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 This research undertakes a comprehensive investigation of the optical 

soliton solutions of the Focusing Non- linear Schr¨odinger Equation (NLSE), 

a fundamental model describing the propagation of optical solitons in 

nonlinear media. We employ two versatile and efficient methods: the Ricatti-

Bernoulli Sub Ordinary Differential Equation (RBSODE) method and the 

Bernoulli Sub Ordinary Differential Equation (BSODE) method. These 

methods enable us to derive a wide range of optical soliton solutions.We 

examine two distinct nonlinearities: the Kerr law nonlinearity and the 

quadratic-cubic nonlinearity. These nonlinearities are crucial in determining 

the behavior of optical solitons in various nonlinear optical media. Our 

analysis reveals that the derived soliton solutions exhibit distinct 

characteristics. Kerr nonlinearity supports sharper, narrower solitons, whereas 

quadratic-cubic nonlinearity yields broader profiles with enhanced stability. 

This study obtains soliton solutions of the NLSE with Kerr and QC 

nonlinearities using the RBSODE and BSODE methods, analyzes the 

qualitative differences in the obtained profiles, and examines the conservation 

laws characterizing the dynamics. The RBSODE and BSODE methods are 

chosen for their algebraic flexibility and their ability to handle the nonlinear 

ODEs derived from the traveling-wave reduction of the NLSE. Furthermore, 

we use the multiplier method to derive the conservation laws of the NLSE. 

These conservation laws provide valuable insights into the underlying 

dynamics of the optical solitons and have significant implications for the 

design and optimization of nonlinear optical systems. Our research 

contributes to the understanding of soliton behavior in nonlinear media, with 

potential applications in optical signal transmission and ultrafast laser 

propagation. 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION 

The nonlinear Schr¨odinger equation is gaining prominence due to its extensive applications in areas such 

as fluid dynamics and optical technology. The focusing nonlinear Schr¨odinger equation is especially valuable 

for studying solitons in optical fibers. Solitons, stable waves that retain their form over long distances, are 

essential to optical communication systems. 

The Focusing Nonlinear Schr¨odinger Equation is given by [1]: 
 

iqt +
1

2
qxx + |q2|q = 0                        (1) 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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where 𝑞 =  𝑞(𝑥, 𝑡)  denotes the wave profile, where x represents a non-dimensional length within the 

material, and t signifies the elapsed time. The term |q|2q reflects the cubic nonlinearity in the refractive index 

of the material, which is defined as 𝑛 =  𝑛0 +  𝑛2|𝑞|2, where n0 is the linear refractive index and n2 is the 

Kerr coefficient. The governing equation is utilized to model the propagation of a light beam through a medium 

with this refractive index. When the Kerr coefficient is negative (𝑛2 <  0), the nonlinearity is self-

defocusing, leading to an expansion of the beam’s width in the transverse x-direction over time. In contrast, a 

positive refractive index (𝑛2 >  0) causes the beam’s width to contract, resulting in focusing. Numerous 

researchers have explored this model equation, as seen in studies like ”The NLSE with Rogue periodic waves” 

[1], ”Effective integration of ultra-elliptic solutions of the focusing NLSE” [2], ”Soliton shielding in the 

focusing NLSE” [3], and ”The stability spectrum for elliptic solutions to the focusing NLSE” [5], among others.  

Despite the extensive literature on NLSE, challenges remain in constructing exact solutions for higher-

order or generalized nonlinearities. Traditional methods, such as inverse scattering or Hirota’s method, may 

not accommodate complex nonlinear terms like QC. Therefore, there is a need to apply direct algebraic 

approaches that can systematically handle these nonlinearities and yield physically meaningful solutions [26]. 

In this context, the NLSE, dispersion broadens optical pulses due to the frequency-dependence wave speed, 

while nonlinearity counters this effect by inducing pulse compression. A balance between these two competing 

effects gives rise to soliton structures—waveforms that maintain their shape during propagation. Kerr 

nonlinearity contributes a cubic term to the refractive index, while quadratic-cubic nonlinearity introduces 

higher-order corrections, enabling richer propagation dynamics in intense-field regimes [32]. 

The Riccati-Bernoulli sub-ODEs method (RBSODE) and the Bernoulli sub-ODEs method (BSODE) 

are symbolic computational techniques that allow exact reduction of nonlinear differential equations to 

algebraic systems, facilitating the analytical construction of soliton. Compared to inverse scattering or 

variational methods, these approaches offer greater algebraic flexibility, especially for non-integrable forms 

such as those with QC nonlinearity. These methods have been successfully applied to similar nonlinear models 

in [10][26], showcasing their reproducibility and ease of generalization. Specifically, the RBSODE method 

provides a symbolic algebraic framework to for reducing nonlinear ODEs to solvable forms via balance 

procedures, making it suitable for the QC-type NLSE, given its success in handling higher-order polynomial 

nonlinearities. We adopt it here for the systematic construction of soliton profiles, extending earlier 

applications by [6][41]. By using both RBSODE and BSODE techniques, this study provides a unique 

perspective on method sensitivity and solution structure, systematically contrasting Kerr and quadratic-cubic 

effects using exact analytical methods. 

This study aims to construct exact optical soliton solutions for the NLSE with Kerr and QC nonlinearities 

using BSODE and RBSODE methods, and compare the qualitative impact of these nonlinearities on soliton 

structure and conservation properties. By doing so, we investigate the dynamics of solitons in nonlinear optical 

fibers, examining dispersion and nonlinearity to enhance data transmission efficiency, and we contribute to the 

theoretical understanding of nonlinear waves and their practical use in contemporary communication systems. 

Unlike earlier works [5][6][41] that focus largely on Kerr-type nonlinearities using perturbative or numerical 

techniques, this study explores mixed nonlinear regimes, such as QC, and examines conservation laws in detail 

alongside exact solutions, thereby enhancing physical interpretability and facilitating the development of 

innovative solutions in optics and physics. 

