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Memory) the Adam optimizer. Model performance was evaluated using RMSE, MAE,
Cross-Validation and R? under k-Fold Cross-Validation and compared against Split Validation
Deep Learning from prior studies. Results show that k-Fold consistently produced lower error
Sequence Forecasting values, confirming its reliability for stable performance estimation. Notably,

models using Close-only input achieved lower RMSE and MAE than those
with additional indicators (MA200, stochastic), which primarily improved R2.
This indicates that feature simplicity, combined with robust preprocessing and
validation, can outperform more complex inputs in short-term forecasting. In
conclusion, integrating LSTM with k-Fold Cross-Validation provides a
practical and efficient framework for stock prediction, particularly in
resource-constrained settings. However, the findings are limited to specific
stocks and indicators. Future work should extend the approach to broader
markets, incorporate macroeconomic or sentiment-based features, and
explore hybrid architectures to enhance predictive performance further.
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1. INTRODUCTION

Stock price movements are notoriously difficult to predict due to complex factors, including global
economic conditions, unemployment rates, monetary policy, natural disasters, and public health crises. These
uncertainties drive market participants to seek methods to maximize profits and minimize risk through
comprehensive market analysis [1]. The stock market plays a vital role in the economy by providing liquidity,
supporting diversification, optimizing resource allocation, and reducing information and transaction costs.
Numerous studies have also demonstrated a positive relationship between stock market development and a
country's economic growth [2]. As financial instruments, stocks represent partial ownership in a company,
granting rights to profits and participation in key decisions, though they remain vulnerable to price fluctuations
driven by market dynamics [3]. In response to these challenges, technological advancements such as artificial
intelligence and big data have fueled significant interest in stock price prediction across both industry and
academia. Algorithms such as decision trees, Support Vector Machines (SVMs), and Long Short-Term
Memory (LSTM) networks have been widely adopted, with LSTM proving particularly effective for processing
volatile time-series data [4]. Traditional models are increasingly viewed as insufficient, making big data and
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neural network-based approaches more appealing [5]. Meanwhile, the Efficient Market Hypothesis (EMH)
remains a subject of debate, and technical analysis has emerged as a primary method for leveraging historical
market patterns in stock price forecasting [6][7].

Stock price prediction poses a significant challenge due to the highly dynamic, nonlinear nature of the
market, which is influenced by economic, political, and often irrational investor sentiment [8]. Traditional time
series analysis methods, such as ARIMA and Exponential Smoothing, have long been employed in financial
forecasting. However, these approaches are limited in their ability to handle the inherent complexity and high
volatility of financial data [9][10]. In addition, machine learning techniques such as Support Vector Machines,
Random Forests, and Artificial Neural Networks have been widely applied, yet they often encounter such
problems as overfitting, high data dimensionality, and reliance on manual feature engineering [11][12]. To
overcome these limitations, researchers have increasingly turned to deep learning-based approaches,
particularly Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) architectures. These
models possess capability to capture long-term patterns in time-series data and have demonstrated promising
results in stock price prediction tasks [13]-[15]. Nevertheless, prediction accuracy remains a critical concern.
Therefore, more robust model evaluation strategies, such as Cross-Validation, are necessary to enhance both
the accuracy and generalizability of models when applied to the complexities of financial market data.

Recent studies further highlight the strengths of LSTM-based forecasting when combined with
appropriate validation and comprehensive evaluation metrics. For instance, Varadharajan et al. (2024)
employed an LSTM-RNN model to predict Amazon’s daily closing prices using an 80-20 data split. Their
evaluation included RMSE, MAE, and MAPE, achieving results of 2.84, 2.043, and 1.510, respectively, under
optimal hyperparameter tuning and dropout regularization, which helped mitigate overfitting [16]. Similarly,
recent work by Chang et al. (2024) demonstrated that integrating multiple performance metrics, such as RMSE,
MAE, and R?, provides a more robust understanding of predictive accuracy and generalization in volatile
financial time series. These findings underscore the importance of diverse metrics and systematic validation in
LSTM-based stock price forecasting [17].

While these studies demonstrate the importance of rigorous validation and diverse performance metrics,
Agung et al. (2025) reveal several notable limitations in their methodology. First, the study used a static data-
splitting method, allocating 96% to training and 4% to testing. While straightforward, this approach is overly
limited in the context of stock market forecasting, as it ignores temporal variability in dynamic and non-
stationary data, increasing the risk of overfitting and leading to an optimistic bias in performance evaluation.
Second, the model evaluation focused solely on RMSE and average profit, omitting complementary metrics
such as MAE and R? which would provide a more comprehensive assessment of accuracy and error
distribution. Third, the study placed excessive emphasis on profit outcomes as the primary measure of success.
Although profit is practically relevant, it is susceptible to specific market conditions and does not adequately
reflect the model’s ability to generalize across unseen data or varying scenarios. Finally, the generalization
capability of the proposed framework remains weak, as the authors themselves acknowledged the need for
future validation using Cross-Validation methods to strengthen the reliability of their results. These gaps
highlight the need for methodological improvements, particularly the integration of robust time-series Cross-
Validation and multiple performance metrics, to ensure both accuracy and resilience in LSTM-based stock
price forecasting [18].

