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The rapid advancement of Al technologies raises pressing questions about the
nature and future direction of intelligence. A key challenge is to understand
how human and artificial intelligences differ, not just in form but in function,
and how they should be evaluated in a shared context. This paper proposes a
structured framework based on 15 measurable conditions of intelligence, such
as memory, adaptability, specialization, and ethical alignment. Our main
contribution lies in connecting these conditions to nine key directions of Al
development—such as responsible Al, human—machine collaboration, and
quantum Al—to outline how intelligence can be evaluated and guided across
both natural and synthetic domains. Methodologically, we cross-analyze these

dimensions using a 15%9 matrix, providing both a diagnostic tool and a
conceptual roadmap for future Al development. This approach blends insights
from cognitive science, applied Al, ethics, and philosophy. Our findings show
that intelligence must be judged not just by computational capability but by
interpretability, ethical grounding, and social utility. Contextual and hybrid
systems—those that adapt to environments and align with human values—
emerge as the most promising. We conclude by calling for an interdisciplinary
approach to build intelligence systems that are not only powerful but also
trustworthy and socially meaningful.
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1. INTRODUCTION

Over the last decade or so, Artificial Intelligence (AI) has undergone an incredible renaissance, evolving
from narrow rule-based/representational systems to highly complex, adaptive models that generate language,
synthesize images, make decisions, and drive cars. This technological revolution has not only transformed
industries and economies but also provoked profound philosophical and societal questions about what
intelligence truly is and how we might create genuine intelligence in a machine. The existence of machine
intelligence is no longer limited to research labs; instead, it is woven throughout modern life, from virtual
assistants built into everyday gadgets to Al copilots in fields such as medicine, law, and education.

Yet, as Al systems grow in sophistication and autonomy, an enduring question persists: “Who is more
intelligent — humans or machines?” Seemingly reasonable as it might be, this question is essentially
meaningless. It confuses origins and outcomes of intelligence, and it neglects the context, constraints, and
capacity. Intelligence isn't a quality, immutable; it is a theatrical matter, constituted by action, adaptation and
consequence. Instead of contrasting human and machine intelligence absolutely, we should ask a more helpful
question:

“Under what conditions does intelligence — human or artificial — produce meaningful, effective, and
responsible outcomes?”

This paper suggests that the discussion of Al can be refocused by presenting 15 conditions that specify
the behavior of any intelligent system, whether biological or artificial. These conditions cover structural
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abilities such as: (memory) and (multitasking), (speed), cognitive features such as (specialization), (data
analysis), and ethical aspects such as (transparency) and (responsibility).

Together, they provide a neutral yet powerful lens through which to analyze both natural and artificial
intelligence. Building on this framework, we identify nine primary technological directions in current and
emerging Al development, including explainable Al, specialized Al, responsible Al, quantum Al, and hybrid
human-machine systems, and examine how they align with the proposed conditions. The purpose is not to
outdo winners in an intelligence arms race, but to establish the basis for understanding how intelligence works,
how it should develop, and how to ensure that its power is employed responsibly.

Our method reconciles philosophy’s insights with the practical wisdom of science. It acknowledges that
the question of intelligence is not simply a technical one, but is also ethical, epistemological and human to the
core. By connecting these terrains, this contribution makes a case for the pressing need to redefine intelligence
for the machine age and direct its course toward socially inclusive and ecologically viable futures.

2. METHODOLOGY: Rethinking the Nature of Intelligence
2.1. Conceptual Foundations of Intelligence - Biological and Artificial

Intelligence is commonly defined in terms of human-like abstract reasoning, creativity, empathy, and
language use. Yet, this anthropocentric framing restricts our comprehension of intelligence as an all-existent
phenomenon. These even risks overshadowing what the biological evolution, the environmental context and
the substrate (biological or artefactual) has contributed to the content and structure of intelligent behaviour.

Korteling et al.[1] that intelligence is not to be measured with respect to its similarity to human cognitive
behavior. Instead, they offer a non-anthropocentric explanation of intelligence in terms of “the ability to
accomplish complex goals autonomously and efficiently.” This more expansive view allows for a wide array
of intelligences to exist, including other forms of artificial intelligence, animal minds, or potential
extraterrestrial intellects. It focuses more on cognitive tasks driven by goals, rather than being tied explicitly
to human or other biological structures.

This perspective is compatible with the growing understanding in cognitive science that natural
intelligence is context-sensitive. Based on decades of ecological psychology [2], Hartley [3] insists that human
cognition is neither fixed nor universal. Instead, the brain is moulded throughout life by ongoing interactions
with diverse and multidimensional environments. Individuals who were raised in a city with a more intricate
spatial structure have enhanced spatial navigation skills [4]. Individuals who are exposed to visual tasks with
a fast pace, such as video gaming, exhibit better selective attention [5]. These results underscore the fact that
the environment plays a role as a scaffolding for the development of intelligent behavior, and that intelligence
is best understood within the framework of adaptation and situated interaction [6]-[8].

In this light, human intelligence can be seen as a biologically evolved solution to specific survival and
social problems. As Slijepcevic [9] argues, cognition is a biological universal — even bacteria exhibit forms
of semiotic agency. Intelligence, therefore, encompasses multiple evolutionary forms and substrates, not just
the neural type typically found in humans. Sternberg [10] elaborates on this insight by differentiating between
general intelligence and adaptive intelligence, where the latter has a closer connection with evolutionary
fitness and the survival of a species by acting in a context-dependent manner.

In the meantime, Al, which is built on digital computation, has proven to be particularly strong in such
areas as logical analysis, statistical pattern recognition and large-scale data processing — areas where human
cognition is weakest. It was evident that the human brain cannot do anything (Working memory [1], Biased
[1] , Multitasking [1]) at this scale [1], can operate 24/7/365, totally fatigueless [1], leave alone Consistancy,
that can survive for ages.Al systems can pull and process terabytes of data in parallel, so you will never get
better/faster results from your calculations, and Al systems are deterministic which means that it is
deterministic [1] if you monitor the system on the same point you will get a repetitive response comforting that
the system is Consistent!

It is in the nature of architecture and task alignment that the real difference lies, rather than simply the
nature (biological vs engineered). Biological intelligence is the result of evolutionary pressures that drive
survival, sensory fusion, and social bonding. Computational intelligence is described as the set of optimization
algorithms that can solve mathematical problems or identify patterns. This leads to two different and possibly
compatible intelligence profiles.

