simultaneous Quantification of Urinary Nicotine and Cotinine Using Micro-Extraction by Packed Sorbent and Gas Chromatography-Mass Spectrometry. Nagoya Journal of Medical Sciences, 75: 255-261.

Jan MR, Shah, Jasmin, Shah, Abidullah, dan Gul, Fahmida, 1997. Separattion Identification and Determination of Nicotinic Acids and Nicotinamide in Cigarette Tobacco and Smoke (Part-I). Journal Chemistry Soc. Pak, 19 (4): 306-309.

Kassa H, Geto, Alemnew dan Admassie, Shimelis, 2013. Voltammetric Determination of Nicotine in Cigarette Tobacco at Electrochemically Activated Glassy Carbon Electrode. Buletin. Chem. Soc. Ethiop, 3 (27): 321-328.

Kounaves, S.P, 1997. Voltammetric Techniques in Handbook of Instrumental Techniques for Analytical Chemistry. F.A. Settle (Ed.) Prentice Hall PTR, Upper Saddle River, NJ.

Massadeh, Adnan M, Gharaibeh, Ahmad A, dan Omari, Khaled W, 2009. A Single-Step Extraction Method for the Determination of Nicotine and Cotinine in Jordanian Smokers Blood and Urine Samples by RP-HPLC and GCMS. Journal of Chromatographic Science, 47: 170-177.

Pendergrass, Stephanie M dan Larry B. Jaycox, 1988. NIOSH Manual of Analytical Methods (NMAM). Fourth Edition. Issue (1) 1-4.

Skoog DA, 1996. Fundamental of Analytical Chemistry 7th Edition. USA: Saunders College Publishing.

Švorc, Ľubomír. Stanković, Dalibor M. dan Kalcher, Kurt, 2013. Boron-doped diamond electrochemical sensor for sensitive determination of nicotine in tobacco products and anti-smoking pharmaceuticals. Journal of Diamond and Related Materials, 42: 1 7.

Tadesse, Abrha, Pal, Rishi, Tadese, Abraha, Woldu, Amaha, Saini, Ram Chander, 2015. An Electrochemical Study on Nicotine Behavior at Anthraquinone-Carbon Paste Sensor and Its Estimation in Cigaratte Tobacco Samples Voltametrically. Indo American Journal of Pharmaceutical Research, 5 (10): 3079-3087.

Tyrpień K, Dobosz C, Chróściewicz A, Ciołecka M, Wielkoszyński T, Janoszka B, dan Bodze, D, 2003. Investigation of Nicotine Transformation Products by Densitometric TLC and GCMS. Acta Chromatographica, (13): 154-160.

World Health Organization, 2010. WHO Report on The Global Tobacco Epidemic, 2010: the MPOWER package. WHO, Geneva.

Xiong, Huayu. Zhao, Yunfei. Liu, Peng. Zhang, Xiuhua. Wang, Shengfu, 2009. Electrochemical properties and the determination of nicotine at a multi-walled carbon nanotubes modified glassy carbon electrode. Microchim Acta, (168): 3136.

Yulianto, Eko dan Setiarso, Pirim, 2014. Pembuatan Elektroda Pasta Karbon Termodifikasi Kitosan untuk Analisis Cr (VI) secara Cyclic Stripping Voltammetry. Prosiding Seminar Nasional Kimia: 13 26.

Downloads

Published

2019-11-03
Abstract views: 425 , PDF Downloads: 740