To address these limitations, this study employs k-Fold Cross-Validation to enhance the reliability of
LSTM models for stock price forecasting. Cross-validation helps mitigate the risk of overfitting by partitioning
the dataset into multiple rotating training and testing subsets, thereby producing more stable evaluation results
and improving the model’s generalization to unseen data [19]. Furthermore, the integration of deep learning
models such as LSTM with robust validation techniques has been shown to yield more accurate predictions for
complex, nonlinear time series such as financial data [20][21]. The application of grid search Cross-Validation
also plays a critical role in the hyperparameter tuning process, ensuring optimal performance according to
predefined evaluation metrics [22]. Thus, integrating Cross-Validation into deep learning architectures such as
LSTM and its variants offers a promising pathway to address the volatility and uncertainty inherent in stock
price forecasting [23].

With the validation framework established, it is essential to justify the choice of model architecture. The
selection of LSTM in this stock forecasting study is based on its advantages over other models, particularly
traditional RNN and Transformers. LSTMs are specifically designed to overcome the vanishing and exploding
gradient problems in RNN, enabling them to retain long-term memory, which is crucial for sequential data
such as stock prices [24][25]. With their memory cell structure and three main gates (input, forget, and output),
LSTM can adaptively decide which information to retain or discard, thus enhancing their ability to learn from
complex historical patterns [26]. In contrast, although Transformer-based models are powerful in capturing
multivariate interactions, they suffer from quadratic computational complexity, which limits their practicality
for long sequences [27]. Therefore, LSTMs remain a mature, stable, and proven architecture for handling long-
term dependencies while maintaining computational efficiency, making them a strong baseline and an
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appropriate choice for forecasting dynamic, highly uncertain stock price movements and time-series data in
real-world applications.

In this study, titled “Stock Price Forecasting Using LSTM with Cross-Validation,” the novelty lies in the
systematic integration of the LSTM deep learning model with k-Fold Cross-Validation for forecasting stock
prices characterized by dynamic and nonlinear behavior. Unlike previous studies, such as Agung et al. (2025),
which relied solely on a static 96:4 data-splitting approach without accounting for temporal variability, this
research offers a more robust and generalizable model evaluation framework [18]. The application of Cross-
Validation not only mitigates the risk of overfitting but also yields more stable and representative evaluation
results under real-world, fluctuating market conditions. Additionally, the implementation of Cross-Validation
for hyperparameter tuning within the LSTM architecture is a further contribution, enhancing both the accuracy
and consistency of model performance.

The specific contributions of this study are as follows:

1. Introducing k-Fold Cross-Validation as a systematic validation method for LSTM in stock price

forecasting, specifically applied to 10-day ahead predictions.

2. Employing multiple evaluation metrics, including RMSE, MAE, and R? to provide a more

comprehensive assessment of forecasting performance.

3. Exploring different hidden sizes (64 and 128 units) within the LSTM layers to examine their effects

on accuracy and stability.

4. Assessing computational time requirements, offering insights into the trade-off between model

complexity and efficiency in practice.

The remainder of this paper is structured as follows: Section 2 details the methodology, Section 3 presents
the experimental results and analysis, and Section 4 concludes with key findings and directions for future
research.

2. METHOD

The methodology of this study is designed to ensure the robustness and reliability of the proposed
approach for forecasting and evaluating model performance. It integrates deep learning techniques with
systematic validation strategies and a well-structured experimental workflow. Specifically, it highlights the
role of Long Short-Term Memory (LSTM) networks in modeling sequential data, the use of Cross-Validation
to minimize bias and enhance generalizability, and an experimental workflow that delineates the end-to-end
process from data preparation to training, validation, and testing. Together, these components provide a solid
foundation for reliable and accurate results.

