
Vokasi Unesa Bulletin of Engineering, Technology and Applied Science (VUBETA) 

https://journal.unesa.ac.id/index.php/vubeta  

Vol. 3, No. 1, 2026, pp. 64~79 DOI: 10.26740/vubeta.v3i1.45130 

ISSN: 3064-0768 

 

 

 

*Corresponding Author 

Email: rifkiainul17@gmail.com 

 

Stock Price Forecasting Using LSTM with Cross-Validation 
 

Rifki Ainul Yaqin1,2*, Muhammad Iqbal Anshori1,2, Reddis Angel1,2, Ignatius Wiseto Prasetyo Agung1,2, Toni 

Arifin1,2, Erfian Junianto1,2  
1 Information Engineering Study Program, Faculty of Information Technology, Universitas Adhirajasa Reswara Sanjaya (ARS 

University), Bandung, Indonesia 
2 ARS Digital Research and Innovation (ADRI), Universitas Adhirajasa Reswara Sanjaya (ARS University), Bandung, Indonesia 

 

Article Info  ABSTRACT 

Article history: 

Received August 14, 2025 

Revised October 15, 2025 

Accepted December 15, 2025 

 

 Stock price forecasting is highly challenging due to the market’s nonlinear, 

volatile nature, which is influenced by complex economic and behavioral 

factors. Traditional statistical models and many machine learning approaches 

often suffer from overfitting and limited generalizability. This study examines 

the effectiveness of Long Short-Term Memory (LSTM) networks combined 

with k-Fold Cross-Validation as a lightweight yet robust alternative. Unlike 

Transformer-based models, which require extensive computational resources, 

LSTM offers a more resource-efficient solution while effectively capturing 

temporal dependencies in financial time series. Experiments were conducted 

on six U.S. stocks (LW, LKQ, IPG, MGM, RL, and CAG) across 1,000 

training epochs, using one to two LSTM layers (64–128 hidden units) with 

the Adam optimizer. Model performance was evaluated using RMSE, MAE, 

and R² under k-Fold Cross-Validation and compared against Split Validation 

from prior studies. Results show that k-Fold consistently produced lower error 

values, confirming its reliability for stable performance estimation. Notably, 

models using Close-only input achieved lower RMSE and MAE than those 

with additional indicators (MA200, stochastic), which primarily improved R². 

This indicates that feature simplicity, combined with robust preprocessing and 

validation, can outperform more complex inputs in short-term forecasting. In 

conclusion, integrating LSTM with k-Fold Cross-Validation provides a 

practical and efficient framework for stock prediction, particularly in 

resource-constrained settings. However, the findings are limited to specific 

stocks and indicators. Future work should extend the approach to broader 

markets, incorporate macroeconomic or sentiment-based features, and 

explore hybrid architectures to enhance predictive performance further. 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION 

Stock price movements are notoriously difficult to predict due to complex factors, including global 

economic conditions, unemployment rates, monetary policy, natural disasters, and public health crises. These 

uncertainties drive market participants to seek methods to maximize profits and minimize risk through 

comprehensive market analysis [1]. The stock market plays a vital role in the economy by providing liquidity, 

supporting diversification, optimizing resource allocation, and reducing information and transaction costs. 

Numerous studies have also demonstrated a positive relationship between stock market development and a 

country's economic growth [2]. As financial instruments, stocks represent partial ownership in a company, 

granting rights to profits and participation in key decisions, though they remain vulnerable to price fluctuations 

driven by market dynamics [3]. In response to these challenges, technological advancements such as artificial 

intelligence and big data have fueled significant interest in stock price prediction across both industry and 

academia. Algorithms such as decision trees, Support Vector Machines (SVMs), and Long Short-Term 

Memory (LSTM) networks have been widely adopted, with LSTM proving particularly effective for processing 

volatile time-series data [4]. Traditional models are increasingly viewed as insufficient, making big data and 
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neural network-based approaches more appealing [5]. Meanwhile, the Efficient Market Hypothesis (EMH) 

remains a subject of debate, and technical analysis has emerged as a primary method for leveraging historical 

market patterns in stock price forecasting [6][7]. 

Stock price prediction poses a significant challenge due to the highly dynamic, nonlinear nature of the 

market, which is influenced by economic, political, and often irrational investor sentiment [8]. Traditional time 

series analysis methods, such as ARIMA and Exponential Smoothing, have long been employed in financial 

forecasting. However, these approaches are limited in their ability to handle the inherent complexity and high 

volatility of financial data [9][10]. In addition, machine learning techniques such as Support Vector Machines, 

Random Forests, and Artificial Neural Networks have been widely applied, yet they often encounter such 

problems as overfitting, high data dimensionality, and reliance on manual feature engineering [11][12]. To 

overcome these limitations, researchers have increasingly turned to deep learning-based approaches, 

particularly Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) architectures. These 

models possess capability to capture long-term patterns in time-series data and have demonstrated promising 

results in stock price prediction tasks [13]-[15]. Nevertheless, prediction accuracy remains a critical concern. 

Therefore, more robust model evaluation strategies, such as Cross-Validation, are necessary to enhance both 

the accuracy and generalizability of models when applied to the complexities of financial market data. 