Instead of comparing Al to human intelligence and judging its success by the fidelity with which it
reproduces human-like reasoning, we argue that intelligence in humans — and in machines — is best evaluated
in terms of the degree to which it is capable of pursuing its goals in the context of its constraints, which are
often different from our own. That is, intelligence is best assessed as adaptive performance, not as structural
similarity.

This ecological and functional view opens the door to more meaningful comparisons between natural and
artificial systems. It also calls for a multi-dimensional framework of intelligence performance — one that
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accounts for memory, learning, context-sensitivity, interaction, and ethical alignment — which we introduce
in the next section through our proposal of 15 foundational conditions.

2.2. The Creator—Creature Paradox

It is so ingrained that the creator must be more intelligent than the creation. Well, how can anything
devised by humans ever outdo their creators? This notion, however reassuring, is a human-centric perspective
that intelligence is inherently contingent upon anthropomorphic or human-like attributes and origins. However,
if we reframe the question from where intelligence comes from to what it can do, that logic begins to fall apart.

As Korteling et al. [1], note, machines created by humans surpass us in specific ways — for instance, in
crunching numbers, accessing vast pools of data, and detecting patterns in enormous amounts of information.
That doesn’t make them any better at “understanding” than we are. Instead, they are optimized to succeed in
exploiting our cognitive weaknesses. No one argues that humans are less intelligent simply because Al is now
superior in certain domains; instead, it’s led us to redefine what “intelligence” is.

Psychologist Robert Sternberg [10] invites us to think of intelligence not as raw 1Q, but as adaptive
intelligence: the ability to act in ways that support survival and success in a particular context. By this
definition, an Al system that helps a pilot avoid a crash or assists in early cancer detection is undeniably
intelligent—even if it can’t hold a conversation or pass a Turing test.

Slijepcevic [9] goes even further and explains how intelligence arises in nature, even in bacteria.
Intelligence, he contends, is not just for brains or neurons. It’s a more general concept: the ability of a system
to engage in meaningful interaction with its environment.

This broader understanding has support from cognitive science. As researchers like Hartley [3] have
noted, the capacity of human intelligence itself isn’t constant. It grows over time, influenced by its
environment and interactions [2][4][6]. Al systems can, in the meantime, quickly reconfigure themselves based
on enormous flows of data, adapting and learning on a scale and at a rate that dwarfs that of human beings.

This is all a rebuke to old “creator vs. creature” logic. It is time, perhaps, to stop asking whether
machines can be intelligent and start asking what kind of intelligence do we need? The objective may not be
to create machines in our image so much as to design systems that expand our reach, compensate for our
limitations and help us navigate a more and more bewildering world.

2.3. Intelligence as Potential vs. Intelligence as Action

The classical sense of intelligence as an interior, relatively fixed essence — usually measured via IQ tests
or abstract reasoning — is now seen as grossly inaccurate. Korteling et al. [1] claim human intelligence to be
no less specialized, inconsistent, or effective than presumed. Bricks and mortar of cognitive performance are
moulded and restricted by general characteristics, for example:
- Limited working memory capacity (10-50 bits/sec),

- Poor cognitive multitasking, often confused with rapid task-switching,
- Rapid decay of declarative memory over time,
- Numerous cognitive biases (e.g., anchoring, hindsight, confirmation) that distort reasoning [1].

This limitation makes it clear that intelligence is not a substance, but a performance (under constraints) — a
performance that is a product of the architecture, environment, and task-specific operations of an intelligent
system.

From this perspective, biological intelligence is tuned, not tuned optimally. As Hartley [3] and others
demonstrate, cognition is significantly influenced by real-world environments, which, over time, shape the
development of attention, memory, and learning [4][6][8]. Intelligence is not merely inherited; it emerges
through ecological interaction [2], and may differ substantially across individuals and contexts due to
developmental or environmental exposure [S][11].

Viewed this way, artificial intelligence is not less intelligent simply because it lacks emotions or
consciousness — it is differently intelligent. Al systems frequently outperform humans in domains where
biological cognition struggles: large-scale pattern recognition, high-volume memory retention, and rapid, bias-
free computation [1]. Their performance stems not from deeper “understanding,” but from structural
advantages in speed, scale, and optimization. Narrow in scope, yet highly efficient, Al reveals how alternative
architectures can produce powerful — albeit different — forms of intelligence.

And this split is indeed starting to become more apparent in the now-abundant dialog between
neuroscience and deep learning. As Saxe et al. [12] have also motivated neuroscientists to challenge their
understanding of perception, attention and executive functions. Although artificial as well as biological systems
differ in architecture and purpose, comparing their dynamics of learning and internal representations is in fact
contributing significant understanding in both domains. 'Once again, this would seem to indicate that
intelligence is better considered as a functional and adaptive process and not as some kind of fixed or unique
thing.
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Similarly, Angermueller [13] et al. show just how foundational deep learning is increasingly becoming
in computational biology, e.g., in the domains of regulatory genomics and cellular imaging. These are domains
where traditional human analysis simply cannot keep pace with the scale and complexity of modern data. That
said, these models are not trying to replicate human thought. Instead, they redefine what effective performance
looks like, discovering hidden patterns and making confident predictions in ways that go far beyond
conventional cognitive strategies.

Together, these perspectives reinforce the idea that intelligence is best judged by what a system can
accomplish within the boundaries of its design and environment — not by how closely it imitates human
reasoning. Artificial systems and biological minds each operate within their own unique constraints and
strengths. Indeed, a fair assessment of intelligence must consider the ability to act effectively under those
constraints, whether the system runs on neurons or transistors.

This understanding sets the stage for a more structured exploration: a framework of conditions that define
what makes intelligence — human or machine — truly performative. That framework is the focus of the next
section.

Natural Intelligence

Innate abilities Feasible design

Culture learning Programmed values

Moral/legal codes Ethical frameworks

Governance-aware

. External governance
design

Contextual

Societal oversight .
adaptation

Artificial Intelligence

Figure 1. Natural vs Artificial Intelligence Performance Dimensions

Figure 1 illustrates a conceptual framework that maps 15 key conditions of intelligence performance
across nine emerging directions in Al development. These conditions are classified as either structural (e.g.,
working memory, computation speed) or functional (e.g., data access, interpretability, ethical framing), and
their influence is evaluated in both natural and artificial systems.

