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Achieving high stable Power Transfer Efficiency (PTE) in Wireless Power
Transfer (WPT) systems remains challenging due to the nonlinear,
multimodal nature of the optimization space. Conventional algorithms such
as Genetic Algorithms (GA), Differential Evolution (DE), and Simulated
Annealing (SA) often face premature convergence, sensitivity to parameter
settings, and inconsistent performance across runs. To overcome these issues,
this study introduces the Evolutionary-Swarm Hybrid Algorithm (ESHA),
which integrates DE for directional exploration, GA crossover for population
diversity, SA for adaptive convergence, and Lévy Flights for stochastic global
search. ESHA was implemented on a WPT system with a fixed 20 cm
transmission distance and compared with GA, DE, and SA using three

performance indicators: PTE, convergence speed, and computational
efficiency. Results show that ESHA achieved a maximum PTE of 97.18%,
surpassing GA (96.81%), DE (96.65%), and SA (96.19%), while maintaining
zero variance across independent runs. It converged in an average of 31.2
iterations, slightly faster than GA (33.15) and SA (32.1), and comparable to
DE (31.3). Execution time was 0.4738 s, close to GA (0.4654 s) and only
marginally higher than DE (0.4262 s) and SA (0.4329 s). Statistical validation
confirmed significant improvements in PTE (p < 0.05).
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1. INTRODUCTION

Wireless Power Transfer (WPT) is an energy transmission method that transfers power from a source to
a load without direct contact, using electromagnetic fields. Unlike traditional wired transmission, which relies
on physical connectors and cables, WPT eliminates the need for direct contact, reducing the risk of electrical
sparks and improving system flexibility and mobility. These benefits have made it a key area of interest in
energy transfer research [1]-[6]. The ability of WPT to enhance mobility and reduce maintenance requirements
makes it highly attractive for a wide range of applications, including consumer electronics [7]-[11], medical
devices [12]-[15], electric vehicles (EVs) [16]-[20], and industrial automation [21][22].

Despite significant progress over the past century, achieving high and stable Power Transfer Efficiency
(PTE) remains a major challenge in WPT systems. The efficiency and stability of WPT systems are highly
sensitive to key design parameters, including coil geometry, mutual inductance, operating frequency, and
compensation topology. Optimizing these parameters is essential to maximize efficiency and maintain system
stability, but the process is inherently complex due to the nonlinear, multimodal nature of the search space,
which poses significant challenges for conventional optimization techniques [23]-[26].

Evolutionary algorithms have demonstrated effectiveness in solving complex, high-dimensional
optimization problems. Genetic Algorithms (GA), Differential Evolution (DE), and Simulated Annealing (SA)
are widely used in various optimization tasks due to their adaptability and ability to handle complex search
spaces. GA mimics natural selection through mutation and crossover to explore the solution space, but it is
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prone to premature convergence and loss of population diversity, leading to suboptimal solutions [27]-[29].
DE generates mutant solutions based on the differences between existing candidates, improving search
efficiency, but it struggles with early stagnation when the search landscape is complex [30][31]. SA employs
a probabilistic acceptance criterion to escape local optima, but its performance is sensitive to initial conditions
and cooling schedules, limiting its effectiveness in dynamic or high-dimensional search spaces [32][33].

In the context of WPT optimization, GA has been applied to optimize coil geometry and system
configuration [34]-[36]. However, its susceptibility to premature convergence and high computational cost
often results in inconsistent solutions. DE has demonstrated faster convergence but tends to get trapped in local
optima when the search landscape is complex [37][38]. SA has shown some success in fine-tuning design
parameters [39][40], but its sensitivity to initial conditions and high computational demand make it less
practical for large-scale WPT systems. The limitations of these methods underscore the need for a more
adaptive and robust optimization framework that balances exploration and exploitation while ensuring
consistent, high PTE in WPT systems.