 

2. METHOD 

The Riccati-Bernoulli sub-ODE (RBSODE) and Bernoulli Sub ODE (BSODE) methods are symbolic 

computational techniques that allow exact reduction of nonlinear differential equations to algebraic systems, 

facilitating the analytical construction of solitons. Compared to inverse scattering or variational methods, these 

approaches offer greater algebraic flexibility, especially for non-integrable forms such as those with Quadratic-

Cubic nonlinearity. The RBSODE method, in particular, offers a symbolic algebraic framework for reducing 

nonlinear ODEs to solvable forms via balance procedures, and its success in handling higher-order polynomial 

nonlinearities makes it suitable for the QC-type NLSE. These methods have been successfully applied to 

similar nonlinear models in [26][31], showcasing their reproducibility and ease of generalization. 
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2.1. Description of the proposed Methods 

The Riccati-Bernoulli sub-ODE (RBSODE) and Bernoulli Sub ODE (BSODE) methods are symbolic 

computational techniques that allow exact reduction of nonlinear differential equations to algebraic systems, 

facilitating the analytical construction of solitons. Compared to inverse scattering or variational methods, these 

approaches offer greater algebraic flexibility, especially for non-integrable forms such as those with Quadratic-

Cubic nonlinearity. The RBSODE method, in particular, offers a symbolic algebraic framework for reducing 

nonlinear ODEs to solvable forms via balance procedures, and its success in handling higher-order polynomial 

nonlinearities makes it suitable for the QC-type NLSE. These methods have been successfully applied to 

similar nonlinear models in [26][31], showcasing their reproducibility and ease of generalization. 

 

2.1.1. Ricatti-Bernoulli Sub ODE Methods 

Let us consider a PDE given as 

 P (q
∂q

∂t
,

∂q

∂x
,

∂2q

∂t2 ,
∂2q

∂x2 , … ) = 0,                    (2) 

where q(x, t) =  q(ξ) 

Stage 1: 

Using the conversion 

q(x, t)  =  q(ξ)  ×  eiϕ(x, t),                     (3) 

where 𝜉 =  𝜆(𝑥 ±  𝑣𝑡) and 𝜙(𝑥, 𝑡)  =  −𝑘1𝑥 +  𝜔𝑡 +  𝜃. 

Eq. (2) can be rewritten as the accompanying following ODE. 

P (q, q′, q′′, . . . )  =  0,                     (4) 

with q(ξ)  =  
∂q

∂ξ
 . 

 

Stage 2: 

Presuming that the solution to Eq.(4) satisfies the Riccati-Bernoulli Equation. 

q′ =  bq + aq2−r  +  cqr,                   (5) 

with constants a,b,c, and r. 

Taking the derivative of Eq.(5). We have: 

q′′ = q − 1 − 2r(aq2 +  cq2 − r +  cq1 + r)(−a)(−2 +  r))q2 +  crq2r +  bq1 + r            (6) 

q′′′ =  q − 2(1 + r)(bq +  aq2 − r +  cqr)(a2(−2 +  r)(−3 +  2r))q4 + c2r(−1 +  2r)q4r +

 ab(−3 +  r)(−2 +  r)q3 + r + (b2 +  2ac)q2 + 2r +  bcr(1 +  rq1 + 3r),                      (7) 

 

Remarks 

Eq. (5) is a Riccati equation if ac ≠ 0 and r = 0. 

Eq.(5) is Bernoulli equation if a ≠ 0, c = 0 and r ≠ 1. 

To avoid the introducing new terminologies, we called Eq.(5) Riccati-Bernoulli equation Equation (5) 

possesses the subsequent solutions.: 

Classification of solution: 

Case 1: If r = 1, Eq. (5) possesses the solution 

q(ξ)  =  Ce(b+a+c)ξ,                  (8) 
 

Case 2: If r ≠ 1, b = 0, and c = 0, Eq. (5) possesses the following solution. 

q(ξ) =  (a(r −  1)(ξ +  C))
1

r−1                            (9) 
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Case 3: If r ≠ 1, b ≠ 0, and c = 0, Eq. (5) possesses the solution 

q(ξ) = Ce(b(m−1)ξ) − 
a

b

1

r−1             (10) 

 

Case 4: If r ≠ 1, a ≠ 0 and b2 − 4ac < 0, Eq. (5) possesses the following solution. 

q(ξ) = (−
b

2a
+

√4ac−b2

2a
tan [

(1−r)√4ac−b2

2
(ξ + C)])

1

1−r

           (11) 

and 

q(ξ) = (−
b

2a
−

√4ac−b2

2a
cot  [

(1−r)√4ac−b2

2
(ξ + C)])

1

1−r

           (12) 

 

Case 5: If r ≠ 1, a ≠ 0 and b2 − 4ac > 0, Eq. (5) possesses the following solution. 

q(ξ) = (−
b

2a
−

√b2−4ac

2a
tanh [

(1−r)√b2−4ac

2
(ξ + C)])

1

1−r

            (13) 

and  

q(ξ) = (−
b

2a
−

√b2−4ac

2a
coth [

(1−r)√b2−4ac

2
(ξ + C)])

1

1−r

            (14) 

 

Case 6: If r ≠ 1, a ≠ 0 and b2 − 4ac = 0, Eq. (5) possesses the following solution 

q(ξ) =
1

a(r−1)(ξ+c)
−

a
1

1−r

b
                (15) 

 

Stage 3:  

When we substitute ψ and its derivatives into Equation (4), we derive a system of algebraic equations. 

By choosing the value of r according to the steps discussed above, doing all necessary computation, and 

substituting the value of a, b, c, and other parameters into any of the cases Eq.(8) - (15) that fit, the solution 

of the PDE (2) may be obtained. 

 

2.1.2. Bernoulli Sub ODE Methods 

Consider a PDE given as 
 

P (q,
∂q

∂t
,

∂q

∂x
,

∂2q

∂t2 ,
∂2q

∂x2 , … ) = 0                     (16) 

 

Stage 1: 

Using the conversion 
 

q(x, t)  =  q(ξ)  ×  eiϕ(x,t)                 (17) 
 

where ξ =  λ(x ±  vt) and ϕ(x, t)  =  −k1x +  ωt +  θ. Eq. (16) can be converted into the 

following ODE 
 

P (q, q′, q′′, . . . )  =  0                   (18) 

with 𝑞(𝜉)  =  
𝜕𝑞

𝜕𝜉
 

 

Stage 2: 

Assume that Equation (18) possesses a solution in the following form. 
 

𝑞(𝜉) = ∑ 𝑎𝑖𝑔𝑖𝑖𝑛
𝑖=0                   (19) 

 

where G = G(ξ) satisfied the equation 
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Gi  +  λG =  µG2                  (20) 

ai are constants and µ ̸= 0, λ ̸= 0. 
 