The diagram emphasizes intersections — such as how domain specialization, pattern correlation, and
computational speed are core to Specialized Al, or how interpretability and ethical framing underpin
Responsible Al It also highlights societal and technical enablers, such as Contextual Adaptation—the ability
of Al systems to adjust their behavior based on situational inputs and evolving norms—and Programmed
Values, which reflect human ethical input at the code level.

Think of it like designing a smart home. Specialized Al is like your thermostat: it knows exactly how to
regulate temperature efficiently, but nothing else. Responsible Al, on the other hand, is akin to an intelligent
security system that not only detects intrusions but also adheres to household rules about when and how to
notify authorities — ensuring both privacy and fairness. Contextual Adaptation is your home's ability to adjust
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lighting or music based on who's in the room and what time it is. At the same time, Programmed Values are
the family guidelines encoded into the system; for instance, never unlock the door remotely for unknown
visitors, regardless of the situation.

This visual synthesis serves as a navigational aid for aligning Al development with human values,
revealing how different performance conditions relate to distinct Al directions, and ultimately proposing a
holistic benchmark for evaluating intelligence—natural or artificial—not by its origin but by its societal impact
and adaptability under constraints.

2.4. From “Who is More Intelligent?” to “How Can Intelligence Be Used Effectively?”

“Who’s smarter — people or machines?” is sort of the wrong question. As Korteling and his group [1]
say, it’s not so much that one is better than the other overall, but that it’s becoming clear how humans and Al
can complement each other. The real question is: how can Al help us do things better, especially where we
are not very good?

This perspective has the benefit of allowing us to stop comparing machines to humans all the time. Our
brains evolved to help us survive, not to be the most rational thinkers around. We misremember, we’re easily
distracted, and often make decisions based on intuition rather than logic. Machines, on the other hand, don’t
get tired or emotional — they’re quick, precise, and excellent multitaskers. It’s like using a power drill instead
of twisting a screwdriver by hand — the tool doesn’t replace the person; it just speeds up and eases the task.

This concept also appears in brain science. Macpherson and colleagues [14] discuss how Al and
neuroscience are learning from each other. Early Al systems tried to mimic how brain cells work. Today, Al is
actually helping scientists understand how our brains function — how we see, or what happens when mental
health conditions affect the mind. But Al doesn’t need to think like a brain to be useful. Think of it like using
GPS: the machine doesn’t think like you do, but it helps you get where you’re going faster and without getting
lost. And that’s what makes Al so helpful — it supports us even if it “thinks” in an entirely different way.

So really, trying to build Al that thinks exactly like a human might not be the most important goal. What
matters is building systems that work with us, fill in our gaps, and do their jobs safely and responsibly. The
near future lies in diverse, specialized, and interconnected narrow Al systems, built to tackle the weaknesses
of biological cognition — an approach captured in our proposed 15 conditions for intelligence performance
and 8 key Al directions.

Ultimately, intelligence is not about who wins a cognitive contest. It’s about designing systems — human,
machine, or hybrid — that perform effectively, ethically, and adaptively within a given context.

3. Analysis: The 15 Conditions of Intelligence Performance

The effectiveness of any intelligent system — whether human or artificial — depends not merely on its
origin or substrate, but on how well it performs under real-world constraints. Based on an integrative analysis
of cognitive science, Al systems design, and philosophical reasoning, we identify 15 essential conditions that
govern the performance of intelligence.

3.1. Structural vs. Functional Conditions”

We propose a distinction between:

- Structural conditions: Intrinsic attributes embedded in the architecture of the system (biological or
artificial).

- Functional conditions: Operational capacities that emerge through training, adaptation, interaction, and
contextual deployment.

This categorization enables us to compare intelligences not by their nature, but by the performance enablers

they possess.

3.2. Structural Conditions

Structural properties refer to the specific characteristics that define the architecture and the set point of
an intelligent, biological, or artificial system. These can be limitations or enablers such as memory, design
lineage, fatigue resistance, and operation speed. They tend to be more stable and basic than function
conditions, and can affect how intelligence can be made, maintained, and even born out over the course of
your life. Table 1 summarizes these structural aspects, highlighting how each condition differs between human
intelligence and artificial systems. It emphasizes that while machines benefit from unlimited uptime, high-
speed processing, and vast memory, they are entirely dependent on human design, collaboration, and
programming intent.
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Table 1. Structural Conditions of Intelligence Performance
# Condition Definition & Rationale Implications (Human vs Al)
1 Designer Category The intelligence level of those who design or Humans build AI; Al reflects the intelligence of
train the system. its creators.
2 Team-Based Design Collective intelligence from multidisciplinary Most Al is a product of collaboration, not a lone
teams. genius.
3 Domain Specialization Intelligence performs better when fine-tuned Al excels when purpose-built; humans benefit
for specific tasks. from expertise.
4 Time Availability Time invested in learning, processing, or Machines have infinite uptime; humans are time-
building intelligence. limited.
5 Fatigue Resistance Ability to function without cognitive or Al systems don’t tire; humans do.
physical exhaustion.
8 Working Memory Ability to retain and use information in short- Al systems have large RAM; humans are limited
term. to ~10-50 bits/s.
10 | Speed of Computation Latency and throughput of cognitive Machines far exceed humans in processing
operations. speed.
11 Parallel Processing / Ability to run multiple processes Humans are poor multitaskers; Al thrives in
Multitasking simultaneously. parallelization.

3.3. Functional Conditions
Functional requirements specify the behavioral capabilities that explain how intelligence is utilized at

runtime. Among these are data access, the ability to learn, detection of correlations, and interpretability. Unlike
structural conditions, functional conditions can change with training, adaptation, or external perturbations.
They determine how well an intelligent system can operate in typical everyday situations, when interacting
with people, or when required to navigate complex ethical and social situations. These functional conditions
and their implications in human and artificial intelligence are summarized in Table 2. This table emphasizes
Al systems as being well-suited to data heavy tasks, correlation analysis, and continuous retraining, but also

shows the importance of human—machine fluency and ethical governance frameworks.

Table 2. Functional Conditions of Intelligence Performance

# Condition Definition & Rationale Implications (Human vs Al)

6 Access to Large Quantity and quality of data available for learning Al can access and process massive datasets;
Datasets or decision-making. humans cannot.

7 Data Mining Capacity Ability to extract patterns, correlations, or Al models can identify deep correlations; humans

insights from data. rely on heuristics.