Recent studies further highlight the strengths of LSTM-based forecasting when combined with 

appropriate validation and comprehensive evaluation metrics. For instance, Varadharajan et al. (2024) 

employed an LSTM-RNN model to predict Amazon’s daily closing prices using an 80–20 data split. Their 

evaluation included RMSE, MAE, and MAPE, achieving results of 2.84, 2.043, and 1.510, respectively, under 

optimal hyperparameter tuning and dropout regularization, which helped mitigate overfitting [16]. Similarly, 

recent work by Chang et al. (2024) demonstrated that integrating multiple performance metrics, such as RMSE, 

MAE, and R², provides a more robust understanding of predictive accuracy and generalization in volatile 

financial time series. These findings underscore the importance of diverse metrics and systematic validation in 

LSTM-based stock price forecasting [17]. 

While these studies demonstrate the importance of rigorous validation and diverse performance metrics, 

Agung et al. (2025) reveal several notable limitations in their methodology. First, the study used a static data-

splitting method, allocating 96% to training and 4% to testing. While straightforward, this approach is overly 

limited in the context of stock market forecasting, as it ignores temporal variability in dynamic and non-

stationary data, increasing the risk of overfitting and leading to an optimistic bias in performance evaluation. 

Second, the model evaluation focused solely on RMSE and average profit, omitting complementary metrics 

such as MAE and R², which would provide a more comprehensive assessment of accuracy and error 

distribution. Third, the study placed excessive emphasis on profit outcomes as the primary measure of success. 

Although profit is practically relevant, it is susceptible to specific market conditions and does not adequately 

reflect the model’s ability to generalize across unseen data or varying scenarios. Finally, the generalization 

capability of the proposed framework remains weak, as the authors themselves acknowledged the need for 

future validation using Cross-Validation methods to strengthen the reliability of their results. These gaps 

highlight the need for methodological improvements, particularly the integration of robust time-series Cross-

Validation and multiple performance metrics, to ensure both accuracy and resilience in LSTM-based stock 

price forecasting [18]. 

To address these limitations, this study employs k-Fold Cross-Validation to enhance the reliability of 

LSTM models for stock price forecasting. Cross-validation helps mitigate the risk of overfitting by partitioning 

the dataset into multiple rotating training and testing subsets, thereby producing more stable evaluation results 

and improving the model’s generalization to unseen data [19]. Furthermore, the integration of deep learning 

models such as LSTM with robust validation techniques has been shown to yield more accurate predictions for 

complex, nonlinear time series such as financial data [20][21]. The application of grid search Cross-Validation 

also plays a critical role in the hyperparameter tuning process, ensuring optimal performance according to 

predefined evaluation metrics [22]. Thus, integrating Cross-Validation into deep learning architectures such as 

LSTM and its variants offers a promising pathway to address the volatility and uncertainty inherent in stock 

price forecasting [23]. 

With the validation framework established, it is essential to justify the choice of model architecture. The 

selection of LSTM in this stock forecasting study is based on its advantages over other models, particularly 

traditional RNN and Transformers. LSTMs are specifically designed to overcome the vanishing and exploding 

gradient problems in RNN, enabling them to retain long-term memory, which is crucial for sequential data 

such as stock prices [24][25]. With their memory cell structure and three main gates (input, forget, and output), 

LSTM can adaptively decide which information to retain or discard, thus enhancing their ability to learn from 

complex historical patterns [26]. In contrast, although Transformer-based models are powerful in capturing 

multivariate interactions, they suffer from quadratic computational complexity, which limits their practicality 

for long sequences [27]. Therefore, LSTMs remain a mature, stable, and proven architecture for handling long-

term dependencies while maintaining computational efficiency, making them a strong baseline and an 
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appropriate choice for forecasting dynamic, highly uncertain stock price movements and time-series data in 

real-world applications. 

In this study, titled “Stock Price Forecasting Using LSTM with Cross-Validation,” the novelty lies in the 

systematic integration of the LSTM deep learning model with k-Fold Cross-Validation for forecasting stock 

prices characterized by dynamic and nonlinear behavior. Unlike previous studies, such as Agung et al. (2025), 

which relied solely on a static 96:4 data-splitting approach without accounting for temporal variability, this 

research offers a more robust and generalizable model evaluation framework [18]. The application of Cross-

Validation not only mitigates the risk of overfitting but also yields more stable and representative evaluation 

results under real-world, fluctuating market conditions. Additionally, the implementation of Cross-Validation 

for hyperparameter tuning within the LSTM architecture is a further contribution, enhancing both the accuracy 

and consistency of model performance. 

The specific contributions of this study are as follows: 

1. Introducing k-Fold Cross-Validation as a systematic validation method for LSTM in stock price 

forecasting, specifically applied to 10-day ahead predictions. 

2. Employing multiple evaluation metrics, including RMSE, MAE, and R², to provide a more 

comprehensive assessment of forecasting performance. 

3. Exploring different hidden sizes (64 and 128 units) within the LSTM layers to examine their effects 

on accuracy and stability. 

4. Assessing computational time requirements, offering insights into the trade-off between model 

complexity and efficiency in practice. 

The remainder of this paper is structured as follows: Section 2 details the methodology, Section 3 presents 

the experimental results and analysis, and Section 4 concludes with key findings and directions for future 

research. 