Hybrid optimization algorithms that combine the strengths of different search strategies have shown
promise in WPT applications. For example, ANN-based hybrids have been applied to EV charging systems to
improve efficiency and reliability [41], but their dependence on large training datasets and difficulty in adapting
to new operating conditions limit robustness. In microwave WPT, hybrid beamforming strategies have
improved power delivery precision [42], yet they remain highly sensitive to hardware non-linearities and
require complex calibration. Eel foraging optimization has been adapted to suppress magnetic leakage [43],
though its effectiveness diminishes under coil misalignment and varying load conditions. Likewise, hybrid
precoding in mmWave MIMO-SWIPT systems has boosted spectrum and energy efficiency [44], but at the
expense of increased computational overhead and reduced scalability to large arrays.

More recent studies also reveal persistent gaps. Memetic-based WPT strategies achieved ~90.78%
efficiency in EV charging but remained sensitive to state-of-charge estimation and load variation [45]. Multi-
objective coil design hybrids achieved ~94% efficiency with swarm-analytic tuning, but added significant
model complexity and showed poor tolerance to frequency shifts and misalignment [46]. Nonlinear waveform
optimization hybrids demonstrated powerful results for large-scale WPT antennas but incurred high
computational cost and scalability issues in multi-frequency, multi-user settings [47].

These limitations underscore the need for a more balanced and adaptive algorithm. Therefore, this work
addresses these gaps with the proposed Evolutionary-Swarm Hybrid Algorithm (ESHA), which integrates the
strengths of GA, DE, and SA while countering their weaknesses. By combining exploitation, exploration,
adaptive convergence control, and stochastic diversity, ESHA achieves not only higher efficiency and stability
but also greater scalability and computational practicality across diverse WPT scenarios.

2. METHOD

The Evolutionary-Swarm Hybrid Algorithm (ESHA) addresses the limitations of single-method
optimization by combining swarm intelligence and evolutionary computation within a structured framework.
ESHA integrates four core mechanisms - Levy Flights, Differential Evolution (DE) mutation, Genetic
Algorithm (GA) crossover, and Simulated Annealing (SA), to create a balanced optimization process that
enhances both exploration and exploitation. Each mechanism contributes to a specific phase of the optimization
process, ensuring improved search efficiency, diversity, and convergence stability. Hybrid metaheuristic
approaches that combine multiple strategies have been shown to outperform single-method algorithms in
complex search problems, particularly in high-dimensional and multimodal landscapes.

2.1. Structural Design of ESHA

The ESHA framework is divided into three dynamic and interdependent phases:
1. Adaptive Exploration Phase — Early search phase focused on maintaining diversity and global exploration
using Levy Flights.
2. Evolutionary Refinement Phase — Intermediate search phase focused on refining solutions using DE
mutation and GA crossover.
3. Self-Tuning Convergence Phase — Final phase focused on solution stabilization and convergence using
Simulated Annealing.

2.2. Adaptive Exploration Phase

The initial phase of ESHA focuses on global exploration and maintaining population diversity. To prevent
early stagnation, Lévy Flights are applied with a small probability (20%) during candidate generation,
introducing long-tailed stochastic jumps scaled to the variable bounds. This allows the algorithm to
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occasionally escape local traps and explore less-visited regions of the design space, especially during early
iterations.

2.2.1. Levy Flights Mechanism

Levy Flights is a stochastic process that generates step sizes using a heavy-tailed probability distribution
[48]:

0]
5= M

where: U ~ N(0,06%) and V ~ N(0,1) are normally distributed random variables. A is the Levy exponent,
typically chosen between 1.5 and 2. o is given by [49]:
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ESHA applies Lévy Flights; with a 20% probability during candidate generation. When triggered, the generated
step is scaled to the problem bounds and added to the current solution as follows [50]:

X; = X; + step (3)

This allows the algorithm to introduce long-range perturbations that promote escape from local optima and
encourage deeper exploration of the search space. Since Lévy steps are more likely early in the search, they
enhance diversity at the start while naturally fading in impact as the population converges [51].