9 Pattern Correlation Capacity to identify hidden or non-obvious Al excels in statistical patterning; humans in
Abilities relations across data points. intuitive linking.

12 | Continuous Learning / Ability to improve over time with new data or Humans evolve biologically and socially; Al
Evolution experiences. retrains rapidly.

13 Human—Machine Efficiency and intuitiveness of communication A critical design challenge for intelligent

Interaction Fluency between humans and Al interfaces.
14 Interpretability & Capacity to explain decisions and ensure Al often lacks this clarity; human reasoning,
Transparency traceability of reasoning. though biased, is narratively coherent.

15 | Ethical and Regulatory Integration of moral, legal, and societal Humans are held accountable; AI must be

Framing safeguards into decision-making. governed externally.

3.4. Summary

These 15 conditions provide a unifying framework for assessing, contrasting, and tuning natural and
artificial intelligence. Whereas structural conditions determine what a system can do, functional conditions
indicate how well it can be expected to perform in the real world. Interpreted in this way, intelligence makes
sense as a capacity insofar as it proves itself in action under constrained circumstances, and this view focuses
our thinking on a more productive appreciation of Al-human complementarity.

The quantity 15 is not a fixed constant — it is selected to bring out the dominant and common elements
of intelligence performance. Some of those conditions may fall under more general classifiers, while others
may be categorized by specific domain or application context. This framework is therefore flexible and
extensible, intended to support more profound conceptual clarity and practical guidance.

4. Results: Nine Technological Directions of Al

Building upon the 15 conditions of intelligence performance, we identify nine emerging directions
shaping the future of artificial intelligence. Each direction emphasizes a distinct pathway in which Al systems
are being developed or applied, reflecting different constellations of structural and functional conditions. For
each direction, we describe its scope, connect it with the relevant conditions, and illustrate a representative
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application. This framework also opens a space for anticipating key challenges and opportunities for future
research and regulation.

4.1. Specialized Al

Specialized Al refers to systems designed and optimized to perform narrowly defined tasks with high
precision and efficiency. Unlike Artificial General Intelligence (AGI), which aspires to broad, human-like
cognitive capabilities, specialized Al thrives in constrained domains where the problem is well-defined, the
data is structured, and the objectives are specific. These systems do not attempt to mimic the full range of
human reasoning but instead excel at focused functions such as detecting patterns, making predictions, or
classifying data within a specific context [15] [16].

The strength of specialized Al lies in its narrow scope. By focusing on clearly bounded tasks—such as
diagnosing pneumonia from X-rays, translating between languages, or flagging fraudulent transactions—it can
achieve levels of performance that often exceed human capabilities [17] [18]. For instance, in healthcare,
specialized Al tools are revolutionizing medical imaging, pathology, and personalized treatment planning.
These systems can analyze thousands of scans or patient records in seconds, aiding clinicians with faster and
more accurate decision-making [17] [18]..

Beyond healthcare, specialized Al plays a vital role in domains such as education and manufacturing. In
classrooms, Al-powered applications personalize learning experiences and support students with disabilities
through adaptive learning systems and communication aids [18] [19]. In industrial settings, Al is used for real-
time monitoring, quality control, predictive maintenance, and supply chain optimization—Ileading to gains in
productivity and efficiency [15].

Ultimately, specialized Al is not a step toward general intelligence, but rather a powerful and practical solution
for real-world challenges in domains where deep data and task-specific expertise are available. Its success
depends not on versatility, but on precision, scalability, and contextual understanding [16].

Related Conditions:
This direction aligns with several core conditions from our framework (Tables 1 and 2):
- [Condition (Cond) 3] Domain Specialization — Purpose-driven optimization increases relevance and

performance.
- [Cond 6] Access to Large Datasets — Training specialized systems requires extensive and high-quality data.
- [Cond 9] Pattern Correlation Abilities — Statistical modeling uncovers non-obvious patterns, enhancing
diagnosis or classification.
- [Cond 10] Speed of Computation — Enables real-time responsiveness critical in high-stakes environments.

Application Example:

A notable example is the application of convolutional neural networks (CNNs) in medical imaging diagnostics.
CNNs can detect diabetic retinopathy, lung nodules, or tumors with precision that rivals or surpasses trained
radiologists. According to Khalifa et al. [20], Al-enabled clinical decision support systems have demonstrated
excellence across six domains—including diagnostic assistance, EHR analysis, and risk prediction—making
them powerful tools in personalized healthcare.

In diagnostic modeling for medical imaging, Al has enabled the early detection of diseases such as breast
cancer and neurological diseases through the detection of imaging markers that go unnoticed by humans.
Likewise, forward looking analytics within specialized Al models can predict patient decompensation or
surgical complications [20].

Future Implications and Open Challenges:

The increasing effectiveness of task-specific Al raises new concerns regarding generalizability, or the lack
thereof. These systems are rarely very flexible and tend to generalize poorly across domains or in cases of
contextual ambiguity. In addition, the potential of missing social and ethical implications cannot be excluded
when specially trained models are sent to work on their own.

As Khalifa et al. [20], achieving success in niche applications - like clinical diagnostics or personalized therapy
— requires the combination of openness in design, ethical oversight, and the collaboration of technologists with
clinicians. The way forward is to combine interpretability, regulation, and adaptive learning to obtain Al that
allows for meaningful contributing to secure and effective decision-making in the highest impact domains.

4.2. Personalized Al
Personalized Al systems are tailored to individual users by adapting to their behaviors, preferences,
contexts, and needs. These systems aim to enhance user experience, decision-making, and relevance through
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dynamic customization. Rather than a one-size-fits-all model, personalized Al is context-sensitive and user-
centric.

Related Conditions:

Personalized Al aligns with several conditions in our framework, especially (Tables 1 and 2):

- [Cond 1] Designer Category: Designers must integrate user diversity into system behavior.

- [Cond 2] Team-Based Design: Interdisciplinary approaches are required to ensure personalization is ethical
and inclusive.

- [Cond 4] Time Availability: Continuous user interaction enables long-term adaptation.

- [Cond 8] Working Memory: Local or cloud-based memory mechanisms help retain context over sessions.

Typical Application Example:
Recommendation engines in platforms like Netflix or Spotify use real-time learning to suggest content based
on viewing/listening history, temporal patterns, and even mood signals.