The solution to Equation (20) is a particular form of t h e  Bernoulli equation, which can be expressed 

as follows 
 

𝐺 = −
λ

2𝜇
(𝑇𝑎𝑛ℎ[

λ𝜉

2
] − 1)                 (21) 

 

and  
 

𝐺 = −
λ

2𝜇
(𝐶𝑜𝑡ℎ[

λ𝜉

2
] − 1                 (22) 

 

Stage 3: 

The positive integer m is determined by equating the highest-order derivatives with the highest order non- 

linear term present in equation (18). The balancing formula is given as 
 

𝐷 (
𝑑𝑎𝑢

𝑑𝜉𝑎) = 𝑚 + 𝑎,    𝐷 (𝑢𝑏 (
𝑑𝑎𝑢

𝑑𝜉𝑎)
𝑐

) = 𝑏𝑚 + 𝑐(n+a)             (23) 

 

Stage 4: 

By replacing equation (19) into (18), applying (20), and consolidating terms with the same power of G(ξ), 

we establish a set of algebraic equations. Setting each coefficient of Gi to zero leads us to a system of 

algebraic equations. Solving this system yields the values of ai and other associated parameters. Lastly, 

by putting the values of ai and the associated parameters in into equation (19), we obtain the solution to 

equation (16). 

 

2.2. Applications of the Methods 

2.2.1. Application of the RBSODE Method to F-NLSE 

a. Kerr Law non-linearity 

Regarding the Kerr law nonlinearity 𝐹(𝑞)  =  𝑞. 
 

𝑖𝑞𝑡 +  
1

2
𝑞𝑥𝑥 +  |𝑞|2𝑞 = 0.                    (24) 

 

By employing equation (3) in equation (24) and segregating the real and imaginary components of the equation, 

we arrive at the following. The imaginary component is: 
 

𝑣 = 𝑘                     (25) 
 

The real component is: 
 

𝑘2𝑞 − 𝑞′′ + 2𝜔𝑞 − 2𝑞3  =  0                    (26) 
 

By inserting equation (5) along with its derivatives into equation (26) and assigning m = 0, we obtain an 

overdetermined equation. To resolve this, we collect terms with identical exponents of qi and equate them 

to zero, thereby deriving the following system of algebraic equations. 
 

q0 : −𝑏𝑐 =  0,                     (27) 
 

q1 :(−2𝑎𝑐 −  𝑏2  + 𝑘2  +  2𝜔)  =  0                 (28) 
 

q2 :3𝑎𝑏 =  0                     (29) 
 

q3 :−2(𝑎2  +  1)  =  0                       (30) 
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From solving Eq. (27) - (30), we obtained the following values: 
 

𝑎 = 𝑖; 𝑏 = 0; 𝑣 = 𝑘; 𝑐 =
1

2
(−𝑎𝑘2 − 2𝑎𝜔); 𝜉 = 𝑥 + 𝑣𝑡 

 

The solution of the obtained values is given as follows: 
 

CASE A: 

If k, ω < 0, we acquire the subsequent solutions in terms of trigonometric functions 
 

𝑞1,1(𝑥, 𝑡) = 𝑖√
𝑘2

2
+ 𝜔cot (√

𝑘2

2
+ 𝜔(𝐶 + 𝑘𝑡 + 𝑥)) × 𝑒𝑖(𝜃−𝑘𝑥+𝑡𝜔)               (31) 

 

and 
 

𝑞1,2(𝑥, 𝑡) = −𝑖√
𝑘2

2
+ 𝜔tan (√

𝑘2

2
+ 𝜔(𝐶 + 𝑘𝑡 + 𝑥)) × 𝑒𝑖(𝜃−𝑘𝑥+𝑡𝜔)              (32) 

 

CASE B: 

If k, ω, > 0, we obtain the following solutions in terms of hyperbolic functions. 

 

𝑞1,3(𝑥, 𝑡) = 𝑖√−
𝑘2

2
− 𝜔coth (√−

𝑘2

2
− 𝜔(𝐶 + 𝑘𝑡 + 𝑥)) × 𝑒𝑖(𝜃−𝑘𝑥+𝑡𝜔)              (33) 

and 

𝑞1,4(𝑥, 𝑡) = 𝑖√−
𝑘2

2
− 𝜔tanh (√−

𝑘2

2
− 𝜔(𝐶 + 𝑘𝑡 + 𝑥)) × 𝑒𝑖(𝜃−𝑘𝑥+𝑡𝜔)              (34) 

 

b. Quadratic Cubic law non-linearity 

Regarding Quadratic Cubic law non-linearity, 𝐹 (𝑞)  =  √𝑞  +  𝑞, where the coefficient of nonlinearity is 1. 

 

𝑖𝑞𝑡 +
1

2
𝑞𝑥𝑥 + (|𝑞| + |𝑞|2)𝑞 = 0.                   (35) 

 

By employing equation (3) in equation (35) and segregating the real and imaginary components of the equation, 

we arrive at the following. 

The imaginary component is: 
 

 𝑣 = 𝑘.                     (36) 
 

The real component is: 
 

 𝑘2𝑞 − 𝑞′′ + 2𝜔𝑞 − 2𝑞3 − 2𝑞2  =  0                   (37) 
 

By substituting equation (5) and its derivatives into equation (37) with m = 0, we obtain an overdetermined 

equation. To resolve this, we collect terms with identical exponents of qi and set them to zero. This process 

leads us to formulate the following system of algebraic equations. 
 

q0 : −𝑏𝑐 =  0,                     (38) 
 

q1 : (−2𝑎𝑐 − 𝑏2 + 𝑘2 + 2𝜔) = 0,                   (39) 
 

q2 : (−3𝑎𝑏 − 2)  =  0,                    (40) 
 

q3 : −2(𝑎2  +  1)  =  0,                   (41) 
 

From solving Eq. (38) - (41), we obtained the following Set of values: 
 

𝑎 = 𝑖; 𝑐 = 0; 𝑏 =
2𝑎

3
; 𝑣 = 𝑘; 𝑘 =

1

3
√2√−9𝜔 − 2; 𝜉 = 𝑥 + 𝑣𝑡 
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The solution of the obtained values is given as follows: 
CASE A: 

If k, ω < 0, we obtain the following solutions in terms of trigonometric functions. 
 

𝑞2,1(𝑥, 𝑡) =
1

3
𝑖 (𝑐𝑜𝑡 (

1

3
(𝐶 +

1

3
√2𝑡√−9𝜔 − 2 + 𝑥)) + 𝑖) × 𝑒𝑖(𝜃+𝑡𝜔− 

1

3
√2𝑥√−9𝜔−2)

           (42) 

 

and  
 

𝑞2,2(𝑥, 𝑡) = −
1

3
𝑖 (𝑡𝑎𝑛 (

1

3
(𝐶 +

1

3
√2𝑡√−9𝜔 − 2 + 𝑥)) − 𝑖) × 𝑒𝑖(𝜃+𝑡𝜔− 

1

3√2𝑥√−9𝜔−2)
            (43) 

 

CASE B: 

If k, ω, > 0, we obtain the following solutions in terms of hyperbolic functions. 
 