2.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) is an advanced architecture of Recurrent Neural Networks (RNNs)
specifically designed to address long-term dependency issues in time series data, such as vanishing and
exploding gradients. The LSTM architecture introduces a memory cell (cell state) and three primary gates: the
input gate, forget gate, and output gate, which selectively regulate the flow of information. The forget gate
determines how much information from the previous step is retained, the input gate controls how much new
information is added, and the output gate decides which information is passed on to the next time step. This
mechanism combines linear operations with non-linear activation functions, such as sigmoid and tanh, allowing
the LSTM to filter and retain critical information, thereby improving prediction accuracy. Through internal
feedback via the memory cell and hidden state, LSTM networks are capable of maintaining long-term temporal
information and managing complex dynamics in time series data more effectively and stably than traditional
RNNs [28]-[30]. An illustration of the LSTM architecture is presented in Figure 1.
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Figure 1. LSTM unit structure [31]

The architecture of Long Short-Term Memory (LSTM) can be formally described through a series of
fundamental equations, namely the forget gate Equation 1, input gate Equation 2, candidate cell state Equation
3, cell state update Equation 4, output gate Equation 5, and hidden state Equation 6, each representing a key
component that governs the information flow within the LSTM unit.

1.  Forget Gate

fi = o(Wxr - X¢ + Wyt - hey + by) (1)
2.  Input Gate

it = oWy - x¢ + Whi - hey + by) (2)
3. Candidate Cell State

=01t O (3)
4.  Cell State Update

¢ = tanh(Wyc - X + Whe O he—y + be) 4)
5. Output Gate

0y = 6(Wyo - X¢ + Who - he—y + b,) (5)
6.  Hidden State (Output)

hy = o, O tanh(c;) (6)

o  Forget gate (Equation 1): determines the portion of information from the previous cell state that should
be retained.

e Input gate (Equation 2): regulates the amount of new information incorporated into the current cell state.

e  Candidate cell state (Equation 3-4): represents the potential new content generated through a non-linear
transformation (tanh) of the input and previous hidden state.

e  Output gate (Equation 5): controls which part of the updated cell state is exposed to the hidden state.

e  Hidden state (Equation 6): produces the final output of the LSTM unit and serves as input for the next
time step.

Here, f; denotes the proportion of past information retained after the forget gate, i, indicates the
contribution of new input, ¢; is the candidate cell state, and c; is the updated cell state. The sigmoid function
(o) is used for gating operations, while (© denotes the element-wise (Hadamard) product. x; refers to the
current input vector, h;_; represents the hidden state from the previous step, Wys, Wy;, Wy, Wy, are input
weight matrices, Wy, Wy;, Wy, Wy, are recurrent weight matrices associated with the hidden state, and
bg, by, b, b, are the respective bias vectors for each gate [31].

2.2. Cross-Validation

In many cases, training and testing a predictive algorithm are performed on a single dataset, which may
lead to biased performance metrics. Cross-validation (CV) techniques address this limitation by enabling the
algorithm to be trained, validated, and tested on multiple subsets, or folds, of the data [32]. In both machine
learning and deep learning, standard holdout methods, in which data is split into training, validation, and test
sets, and CV are widely used to evaluate model performance [33]. The core principle of CV is to partition the
dataset into several folds, with each fold serving in turn as a training and a test set. This process is iterated
across different partition configurations to generate more reliable performance estimates and to reduce
evaluation bias and the risk of overfitting [34].
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CV serves three primary purposes: evaluating a model’s generalization capability, selecting the most
suitable algorithm among candidates, and supporting hyperparameter optimization [35]. The number of folds
selected influences the bias-variance trade-off: increasing the number of folds generally reduces bias but raises
variance, whereas fewer folds lower variance but increase bias [36]. As a model evaluation strategy, CV has
been employed for decades, typically by splitting available data into separate portions: one for model
development and the other for performance testing on unseen data [37]. This iterative and systematic approach
enhances the robustness of model evaluation, making it a preferred method for performance assessment in
predictive modeling.

2.3. Workflow Experiment

In this experiment, a series of steps is conducted within the experimental workflow. The experiment
consists of several stages: dataset selection, data preprocessing, feature selection, data preparation, k-fold cross-
validation, LSTM configuration, model training, model evaluation, and results visualization. The complete
process is illustrated in Figure 2.

Pre-processing » Feature Selection » Data Preparation
Dataset
LSTM Configuration
Overfitting I
JUnderfitting High RMSE
A 4
Visualization < RMSE < Train and Test < K_FO|.d Cross—
Validation

Figure 2. Experimental Workflow

2.3.1. LSTM Configuration

In this experiment, we implemented a model configuration with 1 or 2 Long Short-Term Memory (LSTM)
layers, each with 64 or 128 hidden units. The model was designed with a single output unit and a dropout rate
of 0.2 applied to each LSTM layer to mitigate overfitting. Training was conducted over 1000 epochs using the
Adam optimizer with a learning rate of 0.001 and a weight decay of 0.00001, to ensure faster convergence and
improved generalization. Furthermore, a 10-fold Cross-Validation approach was employed with shuffling
disabled to preserve the temporal order of the data, thereby providing a robust and reliable estimate of the
model’s performance across different data partitions. This configuration was chosen to systematically examine
the effects of architectural depth, hidden layer size, and hyperparameter settings on the model’s effectiveness
in addressing the forecasting task.