Future Implications / Open Challenges:

One unsolved problem is that of user autonomy and privacy versus personalization. Personalized Al systems
might even accidentally reinforce biases or filter bubbles. Transparent, ad hoc adaptation mechanisms and user-
controlled customization interfaces are increasingly being recognized as key elements.

Recent studies recognize the growing importance of machine learning tools in educational platforms, which
infer learning styles on the fly to adapt content delivery to a student's learning preferences. Overviews of the
work discussed in Reference [21], along with other relevant research, emphasize the shift from static profiling
methods (e.g., questionnaires) toward behavior-based modeling using deep neural networks and hybrid
algorithms. This shift aims to make learner profiles — and the models built on them — even more adaptive
and relevant.

4.3. Human—-Machine Hybrid Intelligence

Hybrid intelligence refers to the collaborative potential between human and machine intelligence, where
each compensates for the other’s limitations to achieve superior outcomes. Rather than competing, humans and
Al systems work side by side—each doing what they do best. The idea is simple but powerful: combine human
intuition, empathy, and contextual judgment with machine-level speed, logic, and pattern recognition to create
systems capable of achieving what neither could accomplish alone [22].

This collaboration takes many forms, from human-led processes where Al offers decision support, to
machine-led systems with human oversight, and even fully integrated partnerships. The allocation of tasks
typically depends on the strengths required—humans bring insight and creativity, while machines provide
computational efficiency and data-driven precision [23]. For instance, in medical image classification or tumor
detection, hybrid models blend deep learning with clinical oversight to ensure both accuracy and ethical
responsibility [24] [25].

A key model in this paradigm is the "human-in-the-loop" approach, where humans remain involved in
critical steps of the process. This ensures not only the reliability of Al outputs but also enhances user trust and
accountability. This is especially important in domains where high-stakes decisions—such as healthcare,
autonomous driving, or customer service—require nuance, ethics, or empathy [22].

Ultimately, hybrid intelligence is not about replacing human cognition but augmenting it. As emphasized
in recent studies, mutual augmentation—where both humans and machines evolve through collaboration—
represents a promising direction in the development of Al systems that are not only powerful but also socially
and contextually aware [22] [26].

Related Conditions:
This direction resonates with several key conditions, including:
- [Cond 4] Time Availability: Al extends cognitive support beyond human time limits.

- [Cond 5] Fatigue Resistance: Machines assist humans in sustained or repetitive tasks.

- [Cond 7] Data Mining Capacity: Al extracts patterns; humans interpret them meaningfully.

- [Cond 11] Parallel Processing / Multitasking: Division of labor allows hybrid teams to handle complex
tasks efficiently.

- [Cond 13] Human—Machine Interaction Fluency: Effective collaboration depends on intuitive, adaptive
interfaces.

Typical Application Example:

In clinical settings, hybrid diagnostic systems support doctors by flagging potential anomalies in medical
images or suggesting personalized treatment plans—combining data-driven analysis with human expertise.
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Future Implications / Open Challenges:

We are only at the beginning of building trustworthy and seamless interfaces between humans and
machines. When perceptions of smart machines diverge from their actual capabilities — or when we come to
rely too heavily on them — problems arise. Effective hybrid team design requires shared context,
explainability, and dynamic task allocation.

4.4. Explainable AI

Explainable Artificial Intelligence (XAI) is an emerging area of research focused on making Al systems
and their decision-making processes transparent, interpretable, and understandable to humans. Unlike
traditional “black box” models, XAl techniques enable stakeholders to trace how an Al system arrives at its
conclusions, thereby fostering trust, accountability, and informed decision-making [27].

Recent advancements highlight the practical value of XAl in real-world applications. For instance, in the
domain of clean energy policy, Khan et al. [28] proposed ExplainableClassifier, a machine learning model
that classifies the eligibility of Clean Alternative Fuel Vehicles (CAFVs).. The model integrates XAI
techniques like SHAP and LIME to provide transparency into feature contributions and ensure interpretability
of each decision. Beyond model performance, the study emphasizes data de-duplication and ethical
reclassification of ambiguous cases, illustrating how XAl can serve as a bridge between technical accuracy and
regulatory fairness.

Similarly, Ahmed et al.[29] applied XAl to the bioinformatics domain by leveraging SHAP visualizations
and TabNet interpretability tools to decode the regulatory role of pseudogenes. Their hybrid deep learning
framework, which combines autoencoders, cGAN-based data augmentation, and TabNet classification,
demonstrates how explainability can support large-scale genome annotation while remaining accessible to
biologists via interactive tools like Gradio.

These examples underscore XAl’s growing relevance across disciplines—from electric vehicle policy to
genomics—where clarity, traceability, and ethical grounding are essential. As Al systems continue to permeate
high-stakes environments, explainability will not only help refine algorithms but also enhance societal
acceptance and regulatory integration.

Related Conditions:
This direction aligns closely with:
- [Cond 1] Designer Category: The quality of explainability depends on the intelligence and ethical

awareness of system architects.

- [Cond 3] Domain Specialization: Interpretation must be tailored to the field of application (e.g., medicine,
law, finance).

- [Cond 12] Continuous Learning / Evolution: Models should update explanations as they evolve.

- [Cond 14] Interpretability & Transparency: The core condition driving this direction.

- [Cond 15] Ethical and Regulatory Framing: Regulatory compliance increasingly demands explainability
(e.g., GDPR).

Typical Application Example:

In credit scoring, an explainable Al system clarifies why a loan application was approved or rejected,
identifying factors like income, repayment history, or debt ratio—ensuring transparency and avoiding hidden
biases.

Future Implications / Open Challenges:

Balancing accuracy with interpretability remains difficult, especially for deep learning models. There is also a
growing need for domain-specific explainability metrics and human-centered design of explanations to
accommodate users’ cognitive and emotional contexts.

4.5. Frugal / Edge Al

Frugal Al—often implemented through Edge Al—focuses on building models that are resource-efficient
in terms of computation, energy, memory, and bandwidth. These systems are designed to operate locally (on
the “edge” of the network), without relying heavily on cloud infrastructure, making them suitable for real-time,
low-power, or remote applications.
Related Conditions:
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This direction mainly involves:
- [Cond 4] Time Availability: Edge Al reduces latency by processing data in real time at the source.

- [Cond 10] Speed of Computation: Efficient processing is essential for low-resource settings.
- (Optional tie-in with [Cond 5] Fatigue Resistance): Devices run 24/7 without needing human supervision,
like AI’s fatigue immunity.