𝑞2,3(𝑥, 𝑡) =
1

3
𝑖 (𝑐𝑜𝑡 (

1

3
(𝐶 +

1

3
√2𝑡√−9𝜔 − 2 + 𝑥)) + 𝑖) × 𝑒𝑖(𝜃+𝑡𝜔− 

1

3√2𝑥√−9𝜔−2)
                     (44) 

 

and 
 

𝑞2,4(𝑥, 𝑡) = −
1

3
𝑖 (𝑡𝑎𝑛 (

1

3
(𝐶 +

1

3
√2𝑡√−9𝜔 − 2 + 𝑥)) − 𝑖) × 𝑒𝑖(𝜃+𝑡𝜔− 

1

3√2𝑥√−9𝜔−2)
           (45) 

 

2.2.2. Application of BSODE Method to F-NLSE 

a. Kerr Law non-linearity 

Regarding the Kerr law nonlinearity, 𝐹(𝑞)  =  𝑞. 
 

𝑖𝑞𝑡 +  
1

2
𝑞𝑥𝑥 +  |𝑞|2𝑞 = 0.                    (46) 

 

By substituting equation (17) into equation (46) and then separating the equation into its real and imaginary 

parts, we obtain the following results. The imaginary component is: 
 

𝑣 = 𝑘                     (47) 
 

The real component is: 
 

𝑘2𝑞 − 𝑞′′ + 2𝜔𝑞 − 2𝑞3  =  0                     (48) 
 

By equating the coefficients of q3 and q′′ in equation (48), we find m = 1. Plugging in m = 1 into equation (19), 

we get the following. 
 

𝑞(𝜉) = 𝑎0 + 𝑎1𝐺(𝜉) .                    (49) 
 

Where a0 and a1 are constants to be determined.  By substituting equation (49) and its derivatives into equation 

(48), we obtain an overdetermined expression. After gathering the terms of Gi and performing all the 

required calculations, we obtain the following results: 
 

G0 : 𝑎0(−2𝑎0
2 + 𝑘2 + 2𝜔)  =  0,                  (50) 

 

G1 : 𝑎1(−6𝑎0
2 + 𝑘2 − 𝜆2 + 2𝜔) = 0,                  (51) 

 

G2 : 3𝑎1(𝜆µ − 2𝑎0𝑎1) = 0,                   (52) 
 

G3 : −2𝑎1(𝑎1
2 + µ2) =  0,                   (53) 

 

From Eq. (50) - (53), we get the following Set of values. 
 

𝑎0 =
𝑖𝜆

2
; 𝑣 = 𝑘; 𝑎1 = −

2𝑎0µ

𝜆
; 𝑘 =

√−𝜆2−4𝜔

√2
; 𝜉 = 𝑡𝑣 + 𝑥 

 

The solution of the obtained values is given as follows: 
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𝑞4,1(𝑥, 𝑡) =
1

2
𝑖𝜆coth (

1

2
𝜆 (𝑡√−

𝜆2

2
− 2𝜔 + 𝑥)) × 𝑒

𝑖(𝜃+𝑡𝜔− 
𝑥√−𝜆2−4𝜔

√2
)
             (54) 

and 

𝑞4,2(𝑥, 𝑡) =
1

2
𝑖𝜆tanh (

1

2
𝜆 (𝑡√−

𝜆2

2
− 2𝜔 + 𝑥)) × 𝑒

𝑖(𝜃+𝑡𝜔− 
𝑥√−𝜆2−4𝜔

√2
)
             (55) 

b. Quadratic Cubic law non-linearity 
 

For Quadratic Cubic law non-linearity, 𝐹 (𝑞)  =  √𝑞  +  𝑞. 

 

𝑖𝑞𝑡 +
1

2
𝑞𝑥𝑥 + (|𝑞| + |𝑞|2)𝑞 = 0.                   (56) 

Employing equation (17) in equation (56) and segregating the real and imaginary components of the equation, 

we arrive at the following. The imaginary component is: 
 

𝑣 = 𝑘                     (57) 
 

The real component is: 
 

𝑘2𝑞 − 𝑞′′ + 2𝜔𝑞 − 2𝑞3 − 2𝑞2  =  0                   (58) 
 

By equating the coefficients of q3 and q′′ in equation (58), we find m = 1. Plugging in m = 1 into equation (19), 

we get the following. 
 

𝑞(𝜉) = 𝑎0 + 𝑎1𝐺(𝜉) .                    (59) 
 

where a0 and a1 are constants to be determined.  By substituting equation (59) and its derivatives into equation 

(58), we obtain an overdetermined system. After gathering the terms of Gi and performing all the required 

calculations, we get: 
 

G0 : 𝑎0(−2𝑎0
2 + 2𝑎0 + 𝑘2 + 2𝜔)  =  0,                 (60) 

 

G1 : 𝑎1(−6𝑎0
2−2𝑎0 + 𝑘2 − 𝜆2 + 2𝜔) = 0,                 (61) 

 

G2 : 𝑎1(3𝜆µ − 2(3𝑎0 + 1)𝑎1) = 0,                  (62) 
 

G3 : −2𝑎1(𝑎1
2 + µ2) =  0,                   (63) 

From solving Eq. (60) - (63), we obtained the following set values. 