 

2. METHOD 

The methodology of this study is designed to ensure the robustness and reliability of the proposed 

approach for forecasting and evaluating model performance. It integrates deep learning techniques with 

systematic validation strategies and a well-structured experimental workflow. Specifically, it highlights the 

role of Long Short-Term Memory (LSTM) networks in modeling sequential data, the use of Cross-Validation 

to minimize bias and enhance generalizability, and an experimental workflow that delineates the end-to-end 

process from data preparation to training, validation, and testing. Together, these components provide a solid 

foundation for reliable and accurate results. 

 

2.1.  Long Short-Term Memory 

Long Short-Term Memory (LSTM) is an advanced architecture of Recurrent Neural Networks (RNNs) 

specifically designed to address long-term dependency issues in time series data, such as vanishing and 

exploding gradients. The LSTM architecture introduces a memory cell (cell state) and three primary gates: the 

input gate, forget gate, and output gate, which selectively regulate the flow of information. The forget gate 

determines how much information from the previous step is retained, the input gate controls how much new 

information is added, and the output gate decides which information is passed on to the next time step. This 

mechanism combines linear operations with non-linear activation functions, such as sigmoid and tanh, allowing 

the LSTM to filter and retain critical information, thereby improving prediction accuracy. Through internal 

feedback via the memory cell and hidden state, LSTM networks are capable of maintaining long-term temporal 

information and managing complex dynamics in time series data more effectively and stably than traditional 

RNNs [28]-[30]. An illustration of the LSTM architecture is presented in Figure 1. 
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Figure 1. LSTM unit structure [31] 

 

The architecture of Long Short-Term Memory (LSTM) can be formally described through a series of 

fundamental equations, namely the forget gate Equation 1, input gate Equation 2, candidate cell state Equation 

3, cell state update Equation 4, output gate Equation 5, and hidden state Equation 6, each representing a key 

component that governs the information flow within the LSTM unit. 

1. Forget Gate 

ft  =  σ(Wxf  ⋅  xt  +  Whf  ⋅  ht−1  +  bf)                                                                                 (1) 

2. Input Gate 

𝑖𝑡 = σ(𝑊𝑥𝑖 ⋅ 𝑥𝑡 +𝑊ℎ𝑖 ⋅ ℎ𝑡−1 + 𝑏𝑖)                               (2) 

3. Candidate Cell State 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡̃                                                  (3) 

4. Cell State Update 

𝑐𝑡̃ = tanh(𝑊𝑥𝑐 ⋅ 𝑥𝑡 +𝑊ℎ𝑐 ⊙ ℎ𝑡−1 + 𝑏𝑐)                                (4) 

5. Output Gate 

𝑜𝑡 = σ(𝑊𝑥𝑜 ⋅ 𝑥𝑡 +𝑊ℎ𝑜 ⋅ ℎ𝑡−1 + 𝑏𝑜)                                                      (5) 

6. Hidden State (Output) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)                                           (6) 

 

• Forget gate (Equation 1): determines the portion of information from the previous cell state that should 

be retained. 

• Input gate (Equation 2): regulates the amount of new information incorporated into the current cell state. 

• Candidate cell state (Equation 3-4): represents the potential new content generated through a non-linear 

transformation (tanh) of the input and previous hidden state. 

• Output gate (Equation 5): controls which part of the updated cell state is exposed to the hidden state. 

• Hidden state (Equation 6): produces the final output of the LSTM unit and serves as input for the next 

time step. 

Here, 𝑓𝑡 denotes the proportion of past information retained after the forget gate, 𝑖𝑡 indicates the 

contribution of new input, 𝑐𝑡̃ is the candidate cell state, and 𝑐𝑡 is the updated cell state. The sigmoid function 

(𝜎)  is used for gating operations, while ⊙ denotes the element-wise (Hadamard) product. 𝑥𝑡 refers to the 

current input vector, ℎ𝑡−1 represents the hidden state from the previous step, 𝑊𝑥𝑓 ,𝑊𝑥𝑖 ,𝑊𝑥𝑐 ,𝑊𝑥𝑜  are input 

weight matrices, 𝑊ℎ𝑓 ,𝑊ℎ𝑖 ,𝑊ℎ𝑐 ,𝑊ℎ𝑜 are recurrent weight matrices associated with the hidden state, and 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜 are the respective bias vectors for each gate [31]. 

 

2.2.  Cross-Validation 

In many cases, training and testing a predictive algorithm are performed on a single dataset, which may 

lead to biased performance metrics. Cross-validation (CV) techniques address this limitation by enabling the 

algorithm to be trained, validated, and tested on multiple subsets, or folds, of the data [32]. In both machine 

learning and deep learning, standard holdout methods, in which data is split into training, validation, and test 

sets, and CV are widely used to evaluate model performance [33]. The core principle of CV is to partition the 

dataset into several folds, with each fold serving in turn as a training and a test set. This process is iterated 

across different partition configurations to generate more reliable performance estimates and to reduce 

evaluation bias and the risk of overfitting [34]. 
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CV serves three primary purposes: evaluating a model’s generalization capability, selecting the most 

suitable algorithm among candidates, and supporting hyperparameter optimization [35]. The number of folds 

selected influences the bias-variance trade-off: increasing the number of folds generally reduces bias but raises 

variance, whereas fewer folds lower variance but increase bias [36]. As a model evaluation strategy, CV has 

been employed for decades, typically by splitting available data into separate portions: one for model 

development and the other for performance testing on unseen data [37]. This iterative and systematic approach 

enhances the robustness of model evaluation, making it a preferred method for performance assessment in 

predictive modeling. 