Typical Application Example:
A wearable health monitor utilizes an edge-based Al model to detect anomalies in heart rate or oxygen levels
in real-time, eliminating the need to send data to the cloud, thereby ensuring privacy and responsiveness.

Future Implications / Open Challenges:

As discussed in Reference [30], Edge Al is full of promise—think autonomous cars, factory robots, smart
homes that actually feel smart, and health monitors that don’t nag—but, of course, the road ahead isn't all
smooth. One of the biggest hurdles? Squeezing large, complex models onto devices with limited power and
memory. It's like trying to run a marathon in flip-flops—technically possible, but far from ideal.

There’s also the matter of energy efficiency. These edge devices need to perform real-time Al tasks
without draining their batteries faster than you can say "optimization." Add to that the need to function
reliably in ever-changing network environments—sometimes with perfect 5G, sometimes with... well, less
than ideal connectivity.

Another layer of complexity? The edge ecosystem itself. We’ve got MEC, fog computing, cloudlets—you
name it. But unless these approaches start speaking the same language, scalable deployment remains a dream
rather than a reality. As Reference [30] points out, the future of Edge Al will depend heavily on progress in
standardization, security, and edge-aware training techniques.

And, of course, no frugal Al conversation is complete without discussing energy-aware design. A recent
study from the VUBETA Journal [31] demonstrates how energy-aware node selection using hierarchical
clustering in multilevel loT-based wireless sensor networks (WSNs) significantly improves energy
consumption without compromising functionality—precisely the kind of optimization that next-generation
edge applications will need to thrive.

4.6. Specialized Generative Al

Specialized Generative Al refers to models like GPT, Stable Diffusion, or any of those clever domain-specific
LLMs trained to generate meaningful content —but not in a "write me a poem about cheese" kind of way.
We’re talking serious stuff here: legal contracts, architectural blueprints, molecular structures. The idea is that
instead of trying to know a bit about everything (hello, generalist models), these systems are finely tuned for
high-stakes, high-context applications—Ilike drafting legal arguments or generating drug candidates [32].

This specialization isn't just for show. It helps reduce hallucinations, makes the outputs more relevant,
and generally helps these models feel less like overconfident interns and more like reliable collaborators. Of
course, there’s still a long way to go—interpretability, domain transferability, and regulatory integration are
just a few of the open tabs on the to-do list. But if the current momentum holds, specialized generative models
could become indispensable partners in fields where accuracy, consistency, and context aren’t optional—
they're mission-critical.

Related Conditions:
- [Cond 3] Domain Specialization: Training on a targeted corpus enhances accuracy and relevance.

- [Cond 6] Access to Large Datasets: Generative models require abundant, high-quality domain-specific data.

- [Cond 9] Pattern Correlation Abilities: Generative Al excels at leveraging learned associations for
synthesis.

- [Cond 10] Speed of Computation: High-speed inference enables real-time creativity and interaction.

Typical Application Example:
A generative model trained on biomedical literature proposes novel protein sequences for vaccine candidates,
supporting researchers with hypotheses that would take years to derive manually.

Future Implications / Open Challenges:

Despite its promise, specialized generative Al still encounters challenges such as hallucination, data
contamination, and explainability. Ensuring that outputs are safe, accurate, and ethically aligned continues to
be an open area of interdisciplinary research.
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Specialized Al vs. Specialized Generative Al
While both directions focus on narrow-domain optimization, their core purpose differs. Details can be found

in Table 3.

Table 3: Comparison - Specialized Al vs. Specialized Generative Al

Criteria Specialized AI (4.1) Specialized Generative Al (4.6)

Goal Decision-making, classification, optimization Content generation (text, image, code)

Output Type Discrete actions or labels New content or artifacts

Key Use Case Fraud detection, quality control, diagnostics Text generation, image synthesis, creative design

Architectural Focus Often rule-based or task-specific neural models Transformer or diffusion models adapted to
domain

Main Challenge Accuracy and generalization Coherence, factual consistency, safety

Thus, while both directions align with condition [2] Specialization, the generative aspect introduces new
concerns, especially related to creativity, unpredictability, and ethical risk.

4.7. Autonomous Intelligent Systems
When you apply this idea to machinery and code, an autonomous intelligent system is like “set it and

let it go,” the equivalent of fire-and-forget Al. These are machines or software agents that perform tasks, make

decisions, and improve as they go — and they do it with little to no human input. We’re talking about systems

that are a blend of sensing (what’s going on?), rational thinking (what is that anyway?), strategy (what may I

do?), and action (go do it!).

They’re designed to travel through complex, unpredictable conditions — think driverless cars dodging

potholes, drones delivering parcels through wind and rain, or factory robots making on-the-fly adjustments to

a production line. It’s akin to the internet having its own driver’s license — and the keys to the car. However,

as with humans, the brighter the agent, the more we must consider responsibility, safety, and trust.

Related conditions from the framework:

- [Cond 4] Time Availability — Autonomy often implies continuous operation beyond human working
limits.

- Cond 5] Fatigue Resistance — These systems operate under harsh or long-duration conditions without
degradation.

- [Cond 7] Data Mining Capacity — Real-time environment scanning and decision-making depend on
constant data extraction and interpretation.

- [Cond 9] Pattern Correlation Abilities — Crucial for real-time prediction, navigation, and anomaly
detection.

- [Cond 10] Speed of Computation — Necessary for fast decision loops in high-stakes contexts.

- [Cond 15] Ethical and Regulatory Framing — As these systems gain autonomy, accountability and
compliance become critical.

Typical application example:

Autonomous vehicles exemplify a significant application: Al agents must continuously process data from
cameras, LIDAR, radar, and GPS, perform localization and trajectory planning, and make ethically charged
decisions under uncertainty. These tasks demand a tight integration of structural and functional intelligence
performance conditions.

Future implications and open challenges:
- Balancing autonomy with human oversight and ensuring fail-safe behaviors.

- Designing multi-agent coordination protocols in swarms or fleets.
- Embedding moral reasoning and explainability in high-risk systems (e.g., medical robotics, defense Al).
- Establishing legal responsibility and liability frameworks for decisions made by non-human agents.