2.3. Evolutionary Refinement Phase

Once promising regions of the search space are identified, the algorithm enters a refinement phase in
which exploitation becomes more dominant. The goal here is to improve the precision of candidate solutions
without sacrificing diversity. To achieve this, ESHA combines Differential Evolution (DE) mutation and
Genetic Algorithm (GA) crossover, both applied adaptively throughout the run. DE enables directional
improvement using scaled vector differentials, while GA crossover introduces controlled variation through
parent blending. These operations are applied probabilistically, ensuring a dynamic balance between
exploration and exploitation as the search progresses.

2.3.1. Differential Evolution (DE) Mutation

DE mutation introduces directional improvements to candidate solutions by generating a mutant vector
from the difference between randomly population vectors. The mutation step is defined as [52]:

X! =X, 1+ F(X,2 —X,3) 4)

Where X, 1, X,2, X3 are randomly selected vectors from the population, and F is the scaling factor controlling
mutation intensity. In the ESHA implementation, F is linearly decayed from 0.8 to 0.3 over the course of
iterations:

k

F=08-(08-03) (5)

kmax

Where k is the current iteration, and K4, is the maximum number of iterations. This decay ensures strong
exploration early on and smoother convergence later. DE mutation enables ESHA to maintain search diversity
while focusing refinement on promising areas of the solution space.

2.3.2. Genetic Algorithm (GA) Crossover

GA crossover is used to maintain genetic diversity and prevent stagnation. ESHA uses an arithmetic
crossover method [53][54]:

Xnew = 0X; + (1 — )X, Q)
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Where a is a random weight (0 < o < 1) and X, X, are selected parent solutions. This mechanism preserves
useful genetic traits while introducing controlled variation into the population. In the implemented ESHA,
arithmetic crossover is applied selectively, with a 50% probability during each iteration to maintain a balance
between innovation and stability in the evolving population.

2.4. Self-Tuning Convergence Phase (Simulated Annealing (SA) Mechanism)

The final stage of ESHA is focused on fine-tuning solutions and stabilizing convergence. Simulated
Annealing (SA) is employed to ensure that the algorithm does not become trapped in local optima. SA accepts
worse solutions with a decreasing probability based on a temperature-controlled criterion [55]:

P = exp (— AT—E) (6)

Where AE = f(Xpew) — f(Xcurrent) is the difference in fitness between the current and new solution. If the new
solution is worse, it is accepted with probability P; if it is better, it is accepted outright. The temperature T
decreases over time according to the geometric cooling schedule [55]:

T=T,- B ()

Where T, is the initial temperature, 3 is the cooling rate ( 0.85 < B < 0.99 ), and k is the iteration number. As
the temperature drops, the algorithm becomes more selective, gradually shifting from exploration to
exploitation. By enabling temporary acceptance of worse solutions early on, SA improves global convergence
reliability and helps ESHA escape local traps in the final optimization stretch.

2.5. Parameter Settings

The internal parameters of ESHA were fine-tuned through extensive empirical testing to ensure effective
balance between exploration, exploitation, and convergence. Table 1 summarizes the key control parameters
used in the final implementation, including Lévy Flight, Differential Evolution (DE), Genetic Algorithm (GA),
and Simulated Annealing (SA) settings, along with stopping and transition criteria.

Table 1. Parameter Settings

Component Parameter Value / Range Notes

Population Population size 30 Fixed across all runs
Max iterations 100 Stopping criterion

Levy Flights Injection probability 20% Applied randomly during early iterations
Levy exponent (A) 1.5 Controls tail-heaviness of jumps

Differential Evolution (DE) | Scaling factor (F) 03-0.8 Chosen adaptively per iteration

Genetic Algorithm (GA) Crossover coefficient (o) | 0—1 Random per crossover event

Simulated Annealing (SA) Initial temperature (To) 1.0 Determines initial acceptance probability
Cooling rate () 0.95 Controls temperature decay
Temperature update T =To Bk Updated per iteration k

2.6. Algorithmic Flow of ESHA

The execution flow of ESHA is illustrated in Figure 1. The algorithm starts with population initialization,
followed by Levy Flight-based exploration, DE mutation and GA crossover for refinement, and SA for fine-
tuning and convergence.
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Figure 1. Flowchart of the Evolutionary-Swarm Hybrid Algorithm (ESHA)

2.7. Implementation Environment and Reproducibility

All experiments were conducted in Python (v3.11) using NumPy and SciPy. Each algorithm was executed
30 independent times with fixed random seeds to ensure reproducibility. All algorithms were evaluated under
the same number of iterations (100) and population size (30). Each algorithm’s parameters were individually
tuned based on literature and preliminary sensitivity analysis to ensure fairness. Execution time was measured
using Python’s time module, and no runs or data points were excluded from the analysis.