2.3.2. Dataset

The dataset employed in this study is identical to that used in the previous research and consists of six
selected stocks: LW, LKQ, IPG, MGM, RL, and CAG. The selection of these particular stocks was based on
their use in previous studies, enabling a more consistent comparison of the results. Furthermore, the dataset
spans March 1, 2022, to March 28, 2023, thereby representing approximately one year of stock market
dynamics, including trend variations, price fluctuations, and varying market conditions.

For the feature selection process, we relied on both a literature review and empirical considerations.
Features such as Close, 200-day Moving Average (MA 200), and Stochastic Oscillator were selected because
prior studies have shown their relevance in capturing stock price dynamics. The MA 200 was computed from
the rolling average of the past 200 trading days to represent long-term trends, while the Stochastic Oscillator
was calculated from the relative position of the current price within a recent high—low range to capture price
momentum. These indicators, together with the raw Close price, were normalized and used as multivariate
inputs to the LSTM model. This mechanism ensures that the model receives both raw price information and
technical signals, enabling it to learn temporal dependencies more effectively and produce more accurate
predictions [18].
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2.3.3. Normalization

In the data preparation stage, the dataset was split into training and test sets to ensure that test data was
not used in training. Subsequently, data normalization was performed using the Min-Max Scaler, mapping the
data to the range [-1, 1]. The Min-Max Scaler was selected because it transforms each feature's original values
to a specified interval, such as [0, 1] or [-1, 1], thereby preventing features with larger numerical ranges from
disproportionately influencing the learning process. This step is crucial since the dataset often contains features
with highly varying scales [38]. Without normalization, features expressed in larger magnitudes, such as
trading volume, may disproportionately influence similarity-based calculations, leading to biased or
suboptimal model performance.

The impact of normalization on forecasting results is significant. Proper scaling ensures that all features
contribute proportionally to the model’s learning process, which is especially important when combining
multiple technical indicators. Inadequate normalization can lead to misleading results, in which a simple
feature, such as the closing price, may outperform a combination of indicators because scale differences less
influence it. By applying Min-Max Scaling, the weight of each feature is equalized, enabling the model to
evaluate their relative importance more objectively. This improves both the fairness and reliability of the
prediction results.

The formula for Min-Max normalization [-1,1] is presented in Equation 7 [39].

V — Xmi
v = R — 4 Xmin 7N
Xmax ~ Xmin

2.3.4. k-Fold Cross-Validation

An automated k-fold cross-validation approach was used to identify the optimal value of A. This method
involves randomly dividing the dataset into &k equal-sized folds. During each iteration, the model is trained on
k—1 folds and validated on the remaining fold, ensuring that each subset functions as a validation set exactly
once. The procedure is repeated k& times, and the average validation error is computed for various values of A.
The A value that minimizes this error is selected as the most suitable parameter for the final model configuration
[40]. Additionally, this technique generates out-of-fold predictions, enabling a comprehensive evaluation of
the model's generalization performance [41]. In the context of stock forecasting, because the data are time
series, their temporal order must be preserved. If shuffle is enabled, the data becomes randomized and no longer
reflects the chronological sequence, potentially leaking information from the future into the past. Based on this
reasoning, shuffling must be disabled to prevent future information from leaking into the training process.
Nevertheless, the k-Fold method remains valid when applied with a time-series split or a blocked k-Fold
approach, in which the data is partitioned sequentially by time. With this approach, each fold alternates between
training and validation data without violating temporal constraints, thereby maintaining the principles of proper
Cross-Validation for time-series data.

2.3.5. Optimizer

During training, we use the Adam optimizer because Adam (Adaptive Moment Estimation) is a widely
used deep learning optimization algorithm that adapts the learning rate for each parameter based on the first
moment (mean of gradients) and the second moment (variance of gradients) [42]. This approach combines the
advantages of AdaGrad and RMSProp, enabling faster convergence while maintaining stable weight updates
[43]. In the context of stock price prediction, Adam plays an important role, as stock market data is often
complex, non-stationary, and highly volatile. Through its adaptive mechanism, Adam allows the model to learn
more efficiently from data with varying feature scales, reducing the risk of overfitting while enhancing
prediction accuracy and robustness [44]. Therefore, Adam is highly relevant for improving the performance of
stock forecasting models compared to conventional optimization algorithms.