Set 1: 
 

𝑘 =
1

3
√2√−9𝜔 − 2; 𝑎0 =

1

2
2𝑘2 + 𝜆2 + 4𝜔; 𝑎1 = −

3𝜆µ6𝑘2+3𝜆2+12𝜔+1

9𝜆2−2
; 𝜆 =

2𝑖

3
; 𝑣 = 𝑘 

 

The solution of the obtained values is given as follows: 
 

𝑞5,1(𝑥, 𝑡) =
1

3
𝑖 (cot (

1

9
(√2𝑡√−9𝜔 − 2 + 3𝑥)) + 𝑖) × 𝑒𝑖(𝜃+𝑡𝜔− 

1

3√2𝑥√−9𝜔−2)
            (64) 

 

and 
 

𝑞5,2(𝑥, 𝑡) = −
1

3
𝑖 (tan (

1

9
(√2𝑡√−9𝜔 − 2 + 3𝑥)) − 𝑖) × 𝑒𝑖(𝜃+𝑡𝜔− 

1

3√2𝑥√−9𝜔−2)
            (65) 

 

Set 2: 
 

𝑎0 = 0; 𝜆 =
2𝑖

3
; 𝑣 = 𝑘;𝑎1 =

3𝜆µ

2
; 𝑘 = √𝜆2 − 2𝜔 
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The solution of the obtained values is given as follows: 

𝑞6,1(𝑥, 𝑡) = −
1

3
𝑖 (cot (

1

9
(√2𝑡√−9𝜔 − 2 + 3𝑥)) − 𝑖) × 𝑒

𝑖(𝜃+𝑡𝜔− 𝑥√−2𝜔− 
4

9
)
            (66) 

 

and 

𝑞6,2(𝑥, 𝑡) =
1

3
𝑖 (tan (

1

3
(𝑡√−2𝜔 −

4

9
+ 𝑥)) + 𝑖) × 𝑒

𝑖(𝜃+𝑡𝜔− 𝑥√−2𝜔− 
4

9
)
            (67) 

 

2.3. Analysis of Conservation Laws 

In this section, we analyse the conservation laws (CLs) of the focusing nonlinear Schrödinger equation 

using the direct method, which employs multipliers. To do this, we will start by converting the equation into a 

system of nonlinear partial differential equations (NLPDEs) through the following transformation [22]: 
 

𝑞(𝑥, 𝑡)  =  𝑢(𝑥, 𝑡)  +  𝑖𝑣(𝑥, 𝑡),                  (68) 
 

where u(x,t) and v(x,t) are functions. Substituting Eq. (68) into Eq. (1) and separating the real and imaginary 

parts, we get: 
 

−𝑣𝑡 +
1

2
𝑢𝑥𝑥 + (𝑢2 + 𝑣2)𝑢 = 0                  (69) 

 

𝑢𝑡 +
1

2
𝑣𝑥𝑥 + (𝑢2 + 𝑣2)𝑣 = 0 

 

Next, we will provide a concise overview of the methods and subsequently apply these principles to the 

generalized unstable nonlinear Schrödinger equation. 

 

2.3.1. Conservation Laws Using the Multiplier Approach 

Let 𝑥 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) denote n independent variables, and u = (u1, u2, . . . , um) represent m 

dependent variables. We consider a system of r PDEs of kth-order described by [22]: 
 

𝑅𝛼[𝑢] = 𝑅𝛼(𝑥, 𝑢, 𝑢(1), 𝑢(2), . . . , 𝑢(𝑘)), 𝑎 = 1, 2, . . . . , 𝑟    (70) 

 

where 𝑢(1) = {𝑢(𝑖𝑗)
𝛼 }, {𝑢(𝑖)

𝛼 } =
𝜕𝑢𝑖

𝛼

𝜕𝑥𝑖
, {𝑢(𝑖𝑗)

𝛼 } =
𝜕2𝑢𝛼

𝜕𝑥𝑖𝜕𝑥𝑗
, …. Let (𝑀2, 𝑀2, . . . , 𝑀𝑁) denote arbitrary 

functions of the independent variables x, and denote partial derivatives 
𝜕

𝜕𝑥𝑖
 by subscripts 𝑖 [22], i.e.,  

 

𝑀𝑖
𝜎 =

𝜕𝑀𝜎

𝜕𝑥𝑖
, 𝑀𝑖𝑗

𝜎 =
𝜕2𝑀𝜎

𝜕𝑥𝑖𝑥𝑗
 

 

1. The local conservation laws multiplier is given in the form 

2. 𝐶𝑖 =
𝜕

𝜕𝑥𝑖
+ 𝑢𝑖𝑗

𝛼 𝜕

𝜕𝑢𝑖
𝛼 + 𝑢𝑖𝑗𝑘

𝛼 𝜕

𝜕𝑢𝑗𝑘
𝛼 + ⋯ .. 

3. Multipliers for system Eq. (70) are a set of functions {𝛹𝛼[𝑀 ]} satisfying: 
 

𝛹𝛼[𝑀 ]𝑅𝛼[𝑀 ]  =  𝐶𝑖𝑁𝑖[𝑀 ],                   (73) 

 

For some functions 𝑁𝑖[𝑀 ]. 𝐼𝑓 𝑀𝜎 =  𝑀𝜎(𝑥) is the solution of PDE Eq. (70), from Eq. 

(101), we obtain the CLs [22] 
 

𝐶𝑖𝑁𝑖[𝑀 ]  =  0                    (74) 

of Eq. (98) and for each 𝑖, 𝑁𝑖[𝑀 ] is a flux. 
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4. The standard Euler operators with respect to the differential function 𝑀𝑗  and the derivatives 

𝑀𝑖 , 𝑀𝑖1𝑖2

𝑗
, ., are defined by: 

5. 𝐸𝑀
𝑗

=
𝜕

𝜕𝑀𝑖 − 𝐶𝑖
𝜕

𝜕𝑀𝑖
𝑗 +. . . +(−1)𝑠𝐶𝑖1

. . . 𝐶𝑖𝑠

𝜕

𝜕𝑀𝑖1...𝑖𝑠

𝑗                              (75) 

 

For each 𝑗 =  1, 2, . . . , 𝑚. {𝛹𝛼[𝑀 ]} yields a set of multipliers for the CLs of Eq. (70) if each 

Euler operator in Eq. (70) annihilates the left side of Eq. (73): 
 

𝐸𝑀
𝑗

(Ψ𝛼[𝑀]𝑅𝛼[𝑀] = 0, 𝑗 =  1, . . . , 𝑛                 (76) 
 

for arbitrary 𝑀, 𝑀𝑖, 𝑀𝑖𝑗, . . .. 