3. THEORETICAL BASIS

The theoretical framework outlines the design of the transmitter and receiver coils and the selection of
the Series-Series (SS) compensation topology. The coil geometry and topology are optimized to improve
coupling efficiency, stability, and overall power transfer performance.

3.1. Coil Geometry and Topology

The transmitter (Tx) and receiver (Rx) coils in this work are designed as circular planar coils, offering
high coupling efficiency and ease of fabrication, making them ideal for applications such as electric vehicle
(EV) charging, medical implants, and consumer electronics. The Series-Series (SS) compensation topology
was chosen because of its superior performance under varying load and misalignment conditions. Compared
to other configurations like Series-Parallel (SP), Parallel-Series (PS), and Parallel-Parallel (PP) topologies, the
SS topology offers several advantages, including higher power transfer efficiency through improved impedance
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matching [56], greater stability under misalignment and load variation [57], and simpler tuning since both the
Tx and Rx sides resonate at the same frequency [58]. The SS topology also reduces sensitivity to detuning
caused by environmental changes or component tolerances [59]. In this configuration, capacitors are placed in
series with the Tx and Rx coils to cancel out inductive reactance at resonance, minimizing system impedance
and maximizing PTE. This results in more stable and efficient power transfer.

3.2. Resonant Frequency and Compensation
The resonant frequency (f,) of the WPT system is determined by the inductance (L) of the coils and the
compensation capacitance (C). For each coil (Tx and Rx), the resonant frequency is given by:

1
=iz ®)

To ensure that both the transmitter and receiver coils resonate at the same frequency, the compensation
capacitors C; and C, are selected based on the inductances L; and L, of the Tx and Rx coils:

1

C=—— ©

wr2Lq

C, =— (10)

Wr2Ly

The resonant frequency, selected between 6.78 MHz and 13.56 MHz, falls within the Industrial, Scientific, and
Medical (ISM) bands, which are approved for WPT with minimal regulatory restrictions. Higher frequencies
enable smaller coils and improved coupling while reducing electromagnetic interference (EMI).

3.3. Mathematical Model

The efficiency of the WPT system is determined by several key electrical parameters, including mutual
inductance, self-inductance, AC resistance, and quality factor.

3.3.1. Mutual Inductance

The mutual inductance (M) between the Tx and Rx coils is a key determinant of coupling strength and,
consequently, PTE. For two circular planar coils, mutual inductance is calculated using an elliptic integral-
based model:

a oN 2 2
M= Swe B Ja (& -k K(<) - (K (11)

where:

N,, Ny, is the number of turns in the Tx and Rx coils.

i = Finner, tx + (i - 1)(th + ptx)'

bj = Tinner rx T (— DWW + pry)-

K(k?) and E(k?) are the complete elliptic integrals of the first and second kind.

kj; is the coupling coefficient between the i-th turn of Tx and the j-th turn of Rx and is given as kj; =

4ajb; . . . .
T 1)2] = where d is the coil separation distance.
aj+ j +

3.3.2. Self-Inductance (L) Calculation
The self-inductance of a circular planar coil is:

L= (NZ(DO—N(w+p))2) % (39.37) (12)

16Dy +28N(w+p) 106

Where D, is the outer diameter of the coil. N is the number of turns. w is the wire diameter and p is the turn
spacing.

