APLIKASI GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) UNTUK PEMETAAN FAKTOR YANG MEMPENGARUHI INDEKS AKTIVITAS LITERASI MEMBACA DI INDONESIA
Isi Artikel Utama
Abstrak
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Referensi
[1] K. Naibaho, œMenciptakan Generasi Literat Melalui Perpustakaan, Visi Pustaka, vol. 9, no. No. 3, p. 4, 2007.
[2] M. Tarigan, œTerburuknya Peringkat Literasi Kita, Tempo, 2016. [Online]. Available: koran.tempo.co/read/397142/terpuruknya-peringkat-literasi-kita.
[3] OECD, œPISA Indonesia 2015, Ctry. Note, pp. 45, 2015.
[4] Puslitjakdikbud, œIndeks Aktivitas Literasi Membaca 34 Provinsi, repositori.kemdikbud.go.id, 2019. [Online]. Available: repositori.kemdikbud.go.id.
[5] E. B. Harsono, œPapua (Masih) Darurat Literasi, Harian Nasional, 2019. [Online]. Available: http://www.harnas.co/2019/09/20/papua-masih-darurat-literasi. [Accessed: 14-Sep-2020].
[6] A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. West Sussex, England: John Wiley & Sons, Ltd, 2002.
[7] J. Fox, œApplied Regression Analysis and Generalized Linear Models, SAGE Publ. Inc, 2015.
[8] J. Lee and D. W. S. Wong, Statistical Analysis with ArcView GIS. Canada: John Willey & Sons, Inc, 2001.
[9] M. Charlton and A. S. Fotheringham, Geographically Weighted Regression. White paper, National Centre for Geocomputation National University of Ireland Maynooth, 2009.
[10] L. Anselin, Spatial Econometrics: Methods and Models. Berlin: Springer-Verlag, 2013.