Enhancing Poverty Alleviation Through Village-Level Multidimensional Poverty Measurement

Authors

  • Siectio Dicko Pratama BPS-Statistics of Lampung Utara Regency
  • Devi Novanti BPS-Statistics of Lampung Utara

Keywords:

multidimensional poverty, village-level poverty measurement, policy targeting, logistic regression, poverty alleviation

Abstract

Poverty in Indonesia remains a persistent challenge, particularly in rural areas, where national strategies often fail to address local complexities. This study aims to enhance poverty alleviation efforts by constructing a village-level Multidimensional Poverty Index (MPI) tailored to the specific context of Candimas Village. Indicators were selected through literature review and consultation with village officials, followed by descriptive, contingency, and logistic regression analysis. The results reveal that 14.13% of households are multidimensionally poor, with inadequate housing, health vulnerability, and joblessness as key contributing factors. However, only 6.53% of these families receive government assistance, while 32.18% of non-poor families do—highlighting critical targeting gaps. Spatial disparities also suggest misallocation across neighborhood units. Regression analysis confirms the significant influence of BPJS PBI ownership, housing conditions, and unsafe drinking water on low-income levels. The study concludes that a locally-adapted MPI is more effective in identifying and prioritizing vulnerable households than conventional approaches. Its application can inform village-level resource allocation (e.g., BLT Desa) and support more equitable and data-driven poverty alleviation strategies.

References

Agresti, A. (2013). Categorical Data Analysis. In International encyclopedia of statistical science (Third, Vol. 47, Issue 4). John Wiley & Sons, Inc.

Aidha, C. N., Ningrum, D. R., Armintasari, F., Herawati, Ramdlaningrum, H., Sagala, M., Thaariq, R. M., & Kartika, W. (2020). Indeks Kemiskinan Multidimensi Indonesia 2015–2018 [Indonesian Multidimensional Poverty Index]. PRAKARSA.

Alkire, S. (2008). Choosing dimensions: The capability approach and multidimensional poverty. The Many Dimensions of Poverty, 8862, 89–119. https://doi.org/10.1057/9780230592407

Alkire, S., & Foster, J. (2011). Counting and Multidimensional Poverty Measurement. Journal of Public Economics, 95(7–8), 476–487. https://doi.org/10.1016/j.jpubeco.2010.11.006

Alkire, S., Foster, J. E., Seth, S., Santos, E., Roche, J. M., & Ballon, P. (2015a). The Alkire-Foster Counting Methodology. In Multidimensional Poverty Measurement and Analysis. Oxford University Press.

Alkire, S., Foster, J. E., Seth, S., Santos, M. E., Roche, J. M., & Ballon, P. (2015b). Multidimensional Poverty Measurement and Analysis. Oxford University Press. http://www.ophi.org.uk/multidimensional-poverty-measurement-and-analysis-chapter-8-robustness-analysis-and-statistical-inference/

Alkire, S., & Santos, M. E. (2014). Measuring Acute Poverty in the Developing World: Robustness and Scope of the Multidimensional Poverty Index. World Development, 59, 251–274. https://doi.org/10.1016/j.worlddev.2014.01.026

Azmi, S., Nuryartono, N., & Binenbaum, E. (2020). RURAL DEVELOPMENT POLICY AND POVERTY ALLEVIATION: THE CASE OF VILLAGE FUNDS IN ACEH PROVINCE, INDONESIA.

Battiston, D., Cruces, G., Lopez-Calva, L. F., Lugo, M. A., & Santos, M. E. (2013). Income and Beyond: Multidimensional Poverty in Six Latin American Countries. Social Indicators Research, 112(2), 291–314. https://doi.org/10.1007/s11205-013-0249-3

BPS-Statistics Indonesia. (2024, July 17). Persentase Penduduk Miskin (P0) Menurut Provinsi dan Daerah. https://www.bps.go.id/id/statistics-table/2/MTkyIzI%3D/persentase-penduduk-miskin--p0--menurut-provinsi-dan-daerah.html

Budiantoro, S., Fajar, L., Sagala, M., & Saputra, W. (2016). Indeks Kemiskinan Multidimensi Indonesia 2012-2014 [Indonesian Multidimensional Poverty Index]. PRAKARSA.