3.3.3.  AC Resistance (Ry¢) Calculation
The AC resistance of the loosely wound coils (where p = 2w), is :
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Rac = 25 (13)
Where
§= — (14)
(ofug)2?
Rpc = —— 15
DC — 1'[61‘02 ( )
1= 2"T[Nrinner + le\l_l(w + p)] (16)

Rp is the DC resistance.1 is the length of the wire used for the circular flat spiral coil, pg is the permeability
of free space, The skin depth is denoted by 8 and ¢ is the conductivity of the conductor, and w is the diameter
of the wire.

3.3.4. Quality Factor (Q)
The quality factor (Q) of the coil is given by:

Q=2 (17)
Rac
3.3.5. Power Transfer Efficiency (PTE) Calculation
The Power Transfer Efficiency (PTE) is:
_ QexQrxK?
PTE = T e (18)

Where K is the coupling coefficient. This PTE equation serves as the objective function for the optimization
process.

3.3. Optimization Problem Formulation for ESHA

The WPT system design is framed as a constrained optimization problem to maximize Power Transfer
Efficiency (PTE), as given in equation (18). The ESHA algorithm tunes key geometric and electrical
parameters within defined bounds to ensure practical, physically realizable solutions. These constraints reflect
real-world limitations and are detailed in Table 2 below. Each candidate solution generated by ESHA is
evaluated using the PTE equation, and any violation of physical or geometric constraints is penalized through
fitness degradation.

Table 2. Table of parameter bounds

Variable Description Lower Bound | Upper Bound
Nix No. of turns in Transmitter | 15 20

N« No. of turns in Receiver 15 20

Tinner.tx Inner radius of Transmitter | 0.028 m 0.03 m
Tinner.rx Inner radius of Receiver 0.018 m 0.02m

w Wire Diameter 0.001 m 0.0012 m

Ps Pitch of Transmitter 0.0025 m 0.003 m

Prx Pitch of Receiver 0.0025 m 0.003 m

f Frequency 6.78 MHz 13.56 MHz

The WPT system design follows key geometric and physical constraints to ensure optimal performance.
The outer radii of the transmitter and receiver coils are computed based on the inner radii, number of turns,
wire width, and pitch as:

router,tx = rinner,tx + Ntx (W + p) (19)

routnsr,rx = rinnnsr,rx + er (W + p) (20)
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The separation distance between coils is fixed at 20 cm, and the coil pitch (p) must satisfy the condition p >
2w for loosely wound coils. Positive definiteness is enforced for all parameters to ensure physically valid
solutions. Boundary constraints are enforced using a penalty-based method. If a candidate solution violates
these bounds, it is either clamped to the nearest valid value or penalized through fitness degradation.

4. RESULTS AND DISCUSSION

The performance analysis of the Evolutionary-Swarm Hybrid Algorithm (ESHA) in optimizing Power
Transfer Efficiency (PTE) in a Wireless Power Transfer (WPT) system is presented here. The performance of
ESHA is evaluated against three benchmark algorithms: Genetic Algorithm (GA), Differential Evolution (DE),
and Simulated Annealing (SA). The analysis focuses on three key performance indicators: Power Transfer
Efficiency, Convergence Speed, and Computational Efficiency. A rigorous statistical analysis, including t-tests
and Wilcoxon signed-rank tests, is employed to determine the reliability and consistency of the results. The
findings demonstrate that ESHA achieves higher efficiency and more stable convergence than the benchmark
algorithms, without incurring high computational costs. The results underscore the effectiveness of ESHA’s
hybridized approach in balancing exploration and exploitation to improve WPT system performance.

4.1.1. Performance Comparison of ESHA with Other Algorithms in WPT Optimization

A comparative analysis was conducted to evaluate ESHA’s performance relative to GA, DE, and SA.
The evaluation focuses on three critical metrics: PTE, convergence speed, and computational efficiency. The
results of the optimization process are presented in Table 3.