 

2.3.   Workflow Experiment 

In this experiment, a series of steps is conducted within the experimental workflow. The experiment 

consists of several stages: dataset selection, data preprocessing, feature selection, data preparation, k-fold cross-

validation, LSTM configuration, model training, model evaluation, and results visualization. The complete 

process is illustrated in Figure 2. 
 

 
 

Figure 2. Experimental Workflow 
 

2.3.1. LSTM Configuration 

In this experiment, we implemented a model configuration with 1 or 2 Long Short-Term Memory (LSTM) 

layers, each with 64 or 128 hidden units. The model was designed with a single output unit and a dropout rate 

of 0.2 applied to each LSTM layer to mitigate overfitting. Training was conducted over 1000 epochs using the 

Adam optimizer with a learning rate of 0.001 and a weight decay of 0.00001, to ensure faster convergence and 

improved generalization. Furthermore, a 10-fold Cross-Validation approach was employed with shuffling 

disabled to preserve the temporal order of the data, thereby providing a robust and reliable estimate of the 

model’s performance across different data partitions. This configuration was chosen to systematically examine 

the effects of architectural depth, hidden layer size, and hyperparameter settings on the model’s effectiveness 

in addressing the forecasting task.  

 

2.3.2. Dataset 

The dataset employed in this study is identical to that used in the previous research and consists of six 

selected stocks: LW, LKQ, IPG, MGM, RL, and CAG. The selection of these particular stocks was based on 

their use in previous studies, enabling a more consistent comparison of the results. Furthermore, the dataset 

spans March 1, 2022, to March 28, 2023, thereby representing approximately one year of stock market 

dynamics, including trend variations, price fluctuations, and varying market conditions. 

For the feature selection process, we relied on both a literature review and empirical considerations. 

Features such as Close, 200-day Moving Average (MA 200), and Stochastic Oscillator were selected because 

prior studies have shown their relevance in capturing stock price dynamics. The MA 200 was computed from 

the rolling average of the past 200 trading days to represent long-term trends, while the Stochastic Oscillator 

was calculated from the relative position of the current price within a recent high–low range to capture price 

momentum. These indicators, together with the raw Close price, were normalized and used as multivariate 

inputs to the LSTM model. This mechanism ensures that the model receives both raw price information and 

technical signals, enabling it to learn temporal dependencies more effectively and produce more accurate 

predictions [18]. 
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2.3.3. Normalization 

In the data preparation stage, the dataset was split into training and test sets to ensure that test data was 

not used in training. Subsequently, data normalization was performed using the Min-Max Scaler, mapping the 

data to the range [-1, 1]. The Min-Max Scaler was selected because it transforms each feature's original values 

to a specified interval, such as [0, 1] or [-1, 1], thereby preventing features with larger numerical ranges from 

disproportionately influencing the learning process. This step is crucial since the dataset often contains features 

with highly varying scales [38]. Without normalization, features expressed in larger magnitudes, such as 

trading volume, may disproportionately influence similarity-based calculations, leading to biased or 

suboptimal model performance.  

The impact of normalization on forecasting results is significant. Proper scaling ensures that all features 

contribute proportionally to the model’s learning process, which is especially important when combining 

multiple technical indicators. Inadequate normalization can lead to misleading results, in which a simple 

feature, such as the closing price, may outperform a combination of indicators because scale differences less 

influence it. By applying Min-Max Scaling, the weight of each feature is equalized, enabling the model to 

evaluate their relative importance more objectively. This improves both the fairness and reliability of the 

prediction results.  

 

The formula for Min-Max normalization [-1,1] is presented in Equation 7 [39]. 

 

v  =  
v − xmin

xmax − xmin
  +  xmin                              (7) 

 

2.3.4. k-Fold Cross-Validation 

An automated k-fold cross-validation approach was used to identify the optimal value of λ. This method 

involves randomly dividing the dataset into k equal-sized folds. During each iteration, the model is trained on 

k−1 folds and validated on the remaining fold, ensuring that each subset functions as a validation set exactly 

once. The procedure is repeated k times, and the average validation error is computed for various values of λ. 

The λ value that minimizes this error is selected as the most suitable parameter for the final model configuration 

[40]. Additionally, this technique generates out-of-fold predictions, enabling a comprehensive evaluation of 

the model's generalization performance [41]. In the context of stock forecasting, because the data are time 

series, their temporal order must be preserved. If shuffle is enabled, the data becomes randomized and no longer 

reflects the chronological sequence, potentially leaking information from the future into the past. Based on this 

reasoning, shuffling must be disabled to prevent future information from leaking into the training process. 

Nevertheless, the k-Fold method remains valid when applied with a time-series split or a blocked k-Fold 

approach, in which the data is partitioned sequentially by time. With this approach, each fold alternates between 

training and validation data without violating temporal constraints, thereby maintaining the principles of proper 

Cross-Validation for time-series data. 