4.8. Responsible Al

Responsible Al is what happens when we stop asking “Can we do this?” and start seriously asking,
“Should we?” It’s not just about building smart systems— it’s about creating systems that behave. In other
words, Al needs to work effectively and align with human values. That means being fair, accountable,
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transparent, and respectful of privacy and basic rights—especially in sensitive areas like healthcare, education,
finance, and criminal justice, where mistakes can carry serious consequences [33] [34] [35].

At its core, Responsible Al is guided by foundational principles often captured under the SHIFT
framework: Sustainability, Human-centeredness, Inclusiveness, Fairness, and Transparency [33]. These values
ensure that as Al technologies evolve, they do so with people—and the planet—in mind. It’s not just about
accuracy or performance; it’s about ensuring systems don’t accidentally (or worse, intentionally) discriminate,
violate privacy, or cause harm.

Making Responsible Al a reality isn’t just about good intentions. It requires clear governance structures,
transparent design processes, and continuous evaluation [34]-[36]. Organizations must operationalize these
ideals through both internal policies and external regulatory compliance. While some companies have
attempted “ethics washing” in the past, many now recognize that a combination of self-regulation and legally
enforced accountability is necessary for truly trustworthy systems [37] [38].

Sector-specific considerations are also key. In healthcare, for example, Responsible Al principles are
critical—because algorithmic bias or opacity can literally be a matter of life or death [4]. Similarly,
sustainability is gaining traction as a major concern, not just in terms of energy use but in the broader social
and environmental impacts of Al systems [39] [40] [41] [42] [43].

So, if Al is the rocket ship, Responsible Al is the navigation system—and the seatbelt. It’s not about
slowing innovation down. It’s about making sure we arrive safely and with integrity, dignity, and fairness
intact.

Related conditions from the framework:
- [Cond 1] Designer Category — The values and intent of creators shape system behavior.

- [Cond 12] Continuous Learning / Evolution — Responsible Al must adapt while avoiding harmful feedback
loops.

- [Cond 14] Interpretability & Transparency — Trust and governance depend on the system’s ability to
explain its actions.

- [Cond 15] Ethical and Regulatory Framing — Responsible Al is fundamentally about embedding external
constraints and moral reasoning into system design and operation.

Typical application example:

In the healthcare sector, Al tools used for diagnostics or treatment recommendations must ensure not only high
accuracy, but also fairness across demographic groups, explainability of results, and compliance with privacy
laws (e.g., HIPAA, GDPR). A Responsible Al approach would include audit trails, human-in-the-loop
decision-making, and bias mitigation strategies.

Future implications and open challenges:
- Designing auditable models that maintain privacy and robustness.

- Integrating ethics-by-design in development pipelines rather than post-hoc corrections.

- Harmonizing international regulatory frameworks for cross-border Al applications.

- Creating interdisciplinary teams that bring together technologists, ethicists, legal experts, and affected
communities.

4.9. Quantum Al

Quantum Al is where things start getting wild — but in a good way. It blends two of the most exciting
fields in tech: quantum computing and artificial intelligence. While classical bits can only be 0 or 1, quantum
bits (qubits) can exist in both states at once (thanks to superposition), and they can be mysteriously linked
across space (thanks to entanglement). This gives quantum systems the potential to solve problems that would
take traditional computers practically forever. But Quantum Al isn’t just about doing the same things faster —
it’s about doing some things differently altogether.

Take, for example, recent work by Shahwar et al. [44], where a hybrid ZFNet—Quantum Neural Network
was developed to detect pneumonia from chest X-ray images. In their method, features extracted by the
classical ZFNet architecture were passed into a parameterized quantum circuit. This circuit, running on actual
quantum devices via platforms like PennyLane, transformed thousands of features into a compressed set of
highly informative quantum-enhanced signals. The result? A classification accuracy of 96.5%, outperforming
the CNN baseline.

This study demonstrates that quantum computing isn't just a theoretical exercise—it can already be
applied in high-stakes domains, such as healthcare. Quantum models can enhance feature selection, optimize
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learning dynamics, and deliver higher accuracy with fewer resources, all while working in tandem with
classical deep learning models.

So, what does this mean for AI? Quantum Al represents a paradigm shift. It provides us with new ways
to think about computation, learning, and pattern recognition — not just faster, but fundamentally different. As
research like [44] shows, we’re not just imagining science fiction anymore. We're building a future where
intelligence operates in both classical and quantum dimensions.

Related conditions from the framework:
- [Cond 4] Time Availability — Quantum algorithms could drastically reduce training and inference times.

- [Cond 10] Speed of Computation — Quantum computing can exponentially speed up specific Al processes
(e.g., search, optimization).

- [Cond 11] Parallel Processing / Multitasking — Quantum systems naturally encode and process multiple
states simultaneously.

- [Cond 12] Continuous Learning / Evolution — Quantum-enhanced learning models could achieve new
levels of adaptability.

We may consider a separate condition: Quantum coherence management could be framed as a novel
constraint for intelligence.

Typical application example:

Quantum machine learning (QML) algorithms, such as the Variational Quantum Classifier (VQC) or Quantum
Support Vector Machine (QSVM), are already being explored for use in drug discovery, material science,
cryptography, and climate modeling — tasks involving vast state spaces or combinatorial complexity.

Future implications and open challenges:
- Hardware limitations: Scalability, error correction, and decoherence are major challenges.

- Algorithm development: Need for Al models natively designed for quantum architectures.

- Talent and tools: Bridging the gap between Al and quantum computing communities.

- Ethical foresight: Quantum Al could outpace current regulatory and ethical frameworks due to its sheer
power and opacity.

4.10. Discussion
4.10.1. Recapitulation
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Figure 2: Mapping of 15 Intelligence conditions to 9 Al development directions
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Figure 2 provides a visual representation of how everything fits together. It maps the 15 conditions of
intelligence performance — divided into structural and functional categories — against the nine technological
directions we’ve explored so far. Each cell shows whether a condition is critical to a given direction.
Think of it as a kind of “matchmaking chart” for intelligence: which capabilities are needed where, how they
reinforce one another, and where the most significant gaps (and opportunities) might be. It’s both a diagnostic
lens and a planning tool — one we hope will spark new conversations and clearer pathways forward.

4.10.2. Ethics and Regulation as Prerequisites for Intelligence
Let’s be honest: intelligence without ethics can get dangerous — fast. In humans, we’ve got a pretty robust
safety net for this. Our moral compass doesn’t come from one place; layers shape it:

Our gut instincts (innate moral sense),

- The stuff we learn growing up — family, school, culture,

- The law, with its rules, rights, and consequences,

- And society itself, which quietly (and sometimes not so quietly) nudges us to do the right thing.
Together, these form a kind of moral GPS. It’s not perfect, but it helps keep our intelligence from veering into
harmful territory.