2.3.6. Evaluation Metrics

In evaluating model performance, two primary metrics are employed: namely, RMSE and MAE, along
with an additional metric, R?, which assesses the model’s ability to capture market trends. In the context of
stock price forecasting, RMSE and MAE are the primary focus as they directly indicate the degree of deviation
between predicted and actual prices. Meanwhile, R? is reported as a complementary measure, providing insights
into the proportion of price variance explained by the model. Although certain stocks may exhibit high R?
values, this is not considered the primary benchmark. The evaluation focuses primarily on minimizing RMSE
and MAE values, as these are more relevant in practical forecasting applications. Accordingly, RMSE and
MAE are used as primary metrics to assess price prediction accuracy, whereas R? serves as a supplementary
indicator of the model’s ability to capture market trends.
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Among these two metrics, RMSE (Root Mean Square Error) is particularly important because it quantifies
the average deviation between predicted and actual values. It is calculated as the square root of the mean of the
squared differences between expected and actual values [45]. The formula for RMSE is presented in Equation
8 [46].

RMSE = |~ (x; — £,)> ®)

In addition to RMSE, Mean Absolute Error (MAE) is widely employed as a primary metric in regression
and forecasting tasks. MAE calculates the average of the absolute differences between the actual and predicted
values, providing an intuitive measure of error magnitude regardless of direction. Due to its simplicity and ease
of interpretation, MAE is often selected as a primary indicator for evaluating the performance of prediction
models, particularly to ensure that forecasting results meet the accuracy requirements for operational decision-
making [47][48]. The formula for MAE is presented in Equation 9 [49].

MAE = -3 (ly; = 9i) ©)

While RMSE and MAE serve as the principal indicators of forecasting accuracy, the coefficient of
determination (R?) is a supplementary measure that assesses how well the model explains the data's variance.
Its value lies between 0 and 1, where values approaching 1 represent a stronger model fit. As illustrated in
Equation 10, R? indicates the model’s ability to capture demand patterns, encompassing long-term trends as
well as cyclical variations, thereby offering insight into the extent to which the model captures such dynamics
[50]. The formula for R? is presented in Equation 10 [51].

_ Z?:l(yi_jl\l)z

2
k=1 L i-9)?

(10)

2.3.7. Overfitting and underfitting

During training, the model was continuously monitored to detect signs of underfitting or overfitting.
When such issues were identified, the model was reconfigured accordingly. Underfitting occurs when the
model performs poorly on both training and unseen data, typically due to insufficient training, overly strong
regularization, or a lack of relevant predictive features [52]. In contrast, overfitting occurs when the model is
overly flexible in fitting the training data, leading to poor generalization to unseen data. This is often caused
by limited data or by high variability not adequately captured by the available features, as frequently observed
in ecological datasets [53][54].

3. RESULTS AND DISCUSSION

This section presents the experimental results based on the methodology described earlier. The results are
provided to demonstrate the model’s performance, evaluate the effectiveness of the proposed approach, and
compare it with relevant benchmarks. These findings form the basis for discussing their implications and
significance.

3.1. Results

In this study, the LSTM architecture was employed, as it is computationally lighter than Transformer-
based models. This characteristic enables efficient training without the need for large-scale computational
resources. Therefore, the hardware and software specifications used in this research are presented in Table 1,
serving as a reference for assessing computational requirements and the potential for replicating the study.

Table 1. Specification Compute Unit

Component Specification
GPU RTX 2060 12 GB
CPU Ryzen 5 5600
RAM 24 GB

Storage SSD NVME 256 GB

Framework PyTorch 2.8.0+cul28
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Table 2. k-Fold Cross-Validation