2.3.2. Application of the Multiplier Approach to Focusing on NLSE 

Substituting equation (69) in equation (75) multiplied by Ψ yield 
 

𝐸𝑀 (Ψ1 (−𝑢𝑡 +
1

2
𝑢𝑥𝑥 + 𝑢2 + 𝑣2𝑢) + Ψ2 (𝑣𝑡 +

1

2
𝑣𝑥𝑥 + 𝑢2 + 𝑣2𝑣))              (77) 

 

After expansion with respect to different combinations of derivatives of u and v, we yield the 

following overdetermined system for the multipliers Ψ1 and Ψ2 
 

𝛹𝑥,𝑥
2 = 0, 𝛹𝑣𝑥,𝑣𝑥

1 = 0, 𝛹𝑡
1 =

𝛹𝑥
2𝑣𝑥

𝑣
, 𝛹𝑡

2 =
𝛹𝑥

2𝑢𝑥

𝑣
, 𝛹𝑡

1 =
𝛹𝑥

2𝑢

𝑣
, 𝛹𝑢

1 =
−𝛹𝑣𝑥

1 𝑢𝑡𝑣𝑥 + 𝛹𝑣𝑥

1 𝑢𝑡𝑣𝑥 + 𝛹2𝑣𝑡 + 𝛹1𝑢𝑡

𝑢𝑢𝑡 + 𝑣𝑣𝑡
 

𝛹𝑢
2 = 0, 𝛹𝑣

1 = 0, 𝛹𝑣
2 =

−𝛹𝑣𝑥

1 𝑢𝑡𝑣𝑥 + 𝛹𝑣𝑥

1 𝑢𝑥𝑣𝑡 + 𝛹2𝑣𝑡 + 𝛹1𝑢𝑡

𝑢𝑢𝑡 + 𝑣𝑣𝑡
, 𝛹𝑣𝑡

1 = 0, 𝛹𝑢𝑥

2

=
−𝛹𝑣𝑥

1 𝑢𝑥𝑢 + 𝛹𝑣𝑥

1 𝑣𝑥𝑣 + 𝛹2𝑢 + 𝛹1𝑣

𝑢𝑢𝑡 + 𝑣𝑣𝑡
, 

𝛹𝑣𝑡

1 =
−𝛹𝑣𝑥

1 𝑢𝑥𝑢+𝛹𝑣𝑥
1 𝑣𝑥𝑣+𝛹2𝑢+𝛹1𝑣

𝑢𝑢𝑡+𝑣𝑣𝑡
, 𝛹𝑣𝑡

2 = 0, 𝛹𝑢𝑥

1 = 0, 𝛹𝑢𝑥

2 = −𝛹𝑣𝑥

1 = 0, 𝛹𝑣𝑥

2 = 0               (78) 

 

By solving the system of partial differential equations described in Eq. (78), we derive the following 

zeroth- order multipliers for the model: 𝛹1(𝑥, 𝑡, 𝑢, 𝑣, 𝑢𝑡, 𝑣𝑡, 𝑢𝑥, 𝑣𝑥) and 𝛹2(𝑥, 𝑡, 𝑢, 𝑣, 𝑢𝑡, 𝑣𝑡, 𝑢𝑥, 𝑣𝑥), 

which are expressed as follows: 
 

𝛹1 = (𝐷1𝑥 + 𝐷2)𝑢 + (−𝐷1 − 𝐷3)𝑣𝑥 − 𝐷4𝑣𝑡, 

     

𝛹2 = (𝐷1𝑥 + 𝐷2)𝑣 + (−𝐷1 − 𝐷3)𝑢𝑥 − 𝐷4𝑢𝑡                    (79) 
 

where D1, D2, D3 and D4 are constants.  Using Eq.  (98) and Eq.  (78), we obtained the following 

flux equations: 
 

𝐟𝐥𝐮𝐱𝐭 =
−𝑢2𝐷4

4
−

𝑢𝑥2𝐷4

2
+

𝑢2𝐷1𝑥

2
+

𝑢2𝐷2

2
+

𝑣𝑥𝑣3𝐷1𝑡2

2
+

𝑢𝑣2𝐷4

2
− 𝑣3𝑣𝑥𝐷3𝑡 − 𝑢𝑣𝑥𝐷1𝑡 − 𝑢𝑣𝑥𝐷1𝑡 − 𝑢𝑣𝑥𝐷3 +

𝑢𝑥2𝐷4

4
 (80) 

𝐟𝐥𝐮𝐱𝐱 =
−𝑢𝑥2𝐷3

4
−

𝑢𝑥2𝐷3

4
+

𝑢𝑣𝑥𝐷2

2
+

𝑢2𝐷2

2
+

𝑢3𝐷3

4
+ 𝑢𝑣𝑥𝐷3 −

𝑣𝑡𝑣𝑥𝐷4

2
−

𝑢𝑥2

4
𝐷1𝑡 −

𝑢2𝐷1𝑡

4
−

𝑢𝑥𝑣𝐷2

2
−

𝑢𝑡𝑢𝑥𝐷4

2
 

−
𝑣2𝑢2𝐷3

2
+

𝑢𝑢𝐷1

2
+

𝑣𝑡𝑣3𝐷1𝑡2

2
𝑢𝑣𝑡𝐷1𝑡 +

𝑢𝑣𝑥𝐷1𝑥

2
−

𝑢𝑥𝑣𝐷1𝑥

2
+ 𝑣3𝑣𝑡𝐷3𝑡 −

𝑣2𝑢2𝐷1𝑡

2
               (81) 

 

From the obtained flux, we get the following conserved vectors: 
 

– If 𝐷1  =  1, 𝐷2, 𝐷3 = 0 and 𝐷4 = 0 then we have the following conserved vectors: 
 

𝛹1 = 𝑣𝑥 ,   𝛹2 = 𝑢, 

𝑍𝑡 =
𝑢2𝑥

2
−

𝑣𝑥𝑣3𝑡2

2
− 𝑢𝑣𝑥𝑡                    (82) 

 

𝑍𝑡 =
−𝑢𝑥2

4
𝑡 −

𝑢4𝑡

4
−

𝑢𝑣

2
−

𝑣𝑥2𝑡

4
+

𝑣𝑡𝑣3𝑡2

2
+ 𝑢𝑣𝑡𝑡 +

𝑢𝑣𝑥𝑥

2
−

𝑢𝑥𝑣𝑥

2
−

𝑣2𝑢2𝑡

2
               (83) 
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– If 𝐷1  =  0,  𝐷2, = 1, 𝐷3 = 0 and 𝐷4 = 0 then we have the following conserved vectors: 
 

𝑍𝑡 =
𝑢2

2
                      (84) 

 

𝑍𝑥 =
𝑢𝑣𝑥

2
−

𝑢𝑥𝑣

2
                       (85) 

 

– I f  𝐷1  =  0,  𝐷2, = 0, 𝐷3 = 1 and 𝐷4 = 0 then we have the following conserved vectors: 
 

𝑍𝑡 = −𝑣3𝑣𝑥𝑡 − 𝑢𝑣𝑥                     (86) 
 

