IMPLEMENTASI WEIGHTED K-NEAREST NEIGHBOR UNTUK PERAMALAN DATA DERET WAKTU
Isi Artikel Utama
Abstrak
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
[1] D.T. Larose, œDiscovering Knowledge in Data an Introduction to Data Mining. Jhon Wiley & Sons, Inc., New Jersey, 2005.
[2] S. Makridakis, S.C. Wheelwriht, and McGee. œMetode dan Aplikasi Peramalan, Terjemahan Hari Suminto, Binarupa Aksara, Jakarta, 1999.
[3] F. Martinez, M.P. Frias, F. Charte, and A.J. Rivera, œTime Series Forecasting with KNN in R:the tsfknn Package, The R Journal., vol. 11, no. 2, pp. 229-242, 2019.
[4] B. Santosa, œData Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis, Graha Ilmu, Yogyakarta, 2007.
[5] S.B. Setiawan, Adiwijaya, and M.S. Mubarok, œKlasifikasi Topik Berit Berbahasa Indonesia Menggunakan Weighted K-Nearest Neighbor, e-Proceeding of Engineering., vol. 5, no. 1, pp. 1819-1825, 2018.
[6] S.B. Taieb, G. Bontempi, A. Sorjamaa, and A. Lendasse, œLong-term prediction of time series by combining direct and MIMO strategies, Proceedings of the 2009 IEEE Internationala Joint Conference on Neural Networks, USA, pp. 3054-3061, 2009.