k-Fold Average Score
Training Time
Inputs Optimizer Stock Layers Hls(ilgsn Epoch RMSE MAE R? (Second)
1 64 1000 0.0520 0.0402 0.6568 25.8
LW 2 64 1000 0.0620 0.0490 0.5360 31
1 128 1000 0.0541 0.0429 0.6351 26.3
2 128 1000 0.0608 0.0480 0.5276 39.1
1 64 1000 0.1694 0.1462 -1.6200 26
LKQ 2 64 1000 0.1676 0.1435 -1.3401 30.3
1 128 1000 0.1296 0.1042 0.2005 26
2 128 1000 0.1986 0.1683 -2.0171 404
1 64 1000 0.0876 0.0704 0.6999 25.9
PG 2 64 1000 0.0932 0.0751 0.6245 30.2
1 128 1000 0.0880 0.0704 0.7024 26.3
Close Afiar.n 2 128 1000 0.0954 0.0770 0.6105 40
Optimizer 1 64 1000 0.1138 0.0896 0.5838 25.8
MGM 2 64 1000 0.1188 0.0933 0.5170 31.6
1 128 1000 0.1089 0.0844 0.6430 27.5
2 128 1000 0.1199 0.0945 0.5161 39.8
1 64 1000 0.1276 0.0997 0.5676 26.3
RL 2 64 1000 0.1453 0.1135 0.4146 30.4
1 128 1000 0.1303 0.0998 0.5355 27
2 128 1000 0.1685 0.1333 0.1844 40.2
1 64 1000 0.0980 0.0735 0.5403 25.6
CAG 2 64 1000 0.1068 0.0824 0.4019 30.3
1 128 1000 0.0972 0.0738 0.5403 254
2 128 1000 0.1152 0.0909 0.2638 40.8
1 64 1000 0.0972 0.0683 0.9018 25.5
LW 2 64 1000 0.1121 0.0779 0.8717 29.7
1 128 1000 0.1034 0.0725 0.8887 26
2 128 1000 0.1346 0.0924 0.8096 40.1
1 64 1000 0.3379 0.2367 0.0593 26.1
LKQ 2 64 1000 0.2619 0.1912 0.4771 30.1
1 128 1000 0.3089 0.2209 0.2048 27.7
2 128 1000 0.2656 0.2059 0.4275 40.5
1 64 1000 0.2282 0.1681 0.7586 26.4
PG 2 64 1000 0.2444 0.1848 0.749 29.8
1 128 1000 0.2092 0.1499 0.8042 259
vase | Adam 2 128 | 1000 | 02749 | 0.1980 0.6490 39
Stochasti,c Optimizer 1 64 1000 0.2817 0.2022 0.5974 254
MGM 2 64 1000 0.2642 0.1963 0.6318 30
1 128 1000 0.2423 0.1802 0.7483 25.8
2 128 1000 0.2873 0.2142 0.5989 40
1 64 1000 0.2811 0.2035 0.5902 25.2
RL 2 64 1000 0.2673 0.1963 0.6521 29.9
1 128 1000 0.2892 0.2116 0.5938 25.7
2 128 1000 0.2876 0.2070 0.6075 40
1 64 1000 0.1856 0.1331 0.7612 25.5
CAG 2 64 1000 0.1950 0.1421 0.7604 29.8
1 128 1000 0.1683 0.1206 0.7895 26.1
2 128 1000 0.2094 0.1535 0.7179 39.2

Subsequently, Table 2 presents the experimental results obtained using the k-Fold Cross-Validation with
different configurations of layer numbers and hidden unit sizes. The evaluation was conducted across multiple
stocks to assess the model’s performance consistency. The key parameters observed include Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R?). In addition,
training time was also recorded to assess the computational efficiency of each configuration.

Table 3. Split-Validation from Previous Studies [18]

Split-Validation Average RMSE
Inputs | Optimizer i";yf{j Epoch LW LKQ IPG MGM RL CAG
Close | Vithout 1 10 118 - - - - -
Optimizer

Close Adam 1 10 - 0.70 - - - _
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Split-Validation Average RMSE
Inputs Optimizer ig}?ﬁ Epoch Lw LKQ IPG MGM RL CAG
Close,
MA 200, Adam 1 100 - - 0.45 - - -
Stochastic
Close | Without 1 100 - - - 0.841 - -
Optimizer
Close Without 1 100 - - - - 1.544 -
Optimizer
Close, .
MA 200, Owtlitrlr‘:i’;;r 2 20 - - - - - 0.130
Stochastic P

After the evaluation results are presented in tabular form, the analysis continues by illustrating the model’s
training and prediction process. This visualization illustrates how the model adapts to the data and the extent
to which its predictions align with the actual price patterns, as shown in Figures 3 through 8.
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3.1.1. Comparative Performance Analysis k-Fold vs. Split Validation

Based on the results presented in Table 2 and Table 3, the best Root Mean Square Error (RMSE) values
for each approach, k-Fold Cross-Validation and Split Validation, can be observed. The overall best results from
both methods are summarized in Table 4, and a visual comparison is provided in Figure 9, which clearly
illustrates the performance differences across the various input configurations and validation techniques.

Table 4. Best RMSE Results for Each Input

Stock k-Fold Close RMSE | k-Fold (ClosetMA200+Stochatic) RMSE | Split Validation RMSE
LW 0.0520 0.0972 1.180

LKQ 0.1296 0.2619 0.700
IPG 0.0876 0.2092 0.450

MGM 0.1089 0.2423 0.841
RL 0.1276 0.2673 1.544

CAG 0.0972 0.1683 0.130
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Figure 9. Comparison of RMSE between k-Fold and Split Validation

Based on the results presented in Table 4 and Figure 9, the k-Fold validation method consistently yields
significantly lower RMSE values than Split Validation. This indicates that the k-Fold approach provides more
stable and accurate error estimation, because it iteratively utilizes the entire dataset during validation. For
instance, in the case of LW stock, the RMSE obtained from k-Fold is only 0.0520, whereas Split Validation
reaches 1.180. A similar pattern is also evident in RL stock, where the difference is even more pronounced,
with k-Fold achieving an RMSE of 0.1276 compared to 1.544 with split Validation. The only exception is
CAG stock, where Split Validation slightly outperforms k-Fold with additional indicators (0.1300 vs. 0.1683).