Table 3. Results of the Optimization process

Algorithm Mean PTE Std PTE Best PTE Mean Std Mean Std
Execution Execution Convergence Convergence
Time Time Speed Speed

ESHA 0.971794 0 0.971794 0.473834 0.132558 31.2 8.23

GA 0.963374 0.002861 0.968152 0.465419 0.164669 33.15 10.83

DE 0.965763 0.00031 0.96652 0.42622 0.115469 313 11.31

SA 0.943397 0.011838 0.961865 0.432933 0.15876 32.1 10.47

4.1.2. Power Transfer Efficiency (PTE) Comparison

The primary objective of this study was to maximize PTE while maintaining system constraints. The best
PTE values obtained during optimization indicate that ESHA achieved 97.18%, outperforming GA (96.81%),
DE (96.65%), and SA (96.19%). Although the absolute differences in PTE may appear small, they are
statistically significant when analyzed across multiple independent runs. ESHA maintained a mean PTE of
97.18% with zero variance, demonstrating its ability to consistently converge to the same optimal solution. In
contrast, GA and SA exhibited higher variance, suggesting that these methods are more prone to local optima
and less consistent in their convergence outcomes. The higher variability in GA and SA indicates that their
performance is less reliable across different runs, while ESHA consistently achieves a high PTE value.
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4.1.3. Convergence Speed Analysis

Convergence speed is a key indicator of an optimization algorithm’s ability to efficiently find optimal
solutions. ESHA reached an optimal solution in an average of 31.2 iterations, marginally outperforming DE
(31.3 iterations) and converging faster than GA (33.15 iterations) and SA (32.1 iterations). The faster
convergence of ESHA relative to GA and SA reflects its effective balance between exploration and
exploitation. DE’s slightly slower convergence suggests a weaker exploration dynamic compared to ESHA’s
hybrid structure. The low standard deviation in ESHA’s convergence speed further confirms its reliability and
stability across multiple runs.
While these trends suggest that ESHA offers convergence advantages in typical scenarios, the statistical
significance of these differences is examined in detail in Section 4.1.4.

—e— Mean Convergence Speed
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Figure 3. Convergence Speed Comparison Among Algorithms

4.1.4. Computational Efficiency: Execution Time Comparison

The computational efficiency of the algorithm was evaluated based on the time required to reach an
optimal solution. ESHA had an average execution time of 0.4738 seconds, which is comparable to GA (0.4654
s) and slightly higher than DE (0.4262 s) and SA (0.4329 s). The slight increase in ESHA’s execution time is
attributed to the added computational cost of combining DE, GA, Lévy Flights, and SA. However, this increase
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is negligible compared to the significant gains in PTE, stability, and convergence reliability. ESHA’s hybrid
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nature allows it to optimize PTE effectively without imposing an undue computational burden.

4.1.5.

Statistical Validation of Performance Differences

To determine whether the observed performance differences are statistically significant, t-tests and Wilcoxon
signed-rank tests were conducted.

Table 4. Statistical Comparison of ESHA and Benchmark Algorithms (GA, DE, and SA)

Comparison T-Test PTE | Wilcoxon PTE T-Test Exec Wilcoxon Exec T-Test Conv Wilcoxon Conv
(p-value) (p-value) Time (p-value) Time (p-value) Speed (p- Speed (p-value)
value)
ESHA vs GA 8.02E-16 1.86E-09 0.8597 0.9563 0.5255 0.8124
ESHA vs DE 6.10E-39 1.86E-09 0.2334 0.2162 0.9747 0.6872
ESHA vs SA 1.48E-13 1.86E-09 0.3822 0.2943 0.7643 0.6215

The statistical analysis confirms that ESHA’s improvements in Power Transfer Efficiency (PTE) over
GA, DE, and SA are statistically significant, with p-values well below the 0.05 threshold. A p-value below
0.05 indicates that the probability of observing the result by random chance is less than 5%, supporting the
rejection of the null hypothesis and confirming that the differences are not due to random variation. In contrast,
the p-values for execution time and convergence speed exceed 0.05, suggesting no statistically significant
difference between ESHA and the other methods in these areas. This means that while ESHA shows promising
speed in typical runs, its convergence advantage cannot be generalized with high statistical confidence across
all scenarios. Therefore, claims about superior convergence speed are limited to empirical trends rather than
confirmed statistical differences. However, this confirms that ESHA achieves superior PTE without sacrificing
computational efficiency or convergence speed, reinforcing the reliability of its hybridized optimization
approach.