CONEVAL. (2012). Multidimensional Measurement of poverty in Mexico: an economic wellbeing and social rights approach. https://www.coneval.org.mx/informesPublicaciones/FolletosInstitucionales/Documents/Multidimensional-Measurement-of-poverty-in-Mexico.pdf

Hasibuan, A. N. R., Putri, S. A., Hasibuan, S. R., & Gurning, F. P. (2024). Analisis Kesesuaian Anggota BPJS Penerima Bantuan Iuran (PBI) dengan Indikator Kemiskinan di Kota Medan. Jurnal Kolaboratif Sains, 7(5), 1556–1561. https://doi.org/10.56338/jks.v7i5.5075

Haughton, J., & Khandker, S. R. (2009). Handbook on Poverty and Inequality. The World Bank.

Hemmert, G. A. J., Schons, L. M., Wieseke, J., & Schimmelpfennig, H. (2018). Log-likelihood-based Pseudo-R2 in Logistic Regression: Deriving Sample-sensitive Benchmarks. Sociological Methods and Research, 47(3), 507–531. https://doi.org/10.1177/0049124116638107

Hosmer, D. W. ., Lemeshow, Stanley., & Sturdivant, R. X. . (2013). Applied logistic regression. Wiley.

Howe, G., & McKay, A. (2007). Combining Quantitative and Qualitative Methods in Assessing Chronic Poverty: The Case of Rwanda. World Development, 35(2), 197–211. https://doi.org/10.1016/j.worlddev.2005.10.017

Kartanegara, H. T., Suryadi, A., & Sardin, S. (2023). Kemiskinan Multidimensi: Potret Geripis Desa Sukamulya Kecamatan Sukaluyu Kabupaten Cianjur. Al Qalam: Jurnal Ilmiah Keagamaan Dan Kemasyarakatan, 17(2), 28. https://doi.org/10.35931/aq.v17i2.1954

Laderchi, C. R. (1997). Poverty and its many dimensions: The role of income as an indicator. Oxford Development Studies, 25(3), 345–360. https://doi.org/10.1080/13600819708424139

Oxford Poverty and Human Development Initiative. (2015). Measuring Multidimensional Poverty: Insights from Around the World. May, 1–16. https://www.ophi.org.uk/wp-content/uploads/Informing-Policy-brochure-web-file.pdf

Perkumpulan PRAKARSA. (2023). Indeks Kemiskinan Multidimensi Indonesia 2012-2021. https://theprakarsa.org/ikm/wp-content/uploads/2023/09/Laporan-IKM-34-Provinsi-v7-digital.pdf

Pradhan, M., Suryahadi, A., Sumarto, S., & Pritchett, L. (2000). Measurements of Poverty in Indonesia: 1996, 1999, and Beyond. www.smeru.or.id

Rimajuwikah, N. K., Rini, I., Ari, D., Haryani, S., Perencanaan, J., & Dan Kota, W. (2021). ANALISIS KEMISKINAN MULTIDIMENSI DI DESA DUWET KECAMATAN TUMPANG.

Santos, M. E., & Villatoro, P. (2020). The Importance of Reliability in the Multidimensional Poverty Index for Latin America. The Journal of Development Studies, 56(9), 1784–1789. https://doi.org/10.1080/00220388.2019.1663177

Septya, M., Kamarni, N., & Devianto, D. (2024). A Portrait of Multidimensional Poverty of Indonesian Agricultural Households. Daengku: Journal of Humanities and Social Sciences Innovation, 4(4), 638–646. https://doi.org/10.35877/454ri.daengku2541

Suppa, N. (2018). Towards a multidimensional poverty index for Germany. Empirica, 45(4), 655–683. https://doi.org/10.1007/s10663-017-9385-3

Wang, Y., & Wang, B. (2016). Multidimensional poverty measure and analysis: a case study from Hechi City, China. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2192-7

Downloads

Published

2025-11-29

How to Cite

Pratama, S. D., & Novanti, D. (2025). Enhancing Poverty Alleviation Through Village-Level Multidimensional Poverty Measurement. Journal of Rural and Regional Innovation Studies, 1(2), 86–107. Retrieved from https://journal.unesa.ac.id/index.php/jorris/article/view/46579
Abstract views: 5 , PDF Downloads: 0

Similar Articles

You may also start an advanced similarity search for this article.