These findings are further supported by a two-tailed paired t-test conducted in Excel. As shown in Table
5, the comparison between k-Fold (Close) and Split Validation yields a p-value of 0.0185, which is below the
0.05 significance threshold. This p-value indicates that the probability of obtaining an RMSE difference of this
magnitude (or more extreme) is only about 1.85%, assuming the null hypothesis of no difference between the
two methods is true. In other words, the result provides sufficient evidence to reject the null hypothesis and
conclude that a statistically significant difference exists.

Table 5. Paired t-Test Result k-Fold (Close) vs Split

Stock k-Fold Close RMSE Split Validation RMSE
LW 0.0520 1.180
LKQ 0.1296 0.700
IPG 0.0876 0.450
MGM 0.1089 0.841
RL 0.1276 1.544
CAG 0.0972 0.130
P 0.018592744

Furthermore, Table 6 presents the results of the paired #-test between k-Fold (ClosetMA200+Stochastic)
and Split Validation, which yields a p-value of 0.0324, below the 0.05 threshold. This suggests that the
probability of the observed difference arising by chance is approximately 3.24%, thus supporting the
conclusion that a statistically significant difference exists.

Table 6. Paired t-Test Result k-Fold (Close+MA200+Stochastic) vs Split

Stock k-Fold (Close+MA200+Stochatic) RMSE | Split Validation RMSE
LW 0.0972 1.180
LKQ 0.2619 0.700
IPG 0.2092 0.450
MGM 0.2423 0.841
RL 0.2673 1.544
CAG 0.1683 0.130
p 0.032478408

Overall, this analysis confirms that k-Fold Cross-Validation is strongly recommended for stock time-
series forecasting, as it leverages the entire dataset iteratively, producing more representative error estimates
than Split Validation, which relies on a single data partition. Nevertheless, it is essential to note that the
inclusion of additional technical indicators does not always guarantee improved accuracy. In some cases, the
use of MA200 and stochastic indicators even slightly increased the error compared to models that rely solely
on closing price (Close) data.
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3.1.2. Comparison between Close input and Close+MA200+Stochastic

Table 2 presents an interesting finding regarding the R? metric. In the k-Fold scheme, including technical
indicators yields substantially higher R? values; however, the RMSE and MAE are lower for the model that
uses only Close as input. This outcome appears to contradict the initial expectation since additional features
are generally expected to improve predictive accuracy.

This discrepancy can be clarified when the analysis objective is clearly defined from the outset. If the
primary goal is to achieve the most accurate price prediction, then RMSE and MAE are the more relevant
metrics. The experimental results indicate that the model with Close-only input consistently yields smaller
error values, thereby outperforming in approximating actual prices. In other words, the inclusion of technical
indicators does not enhance performance in the context of short-term predictive accuracy, and in some cases,
it even increases absolute errors.

On the other hand, if the analysis aims to understand the dynamics or trends of price movements, technical
indicators are useful. Although they do not always reduce RMSE, the combination of Close, MA200, and
Stochastic significantly improves the R? value. For example, in the case of LW stock, the R? increased from
0.6568 to 0.9018. This suggests that the model with additional features is better able to explain price
movements, even if numerical prediction accuracy does not necessarily improve.

This phenomenon may occur because the addition of technical analysis does not always yield new or truly
relevant information about short-term price patterns. Instead, additional features may increase data complexity
and noise, making it harder for the model to capture the direct relationship between the input variables and
price. As a result, numerical accuracy metrics such as RMSE and MAE may fail to improve and can even
deteriorate. Nevertheless, technical indicators still play an essential role in enriching the context of price
movements, enabling the model to provide better explanations of market dynamics, as reflected in the improved
R? values.

3.1.3. Evaluation of Training Efficiency

In addition to accuracy metrics, training time provides valuable insights into computational efficiency,
which is a critical factor in real-world forecasting applications. As shown in Table 2, single-layer LSTM
configurations required approximately 25-27 seconds on average, while adding a second layer increased
training time to approximately 30-40 seconds. Although deeper architectures theoretically increase the model's
representational capacity, the additional computational overhead did not consistently lead to improved
accuracy, as in several cases, RMSE and MAE either remained comparable or worsened. This trade-off
underscores that more complex configurations are not always optimal for time-series forecasting.