4.4. Discussion of Findings

The findings from this study strongly demonstrate ESHA’s superiority in optimizing WPT efficiency
while maintaining reliable convergence and computational efficiency. A detailed analysis of the results reveals
key insights into ESHA’s performance and effectiveness:

1. Consistent Performance: ESHA consistently achieved a PTE of 97.18% with zero variance across
multiple runs, highlighting its ability to avoid premature convergence and local optima through a well-
balanced exploration-exploitation mechanism.

2. Balanced Convergence and Stability: The integration of DE mutation, GA crossover, Lévy Flights, and
SA allows ESHA to maintain high diversity during the early exploration phase while effectively refining
solutions during the late-stage convergence. This ensures faster convergence and greater solution
accuracy compared to single-method approaches.

3. Computational Efficiency: Despite incorporating multiple optimization techniques, ESHA’s
computational demand remains within practical limits. Its average execution time of 0.4738 seconds is
comparable to GA and only marginally higher than DE and SA, confirming that the enhanced
performance does not come at the cost of increased computational complexity.

4. Robust Statistical Significance: The statistical analysis, including t-tests and Wilcoxon signed-rank tests,
confirms that ESHA’s improvements in PTE are statistically significant (p < 0.05). However, the
differences in execution time and convergence speed between ESHA and the other algorithms were not
statistically significant, reinforcing the algorithm’s reliability and computational efficiency.

5. CONCLUSION AND LIMITATION

This study introduced the Evolutionary-Swarm Hybrid Algorithm (ESHA), a novel metaheuristic
framework designed to enhance Power Transfer Efficiency (PTE) in Wireless Power Transfer (WPT) systems.
ESHA combines Levy Flights for adaptive exploration, Differential Evolution (DE) mutation, and Genetic
Algorithm (GA) crossover for solution refinement, and Simulated Annealing (SA) for fine-tuning and
convergence control. This hybrid structure effectively balances exploration and exploitation, leading to
improved optimization performance in complex search spaces.

ESHA was rigorously evaluated against GA, DE, and SA using three key metrics: PTE, convergence
speed, and computational efficiency. ESHA achieved a maximum PTE of 97.18%, surpassing the benchmark
algorithms, with fast and stable convergence in an average of 31.2 iterations. Its execution time of 0.4738
seconds was comparable to GA and slightly higher than DE and SA. Statistical validation confirmed that
ESHA’s improvements in PTE were significant (p < 0.05), while differences in execution time were not, despite
ESHA’s hybrid structure, which combines multiple optimization strategies. This demonstrates that ESHA
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effectively balances exploration and exploitation without incurring a notable computational cost, reinforcing
its efficiency and practicality for real-world applications.

Beyond WPT, ESHA's hybrid structure makes it highly adaptable to complex optimization problems
across various fields. Its ability to balance exploration and exploitation while maintaining convergence stability
makes it suitable for applications in electric vehicle charging, medical implants, and industrial automation.
Additionally, ESHA’s adaptability makes it a promising tool for machine learning, financial modeling,
logistics, and network optimization, where complex search landscapes demand both precision and efficiency.
Future work will explore multi-objective optimization, real-time deployment, and hardware-based validation
to enhance ESHA's applicability in practical systems. A recent study [60] demonstrated a similar approach,
applying hybrid swarm-based optimization techniques to tune AVR controllers, further underscoring the value
of these integrated strategies in today’s power and control engineering landscape.

Despite its strong performance, ESHA has limitations. Its multi-component structure introduces
parameter complexity and may require careful retuning for different problem domains. There is also a potential
risk of overfitting to the specific simulation environment, especially in the absence of real-world disturbances.
Most importantly, the current evaluation is based solely on simulation results, which do not capture practical
challenges such as electromagnetic interference, hardware misalignment, or environmental losses.

Future work will focus on hardware prototyping, noise-resilient optimization, and multi-objective
extensions that address real-world trade-offs, ultimately strengthening ESHA's applicability in practical
wireless power transfer systems.
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