 

2.3.5. Optimizer 

During training, we use the Adam optimizer because Adam (Adaptive Moment Estimation) is a widely 

used deep learning optimization algorithm that adapts the learning rate for each parameter based on the first 

moment (mean of gradients) and the second moment (variance of gradients) [42]. This approach combines the 

advantages of AdaGrad and RMSProp, enabling faster convergence while maintaining stable weight updates 

[43]. In the context of stock price prediction, Adam plays an important role, as stock market data is often 

complex, non-stationary, and highly volatile. Through its adaptive mechanism, Adam allows the model to learn 

more efficiently from data with varying feature scales, reducing the risk of overfitting while enhancing 

prediction accuracy and robustness [44]. Therefore, Adam is highly relevant for improving the performance of 

stock forecasting models compared to conventional optimization algorithms.  

 

2.3.6. Evaluation Metrics 

In evaluating model performance, two primary metrics are employed: namely, RMSE and MAE, along 

with an additional metric, R², which assesses the model’s ability to capture market trends. In the context of 

stock price forecasting, RMSE and MAE are the primary focus as they directly indicate the degree of deviation 

between predicted and actual prices. Meanwhile, R² is reported as a complementary measure, providing insights 

into the proportion of price variance explained by the model. Although certain stocks may exhibit high R² 

values, this is not considered the primary benchmark. The evaluation focuses primarily on minimizing RMSE 

and MAE values, as these are more relevant in practical forecasting applications. Accordingly, RMSE and 

MAE are used as primary metrics to assess price prediction accuracy, whereas R² serves as a supplementary 

indicator of the model’s ability to capture market trends. 
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Among these two metrics, RMSE (Root Mean Square Error) is particularly important because it quantifies 

the average deviation between predicted and actual values. It is calculated as the square root of the mean of the 

squared differences between expected and actual values [45]. The formula for RMSE is presented in Equation 

8 [46]. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥𝑖 − 𝑥𝑖̂)

2𝑛
𝑖=1                                    (8) 

 

In addition to RMSE, Mean Absolute Error (MAE) is widely employed as a primary metric in regression 

and forecasting tasks. MAE calculates the average of the absolute differences between the actual and predicted 

values, providing an intuitive measure of error magnitude regardless of direction. Due to its simplicity and ease 

of interpretation, MAE is often selected as a primary indicator for evaluating the performance of prediction 

models, particularly to ensure that forecasting results meet the accuracy requirements for operational decision-

making [47][48]. The formula for MAE is presented in Equation 9 [49]. 

 

𝑀𝐴𝐸 =
1

𝑛
∑ (|𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1 )                                                                                                                                  (9) 

 

While RMSE and MAE serve as the principal indicators of forecasting accuracy, the coefficient of 

determination (R²) is a supplementary measure that assesses how well the model explains the data's variance. 

Its value lies between 0 and 1, where values approaching 1 represent a stronger model fit. As illustrated in 

Equation 10, R² indicates the model’s ability to capture demand patterns, encompassing long-term trends as 

well as cyclical variations, thereby offering insight into the extent to which the model captures such dynamics 

[50]. The formula for R² is presented in Equation 10 [51]. 

 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                                                                                                                                      (10) 

 

2.3.7. Overfitting and underfitting 

During training, the model was continuously monitored to detect signs of underfitting or overfitting. 

When such issues were identified, the model was reconfigured accordingly. Underfitting occurs when the 

model performs poorly on both training and unseen data, typically due to insufficient training, overly strong 

regularization, or a lack of relevant predictive features [52]. In contrast, overfitting occurs when the model is 

overly flexible in fitting the training data, leading to poor generalization to unseen data. This is often caused 

by limited data or by high variability not adequately captured by the available features, as frequently observed 

in ecological datasets [53][54]. 

 

3. RESULTS AND DISCUSSION 

This section presents the experimental results based on the methodology described earlier. The results are 

provided to demonstrate the model’s performance, evaluate the effectiveness of the proposed approach, and 

compare it with relevant benchmarks. These findings form the basis for discussing their implications and 

significance. 

 

3.1. Results 

In this study, the LSTM architecture was employed, as it is computationally lighter than Transformer-

based models. This characteristic enables efficient training without the need for large-scale computational 

resources. Therefore, the hardware and software specifications used in this research are presented in Table 1, 

serving as a reference for assessing computational requirements and the potential for replicating the study. 

 
Table 1. Specification Compute Unit 

Component Specification 

GPU RTX 2060 12 GB 

CPU Ryzen 5 5600 

RAM 24 GB 

Storage SSD NVME 256 GB 

Framework PyTorch 2.8.0+cu128 
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Table 2. k-Fold Cross-Validation 
k-Fold Average Score 

Training Time 
(Second) 

         