𝑍𝑡 = −
−𝑣𝑥2

4
−

𝑣𝑥2

4
−

𝑢4

4
+ 𝑢𝑢𝑡 −

𝑣2𝑢2

2
+ 𝑣3𝑣𝑡𝑡                 (87) 

 

– If 𝐷1  =  0,  𝐷2, = 0, 𝐷3 = 0 and 𝐷4 = 1 then we have the following conserved vectors: 

 

𝑍𝑡 =
−𝑢2

4
−

𝑣2𝑢2

2
+

𝑣𝑥2

2
−

𝑢𝑥2

4
                   (88) 

 

𝑍𝑥 =
1

2
𝑢𝑡𝑣𝑥 −

1

2
𝑢𝑣𝑢𝑡                    (89) 

 

3. RESULTS AND DISCUSSION 

From an optical physics standpoint, Kerr nonlinearity produces highly localized solitons that are more 

sensitive to input power, whereas quadratic-cubic nonlinearity leads to broader, more stable waveforms that 

resist perturbations. These distinctions are crucial for designing robust transmission lines in nonlinear fiber 

optics, where trade-offs between pulse shape, bandwidth, and power thresholds are critical. 

Figure 1 displays the bright soliton profile under Kerr nonlinearity, illustrating the localized amplitude 

decay typical of cubic interactions. In contrast, Figure 2 shows that QC-based solitons display asymmetric 

widths and slight amplitude shifts, indicating that the additional cubic-quadratic interaction affects pulse 

compression. These findings align with prior reports by [41] on pulse broadening in QC media, though our 

profiles show stronger peak retention. This analysis aids in designing fiber systems with nonlinear 

compensation mechanisms, particularly in media where both quadratic and cubic terms coexist, such as 

photorefractive or birefringent media. 

3.1. Visual Representation of Results 

This section presents the results in 3D graphs, offering a comprehensive understanding of the solutions' 

physical behavior. Figures 1 and Figure 2 illustrate the solutions derived using the Ricatti-Bernoulli Sub ODE 

method under Kerr law and Quadratic-Cubic law nonlinearities, respectively. These visualizations facilitate 

the identification of patterns and trends in the solutions, enabling a deeper understanding of the underlying 

dynamics. 

Figure 1 shows bell-shaped solitary waves that rise from a zero background, indicating localized wave 

packets; specifically, a bright soliton emerges with a distinct peak with Symmetric decay on both ends. In 

contrast, Figure 2 depicts dark solitons, characterized by localized dips or notches in amplitude against a 

constant (non-zero) background, typically in a continuous wave. 

Similarly, Figures 4 and Figure 5 depict the physical behaviors of the solutions obtained with the Bernoulli 

Sub-ODE method under Kerr law and Quadratic-Cubic law nonlinearities, respectively. These graphical 

representations provide valuable insights into the solutions' characteristics, enabling a more nuanced 

interpretation of the results. Figure 4 specifically exhibits periodic solitons or cnoidal wave patterns with 

localized peaks and troughs that appear to maintain their form. In contrast, Figures 5 show dark soliton dips in 

amplitude, featuring localized dips that propagate without significantly changing shape. 
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(c)             (d) 

Figure 1: Graphical depiction of solutions from Eqs. (31)-(34) for ω = 0.15 and θ = 3π , showing a 

bright soliton. Solution profile with a localized wave packet and a distinct peak. 

 

    
(a)              (b)   

 (c)              (d) 

Figure 2: Graphical depiction of the solutions from eq.(42)-(45) for the values of ω = 0.1, θ = π , 

showing a dark Solitons, characterized by localized dips or notches 

   (a)       (b) 
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   (c)       (d) 
Figure 3: Graphical depiction of the model showing dark soliton dips in amplitude, featuring 

localized dips. 

 

   (a)       (b) 

   (a)       (b) 

Figure 4: Graphical depiction of the solutions from eq.(67)-(68) for the values of ω = 0.5, θ = 
𝜋

4
 

showing periodic. Solitons or cnoidal wave patterns with localized peaks and troughs 
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Figure 5: Graphical depiction of the solutions from eq. (77)-(80) for the values of ω = 0.2, λ = 5, θ = π 

showing dark soliton dips in amplitude, featuring localized dips 

 

4. CONCLUSION AND LIMITATION 

This study yielded bright soliton solutions for both Kerr and QC nonlinearities. Amplitude and phase 

velocity were found to be sensitive to the strength of the nonlinear terms. Conservation laws confirmed that 

energy and momentum are preserved across all cases. Kerr nonlinearities support steeper soliton profiles, 

making them suitable for applications requiring high signal localization, while quadratic-cubic terms stabilize 

broader solitons, offering resilience against dispersion. In future work, we aim to extend the analysis to coupled 

NLSE systems and include higher-order perturbative effects, such as self-steepening and Raman scattering. 
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Poincaré – AN (2017), https://doi.org/10.1016/j.anihpc.2017.08.006 

[7] M. Mirzazadeh, M. Eslami, D. Milovic, A. Biswas, “Topological solitons of resonant nonlinear Schr€odinger 

equation with dual-power law nonlinearity using G/G expansion technique”, Optik, vol. 19, 5480e5489, 2014. 

https://doi.org/10.1016/j.ijleo.2014.03.042 

[8] M. Mirzazadeh, M. Eslami, B.F. Vajargah, A. Biswas, Optical solitons and optical rogons of generalized 

resonant dispersive nonlinear Schr€odinger equation with power law nonlinearity, Optik, vol. 125, 4246e4256, 

2014. https://doi.org/10.1016/j.ijleo.2014.04.014 

[9] H. Triki, T. Hayat, O.M. Aldossary, A. Biswas, “Bright and dark solitons for the resonant nonlinear 

Schr€odinger equation with time- dependent coefficients”, Opt. Laser Technol. v o l .  44,  2223e2231, 2012. 

https://doi.org/10.1016/j.optlastec.2012.01.037 

[10] S. Z Hassan, A. E Mahmoud, A Riccati–Bernoulli, “Sub-ODE Method for Some Nonlinear Evolution 

Equations”, J. Druyter, vol. 45, 2018. https://doi.org/10.1515/ijnsns. 

[11] A. Biswas, “Soliton solutions of the perturbed resonant nonlinear dispersive Schr€odinger’s equation  with full 

nonlinearity by semi-inverse variational principle”, Quantum Phys. Lett. 2, 79e84, 2012. 