Now, Al doesn’t have feelings or free will. But it does make decisions that affect people’s lives. So it too
needs a moral framework — something that functions like the human version, even if it’s not built the same
way.

That means ethics and regulation aren’t just afterthoughts. They need to be baked into every step of the
Al process — from the initial code to how the system behaves once it's out in the world. Developers should
follow a digital version of the Hippocratic oath: write code that helps, not harms. And those values must be
reflected in how the Al behaves, particularly when it is used by humans who may not always have the best
intentions.

In short: whether intelligence is made of neurons or algorithms, it only works for the good if it's guided
by values.

Two core conditions in our framework reinforce this principle:

- Condition 14: Interpretability and Transparency ensures that Al decisions can be understood and traced,
enabling oversight and correction.

- Condition 15: Ethical and Regulatory Framing calls for an explicit embedding of moral values, legal
constraints, and social responsibility into Al systems.

These are not ancillary features but prerequisites for trustworthy and sustainable intelligence. Just as no human

is considered a responsible citizen without moral and legal alignment, no Al system should be deployed without

a parallel ethical infrastructure.

Ultimately, intelligence must not be judged solely by its ability to solve problems, but by the values it
respects while doing so. Ethics and regulation are not limitations—they are the essential operating system of
meaningful intelligence, natural or artificial.

4.10.3. Cross-analysis: Mapping Conditions to Directions

When we look closely at how the 15 conditions of intelligence performance intersect with the primary Al
development directions, some fascinating patterns emerge. It’s not just about technical progress anymore —
it’s about strategic synergy.

Consider Responsible Al or Autonomous Intelligent Systems. These are not built only in fancy code;
they rest on further layers: ethics, explainability, and regulatory accountability (Conditions 14, 15). Others are
more like Frugal Al or Specialized Al, and they have come from different soil: structural efficiency and custom
optimization.

Have you noticed how modern Al is shifting away from isolated tools and toward ecosystems?
Increasingly, we’re seeing systems that adapt based on who’s using them, what they’re doing, and what’s
happening around them. This is the age of hybrid, adaptive, contextual intelligence — and it’s changing the
game.

But let’s not kid ourselves. Can purely technological solutions ever be enough? Without strong design
safeguards and a human-in-the-loop philosophy, even our most advanced systems can produce outcomes that
no one wants. That’s why academia, industry, and public governance must step up — not just to build better
tech, but to shape how it impacts human life.
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4.10.4. Trends: Hybrid, Adaptive, Contextual Intelligence

What’s next for AI? It’s not super-general or narrowly specialized — it’s contextual and hybrid. These
are systems that evolve with the situation, collaborate with humans, and specialize in ways that fit real
environments.

Think about it: Wouldn’t it be ideal to have Al that not only learns fast, but knows when and how to act
in the moment? This is where we’re headed — toward human—AlI collaboration platforms, cognition at the
edge, and even quantum-enhanced decision-making.

And here’s another question: Is building more intelligent machines only about better engineering? Or
does it also require perspectives from neuroscience, philosophy, law, and behavioral science? If we want truly
effective intelligence, it must be interdisciplinary. That’s the only way to shape systems that understand both
data and human context.

4.10.5. Limitations of Purely Technological Approaches

Let’s face it: technology doesn’t of itself provide us with meaning, responsibilities or goals. It’s a
powerful engine — but unmoored from a steering wheel, it can go off the rails.

Have you ever wondered why, in Al, some of our most significant problems — such as bias, black-box
decisions, or value misalignment — are not simply technical bugs? That’s for the simple reason that they are
not engineering problems. They’re conceptual, moral, and philosophical ones.

If we allow ourselves to deal with these by proxy, he argued, are we moving artificial intelligence forward
— or just enabling its dangers?

4.10.6. Strategic Role of Academia, Industry, and Governance
So, who is responsible for getting this right?
The answer: everyone.

Academia must ask the big questions, design ethical frameworks, and train the next generation (why not
start with “Intelligence Awareness” curricula?). The industry needs to take those insights and build scalable,
responsible technology. And governments? They’re the ones who can create fair and enforceable rules — rules
that protect innovation and people at the same time.

But here’s a challenge: Can these three players align on shared values? If they can — values like
transparency, accountability, and inclusiveness — and translate them into code, policy, and protocol, we’re on
the path to something much more meaningful.

4.10.7. The Rise of Quantum Al
Now let’s talk about the new kid on the block: Quantum Al

It’s not just “faster AL.” It’s an entirely new way of thinking about intelligence. With quantum bits (qubits)
operating in superposition, these systems can explore massive decision spaces in parallel. That means we’re
unlocking serious potential for optimization, speed (Condition 10), and parallelism (Condition 11).

But here’s the twist: Are we ready for the ethical questions quantum Al brings with it? If we can’t trace
how decisions are made, what does that mean for accountability (Condition 15)? We’re entering uncharted
waters.

Quantum Al may even alter the very standards we use to measure intelligence — whether human or
artificial. That’s why we argue for a unified framework now — to stay ahead of disruption before it arrives
[45]- [49]

5. Conclusion

And as the pace of innovation accelerates, the nature of intelligence — human or artificial — will
increasingly be defined not by a fixed set of competencies, and certainly not by any one nation’s talents, but
by a dynamic ability to learn and adapt. It’s no longer about whether machines become more like humans or
whether humans can outperform algorithms. The real question is: what can each system do, within its
constraints, to enable outcomes that are safe, adaptive, and meaningful?

To explore this, we developed a conceptual framework of 15 conditions of intelligence performance and
nine developmental directions in Al. This 15%9 grid provides a systematic approach to assessing the limitations
and potential of natural and synthetic agents. It emphasizes the importance of context sensitivity, ethical
framing, interpretability, and participatory design — key process elements that are just as important as the
intelligent results of intelligent processes.

Above all, this work invites a shift in mindset. Rather than pursuing AGI in the image of human cognition,
we should focus on building intelligences that extend and complement human potential. Doing so requires not
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only engineering prowess but also interdisciplinary thinking — drawing from philosophy, neuroscience, ethics,

computer science, and law to align the growing power of intelligent systems with societal purpose.
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