Inputs Optimizer Stock Layers 
Hidden 

Size 
Epoch RMSE MAE R2 

Close 
Adam 

Optimizer 

LW 

1 64 1000 0.0520 0.0402 0.6568 25.8 

2 64 1000 0.0620 0.0490 0.5360 31 

1 128 1000 0.0541 0.0429 0.6351 26.3 

2 128 1000 0.0608 0.0480 0.5276 39.1 

LKQ 

1 64 1000 0.1694 0.1462 -1.6200 26 

2 64 1000 0.1676 0.1435 -1.3401 30.3 

1 128 1000 0.1296 0.1042 0.2005 26 

2 128 1000 0.1986 0.1683 -2.0171 40.4 

IPG 

1 64 1000 0.0876 0.0704 0.6999 25.9 

2 64 1000 0.0932 0.0751 0.6245 30.2 

1 128 1000 0.0880 0.0704 0.7024 26.3 

2 128 1000 0.0954 0.0770 0.6105 40 

MGM 

1 64 1000 0.1138 0.0896 0.5838 25.8 

2 64 1000 0.1188 0.0933 0.5170 31.6 

1 128 1000 0.1089 0.0844 0.6430 27.5 

2 128 1000 0.1199 0.0945 0.5161 39.8 

RL 

1 64 1000 0.1276 0.0997 0.5676 26.3 

2 64 1000 0.1453 0.1135 0.4146 30.4 

1 128 1000 0.1303 0.0998 0.5355 27 

2 128 1000 0.1685 0.1333 0.1844 40.2 

CAG 

1 64 1000 0.0980 0.0735 0.5403 25.6 

2 64 1000 0.1068 0.0824 0.4019 30.3 

1 128 1000 0.0972 0.0738 0.5403 25.4 

2 128 1000 0.1152 0.0909 0.2638 40.8 

Close, 
MA 200, 

Stochastic 

Adam 

Optimizer 

LW 

1 64 1000 0.0972 0.0683 0.9018 25.5 

2 64 1000 0.1121 0.0779 0.8717 29.7 

1 128 1000 0.1034 0.0725 0.8887 26 

2 128 1000 0.1346 0.0924 0.8096 40.1 

LKQ 

1 64 1000 0.3379 0.2367 0.0593 26.1 

2 64 1000 0.2619 0.1912 0.4771 30.1 

1 128 1000 0.3089 0.2209 0.2048 27.7 

2 128 1000 0.2656 0.2059 0.4275 40.5 

IPG 

1 64 1000 0.2282 0.1681 0.7586 26.4 

2 64 1000 0.2444 0.1848 0.749 29.8 

1 128 1000 0.2092 0.1499 0.8042 25.9 

2 128 1000 0.2749 0.1980 0.6490 39 

MGM 

1 64 1000 0.2817 0.2022 0.5974 25.4 

2 64 1000 0.2642 0.1963 0.6318 30 

1 128 1000 0.2423 0.1802 0.7483 25.8 

2 128 1000 0.2873 0.2142 0.5989 40 

RL 

1 64 1000 0.2811 0.2035 0.5902 25.2 

2 64 1000 0.2673 0.1963 0.6521 29.9 

1 128 1000 0.2892 0.2116 0.5938 25.7 

2 128 1000 0.2876 0.2070 0.6075 40 

CAG 

1 64 1000 0.1856 0.1331 0.7612 25.5 

2 64 1000 0.1950 0.1421 0.7604 29.8 

1 128 1000 0.1683 0.1206 0.7895 26.1 

2 128 1000 0.2094 0.1535 0.7179 39.2 

 

Subsequently, Table 2 presents the experimental results obtained using the k-Fold Cross-Validation with 

different configurations of layer numbers and hidden unit sizes. The evaluation was conducted across multiple 

stocks to assess the model’s performance consistency. The key parameters observed include Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R²). In addition, 

training time was also recorded to assess the computational efficiency of each configuration. 

 

Table 3. Split-Validation from Previous Studies [18] 
Split-Validation Average RMSE 

Inputs Optimizer 
Layers 

LSTM 
Epoch LW LKQ IPG MGM RL CAG 

Close 
Without 

Optimizer 
1 10 1.18 - - - - - 

Close Adam 1 10 - 0.70 - - - - 
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Split-Validation Average RMSE 

Inputs Optimizer 
Layers 
LSTM 

Epoch LW LKQ IPG MGM RL CAG 

Close, 

MA 200, 

Stochastic 

Adam 1 100 - - 0.45 - - - 

Close 
Without 

Optimizer 
1 100 - - - 0.841 - - 

Close 
Without 

Optimizer 
1 100 - - - - 1.544 - 

Close, 

MA 200, 

Stochastic 

Without 
Optimizer 

2 20 - - - - - 0.130 

 

After the evaluation results are presented in tabular form, the analysis continues by illustrating the model’s 

training and prediction process. This visualization illustrates how the model adapts to the data and the extent 

to which its predictions align with the actual price patterns, as shown in Figures 3 through 8. 

 

 
                                           (a)                                                                                     (b) 

Figure 3. LW (a) Train, (b) Prediction 

 

 
                                           (a)                                                                                     (b) 

Figure 4. LKQ (a) Train, (b) Prediction 
 

 
                                           (a)                                                                                     (b) 

Figure 5. IPG (a) Train, (b) Prediction 
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                                           (a)                                                                                     (b) 

Figure 6. MGM (a) Train, (b) Prediction 

 

 
                                           (a)                                                                                     (b) 

Figure 7. RL (a) Train, (b) Prediction 

 

 
                                           (a)                                                                                     (b) 

Figure 8. CAG (a) Train, (b) Prediction 

 

3.1.1. Comparative Performance Analysis k-Fold vs. Split Validation 

Based on the results presented in Table 2 and Table 3, the best Root Mean Square Error (RMSE) values 

for each approach, k-Fold Cross-Validation and Split Validation, can be observed. The overall best results from 

both methods are summarized in Table 4, and a visual comparison is provided in Figure 9, which clearly 

illustrates the performance differences across the various input configurations and validation techniques. 