A noteworthy practical finding from this study is that the LSTM architecture does not require high-end
computational resources to achieve competitive performance. As indicated in Table 1, the experiments were
conducted using mid-range hardware, an RTX 2060 GPU (12 GB VRAM), a Ryzen 5 5600 CPU, and 24 GB
of RAM, yet training remained highly efficient. This suggests that accurate stock forecasting models can be
trained and deployed on relatively modest setups without requiring specialized high-performance computing
infrastructure. Such efficiency broadens the accessibility of LSTM-based forecasting methods for both
academic research and industrial applications, particularly in contexts with limited hardware resources.

Overall, the results confirm that lightweight LSTM configurations strike an effective balance between
prediction accuracy, training efficiency, and computational resource requirements. While deeper models
introduce higher computational costs without consistent benefits, simpler configurations remain robust and
practical, reinforcing LSTMs' role as a viable, resource-efficient alternative to computationally demanding
architectures such as Transformers.

3.2. Discussion

The findings of this study offer important insights from both methodological and practical perspectives.
First, the LSTM architecture demonstrated competitive performance in stock time-series forecasting, even
when implemented on mid-range hardware. This confirms that developing accurate predictive models does not
necessarily require high-end computing infrastructure, thereby broadening their applicability for researchers
and practitioners in resource-constrained environments.

In terms of accuracy, the comparative analysis of k-Fold Cross-Validation and Split Validation shows
that k-Fold consistently yields lower and more stable error estimates. This implies that k-Fold is more reliable
and thus recommended for stock forecasting tasks, particularly when the dataset size is limited. This
strengthens the argument that rigorous evaluation practices are essential to reduce the risk of overfitting and
ensure better model generalization.

Furthermore, comparing Close-only input with Close+tMA200+Stochastic shows that including technical
indicators does not continually improve numerical accuracy, though it yields higher R* values. This has
important implications for practical applications: a simpler model with close-only input is more suitable for
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short-term price forecasting, whereas models with additional indicators are better suited for explaining market
dynamics more comprehensively. In other words, the choice of input configuration should align with the user's
specific needs, whether the focus is on short-term quantitative forecasting or on capturing long-term market
trends.

The practical implications of this research extend to several contexts. Retail and institutional investors
may employ LSTM-based models as lightweight, efficient decision-support tools that can be deployed without
costly infrastructure. Moreover, these findings are relevant to developers of algorithmic trading systems
requiring fast, low-latency predictions. Since training efficiency can be achieved even on mid-range hardware,
integrating such models into real-time trading systems is increasingly feasible.

3.2.1. Limitations

This study is subject to several limitations. First, the dataset is restricted to a small set of selected stocks,
which may limit the generalizability of the findings to the broader market. Second, the technical indicators
employed in this study are limited to MA200 and the Stochastic Oscillator, leaving out a wider range of
potentially relevant indicators. Third, although k-Fold Cross-Validation has been shown to outperform Split
Validation, it still carries a risk of data leakage if not applied carefully in time-series contexts. Therefore, these
results should be viewed as a foundation for further research rather than a definitive statement on the
effectiveness of LSTM models across all stock market scenarios.

4. CONCLUSION

This study has demonstrated the effectiveness of LSTM models for stock time-series forecasting by
comparing different validation strategies, input configurations, and architectural complexities. The
experimental results highlight three key findings. First, k-Fold Cross-Validation consistently produced more
reliable, lower RMSE values than Split Validation, confirming its suitability for time-series forecasting tasks
where data efficiency and robustness are crucial. Second, although it was initially expected that adding
technical indicators (MA200 and the Stochastic Oscillator) would improve predictive accuracy, the results
showed the opposite: models using only Close data achieved lower RMSE and MAE, whereas the inclusion of
additional indicators primarily improved the R? metric. This surprising outcome suggests that while technical
indicators may improve the model's explanatory power in capturing market dynamics, they do not necessarily
translate into better short-term predictive accuracy. Third, from a computational perspective, the findings
reaffirm that LSTM can deliver competitive performance with modest hardware, making it a practical choice
for academic and industrial applications, particularly in resource-constrained environments.

Based on these results, several recommendations for future work can be made. First, further research
should investigate the integration of a broader range of technical and macroeconomic features, including
sentiment analysis from financial news or social media, to evaluate their contribution to predictive
performance. Second, exploring hybrid architectures that combine LSTM with attention mechanisms or
Transformer-based models to balance computational efficiency with predictive accuracy. Finally, testing the
model across longer time horizons and diverse market conditions would strengthen the evidence regarding its
robustness and generalizability.
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