 

Table 4. Best RMSE Results for Each Input 
Stock k-Fold Close RMSE k-Fold (Close+MA200+Stochatic) RMSE Split Validation RMSE 

LW 0.0520 0.0972 1.180 

LKQ 0.1296 0.2619 0.700 

IPG 0.0876 0.2092 0.450 

MGM 0.1089 0.2423 0.841 

RL 0.1276 0.2673 1.544 

CAG 0.0972 0.1683 0.130 
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Figure 9. Comparison of RMSE between k-Fold and Split Validation 
 

Based on the results presented in Table 4 and Figure 9, the k-Fold validation method consistently yields 

significantly lower RMSE values than Split Validation. This indicates that the k-Fold approach provides more 

stable and accurate error estimation, because it iteratively utilizes the entire dataset during validation. For 

instance, in the case of LW stock, the RMSE obtained from k-Fold is only 0.0520, whereas Split Validation 

reaches 1.180. A similar pattern is also evident in RL stock, where the difference is even more pronounced, 

with k-Fold achieving an RMSE of 0.1276 compared to 1.544 with split Validation. The only exception is 

CAG stock, where Split Validation slightly outperforms k-Fold with additional indicators (0.1300 vs. 0.1683). 

These findings are further supported by a two-tailed paired t-test conducted in Excel. As shown in Table 

5, the comparison between k-Fold (Close) and Split Validation yields a p-value of 0.0185, which is below the 

0.05 significance threshold. This p-value indicates that the probability of obtaining an RMSE difference of this 

magnitude (or more extreme) is only about 1.85%, assuming the null hypothesis of no difference between the 

two methods is true. In other words, the result provides sufficient evidence to reject the null hypothesis and 

conclude that a statistically significant difference exists. 

 

Table 5. Paired t-Test Result k-Fold (Close) vs Split 
Stock k-Fold Close RMSE Split Validation RMSE 

LW 0.0520 1.180 

LKQ 0.1296 0.700 

IPG 0.0876 0.450 

MGM 0.1089 0.841 

RL 0.1276 1.544 

CAG 0.0972 0.130 

𝑝 0.018592744 

 

Furthermore, Table 6 presents the results of the paired t-test between k-Fold (Close+MA200+Stochastic) 

and Split Validation, which yields a p-value of 0.0324, below the 0.05 threshold. This suggests that the 

probability of the observed difference arising by chance is approximately 3.24%, thus supporting the 

conclusion that a statistically significant difference exists. 

 

Table 6. Paired t-Test Result k-Fold (Close+MA200+Stochastic) vs Split 
Stock k-Fold (Close+MA200+Stochatic) RMSE Split Validation RMSE 

LW 0.0972 1.180 

LKQ 0.2619 0.700 

IPG 0.2092 0.450 

MGM 0.2423 0.841 

RL 0.2673 1.544 

CAG 0.1683 0.130 

𝑝 0.032478408 

 

Overall, this analysis confirms that k-Fold Cross-Validation is strongly recommended for stock time-

series forecasting, as it leverages the entire dataset iteratively, producing more representative error estimates 

than Split Validation, which relies on a single data partition. Nevertheless, it is essential to note that the 

inclusion of additional technical indicators does not always guarantee improved accuracy. In some cases, the 

use of MA200 and stochastic indicators even slightly increased the error compared to models that rely solely 

on closing price (Close) data.  
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3.1.2. Comparison between Close input and Close+MA200+Stochastic 

Table 2 presents an interesting finding regarding the R² metric. In the k-Fold scheme, including technical 

indicators yields substantially higher R² values; however, the RMSE and MAE are lower for the model that 

uses only Close as input. This outcome appears to contradict the initial expectation since additional features 

are generally expected to improve predictive accuracy. 

This discrepancy can be clarified when the analysis objective is clearly defined from the outset. If the 

primary goal is to achieve the most accurate price prediction, then RMSE and MAE are the more relevant 

metrics. The experimental results indicate that the model with Close-only input consistently yields smaller 

error values, thereby outperforming in approximating actual prices. In other words, the inclusion of technical 

indicators does not enhance performance in the context of short-term predictive accuracy, and in some cases, 

it even increases absolute errors. 

On the other hand, if the analysis aims to understand the dynamics or trends of price movements, technical 

indicators are useful. Although they do not always reduce RMSE, the combination of Close, MA200, and 

Stochastic significantly improves the R² value. For example, in the case of LW stock, the R² increased from 

0.6568 to 0.9018. This suggests that the model with additional features is better able to explain price 

movements, even if numerical prediction accuracy does not necessarily improve. 

This phenomenon may occur because the addition of technical analysis does not always yield new or truly 

relevant information about short-term price patterns. Instead, additional features may increase data complexity 

and noise, making it harder for the model to capture the direct relationship between the input variables and 

price. As a result, numerical accuracy metrics such as RMSE and MAE may fail to improve and can even 

deteriorate. Nevertheless, technical indicators still play an essential role in enriching the context of price 

movements, enabling the model to provide better explanations of market dynamics, as reflected in the improved 

R² values. 

 

3.1.3. Evaluation of Training Efficiency 

In addition to accuracy metrics, training time provides valuable insights into computational efficiency, 

which is a critical factor in real-world forecasting applications. As shown in Table 2, single-layer LSTM 

configurations required approximately 25-27 seconds on average, while adding a second layer increased 

training time to approximately 30-40 seconds. Although deeper architectures theoretically increase the model's 

representational capacity, the additional computational overhead did not consistently lead to improved 

accuracy, as in several cases, RMSE and MAE either remained comparable or worsened. This trade-off 

underscores that more complex configurations are not always optimal for time-series forecasting. 

A noteworthy practical finding from this study is that the LSTM architecture does not require high-end 

computational resources to achieve competitive performance. As indicated in Table 1, the experiments were 

conducted using mid-range hardware, an RTX 2060 GPU (12 GB VRAM), a Ryzen 5 5600 CPU, and 24 GB 

of RAM, yet training remained highly efficient. This suggests that accurate stock forecasting models can be 

trained and deployed on relatively modest setups without requiring specialized high-performance computing 

infrastructure. Such efficiency broadens the accessibility of LSTM-based forecasting methods for both 

academic research and industrial applications, particularly in contexts with limited hardware resources. 

Overall, the results confirm that lightweight LSTM configurations strike an effective balance between 

prediction accuracy, training efficiency, and computational resource requirements. While deeper models 

introduce higher computational costs without consistent benefits, simpler configurations remain robust and 

practical, reinforcing LSTMs' role as a viable, resource-efficient alternative to computationally demanding 

architectures such as Transformers. 

 

3.2. Discussion 

The findings of this study offer important insights from both methodological and practical perspectives. 

First, the LSTM architecture demonstrated competitive performance in stock time-series forecasting, even 

when implemented on mid-range hardware. This confirms that developing accurate predictive models does not 

necessarily require high-end computing infrastructure, thereby broadening their applicability for researchers 

and practitioners in resource-constrained environments. 

In terms of accuracy, the comparative analysis of k-Fold Cross-Validation and Split Validation shows 

that k-Fold consistently yields lower and more stable error estimates. This implies that k-Fold is more reliable 

and thus recommended for stock forecasting tasks, particularly when the dataset size is limited. This 

strengthens the argument that rigorous evaluation practices are essential to reduce the risk of overfitting and 

ensure better model generalization. 

Furthermore, comparing Close-only input with Close+MA200+Stochastic shows that including technical 

indicators does not continually improve numerical accuracy, though it yields higher R² values. This has 

important implications for practical applications: a simpler model with close-only input is more suitable for 
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short-term price forecasting, whereas models with additional indicators are better suited for explaining market 

dynamics more comprehensively. In other words, the choice of input configuration should align with the user's 

specific needs, whether the focus is on short-term quantitative forecasting or on capturing long-term market 

trends. 

The practical implications of this research extend to several contexts. Retail and institutional investors 

may employ LSTM-based models as lightweight, efficient decision-support tools that can be deployed without 

costly infrastructure. Moreover, these findings are relevant to developers of algorithmic trading systems 

requiring fast, low-latency predictions. Since training efficiency can be achieved even on mid-range hardware, 

integrating such models into real-time trading systems is increasingly feasible. 

 

3.2.1. Limitations 

This study is subject to several limitations. First, the dataset is restricted to a small set of selected stocks, 

which may limit the generalizability of the findings to the broader market. Second, the technical indicators 

employed in this study are limited to MA200 and the Stochastic Oscillator, leaving out a wider range of 

potentially relevant indicators. Third, although k-Fold Cross-Validation has been shown to outperform Split 

Validation, it still carries a risk of data leakage if not applied carefully in time-series contexts. Therefore, these 

results should be viewed as a foundation for further research rather than a definitive statement on the 

effectiveness of LSTM models across all stock market scenarios. 

 

4. CONCLUSION 

This study has demonstrated the effectiveness of LSTM models for stock time-series forecasting by 

comparing different validation strategies, input configurations, and architectural complexities. The 

experimental results highlight three key findings. First, k-Fold Cross-Validation consistently produced more 

reliable, lower RMSE values than Split Validation, confirming its suitability for time-series forecasting tasks 

where data efficiency and robustness are crucial. Second, although it was initially expected that adding 

technical indicators (MA200 and the Stochastic Oscillator) would improve predictive accuracy, the results 

showed the opposite: models using only Close data achieved lower RMSE and MAE, whereas the inclusion of 

additional indicators primarily improved the R² metric. This surprising outcome suggests that while technical 

indicators may improve the model's explanatory power in capturing market dynamics, they do not necessarily 

translate into better short-term predictive accuracy. Third, from a computational perspective, the findings 

reaffirm that LSTM can deliver competitive performance with modest hardware, making it a practical choice 

for academic and industrial applications, particularly in resource-constrained environments. 

Based on these results, several recommendations for future work can be made. First, further research 

should investigate the integration of a broader range of technical and macroeconomic features, including 

sentiment analysis from financial news or social media, to evaluate their contribution to predictive 

performance. Second, exploring hybrid architectures that combine LSTM with attention mechanisms or 

Transformer-based models to balance computational efficiency with predictive accuracy. Finally, testing the 

model across longer time horizons and diverse market conditions would strengthen the evidence regarding its 

robustness and generalizability. 
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