[12] M. Inc, A.I. Aliyu, A. Yusuf, “Dark optical, singular solitons and conservation laws to the nonlinear 

Schrödinger’s equation with spatio-temporal dispersion”, Mod. Phys. Lett. B. vol. 31, no. 14, 1750163, 2017. 

https://doi.org/10.1142/S0217984917501639 

[13] M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, “Optical solitary waves, conservation laws and modulation 

instability analysis to the nonlinear Schrödinger’sequation in compressional dispersive Alven waves”, 

Optik, vol. 155, pp. 257–266, 2018. https://doi.org/10.1016/j.ijleo.2017.10.109 

[14] M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, “New solitary wave solutions and conservation laws to the 

Kudryashov–Sinelshchikov equation”, Optik, vol. 142, pp. 665–673, 2017. 

https://doi.org/10.1016/j.ijleo.2017.05.055 

[15] F. Tchier, A. Yusuf, A.I. Aliyu, M. Inc, “Optical and other solitons for the fourth-order dispersive nonlinear 

Schrödinger’s  equation with dual-power lawnonlinearity, Superlatt”, Microstruct., vol. 105, pp. 183–197, 2017. 

https://doi.org/10.1016/j.spmi.2017.03.022 

[16] Q. Zhou, M. Ekici, M. Mirzazadeh, A. Sonmezoglu, “The investigation of soliton solutions of the coupled sine -

Gordon equation in nonlinear optics”, J. Mod. Opt, vol. 64, pp. 1677–1682, 2017. 

https://doi.org/10.1080/09500340.2017.1310318 

[17] F. Tchier, A. Yusuf, A.I. Aliyu, M. Inc, “Optical and other solitons for the fourth-order dispersive nonlinear 

Schrödinger’s  equation with dual-power lawnonlinearity”, Superlatt. Microstruct., vol. 105, pp. 183–197, 2017. 

https://doi.org/10.1016/j.spmi.2017.03.022 

[18] A. Biswas, H. Triki, Q. Zhou, M.Z. Ullah, P. Asma, S. Moshokoa, M.R. Belic, “Perturbation theory and 

optical soliton cooling with anti-cubic nonlinearity”, Optik, vol. 142, pp. 73–76, 2017. 

https://doi.org/10.1016/j.ijleo.2017.05.060 

[19] A. Biswas, M.Z. Ullah, H. Triki, Q. Zhou, S. Moshokoa, M.R. Belic, “Optical soliton perturbation with 

anti-cubic nonlinearity by semi-inverse variational principle”, Optik, vol. 143, pp. 131–134. 

https://doi.org/10.1016/j.ijleo.2017.06.087 

[20] A. Biswas, H. Triki, Q. Zhou, S.P. Moshokoa, M.Z. Ullah, M. Belic, “Cubic-quartic optical solitons in 

Kerr and power law media”, Optik, vol. 144, pp. 357–362, 2017. 

https://doi.org/10.1016/j.ijleo.2017.07.008 

[21] A. Biswas, Q. Zhou, S.P. Moshokoa, H. Triki, M. Belic, R.T. Alqahtani, “Resonant 1-soliton solution in 

anti-cubic nonlinear medium with perturbations”, Optik, vol. 145, pp. 14–17, 2017. 

https://doi.org/10.1016/j.ijleo.2017.07.036 

[22] M. Inc, A. I Aliyu and A. Yusuf, “On the classification of conservation laws and soliton solutions of the 

long short-wave interaction system”, Modern Physics Letters B, vol. 32, no. 18, 1850202, 2018. 

https://doi.org/10.1142/S0217984918502020 

[23] O. Fabert, “Hamiltonian Floer Theory for Nonlinear Schrödinger Equations and the Small Divisor Problem,” 

International Mathematics Research Notices , vol. 2022, no. 16, pp. 12220–12252, 2021. 

https://doi.org/10.1093/imrn/rnab053. 

[24] Sedletsky, Y. V., Gandzha, I. S.,  “ Hamiltonian form of an extended nonlinear Schrödinger equation for 

modelling the wave field in a system with quadratic and cubic nonlinearities”, Mathematical Modelling of 

Natural Phenomena, vol. 17, no. 43, 2022. https://doi.org/10.1051/mmnp/2022044 

[25] Sh. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort  optical 

pulses”, Phys. Rev. A, vol. 82, 013812, 2010. https://doi.org/10.1103/PhysRevA.82.013812 

 

https://doi.org/10.1016/j.anihpc.2017.08.006
https://doi.org/10.1016/j.ijleo.2014.03.042
https://doi.org/10.1016/j.ijleo.2014.04.014
https://doi.org/10.1016/j.optlastec.2012.01.037
https://doi.org/10.1515/ijnsns
https://doi.org/10.1142/S0217984917501639
https://doi.org/10.1016/j.ijleo.2017.10.109
https://doi.org/10.1016/j.ijleo.2017.05.055
https://doi.org/10.1016/j.spmi.2017.03.022
https://doi.org/10.1080/09500340.2017.1310318
https://doi.org/10.1016/j.spmi.2017.03.022
https://doi.org/10.1016/j.ijleo.2017.05.060
https://doi.org/10.1016/j.ijleo.2017.06.087
https://doi.org/10.1016/j.ijleo.2017.07.008
https://doi.org/10.1016/j.ijleo.2017.07.036
https://doi.org/10.1142/S0217984918502020
https://doi.org/10.1093/imrn/rnab053
https://doi.org/10.1051/mmnp/2022044
https://doi.org/10.1103/PhysRevA.82.013812


 Jibrin Sale Yusuf /VUBETA Vol 3 No 1 (2026) pp. 188~204  203 

 
 

[26] Aliyu, A. I., Yusuf, J. S., Nauman, M. M., Ozsahin, D. U., Agaie, B. G., Zaini, J. H., Umar, H. Lie, 

“Symmetry Analysis and Explicit Solutions of the Estevez Mansfield-Clarkson Equation”, Journal of 

Symmetry,  v o l . 1 6 ,  n o .  9 ,  2024. https://doi.org/10.3390/sym16091194 

[27] W. Craig, P. Guyenne and C. Sulem, “A Hamiltonian approach to nonlinear modulation of surface water 

waves”, Wave Motion, vol. 47, pp. 552–563, 2020. https://doi.org/10.1016/j.wavemoti.2010.04.002 

[28] W. Craig, P. Guyenne and C. Sulem, “Hamiltonian higher-order nonlinear Schr¨odinger equations for 

broader-banded waves on deep water”, Eur. J. Mech. B/Fluids, vol. 32, pp. 22–31, 2021. 

https://doi.org/10.1016/j.euromechflu.2011.09.008 

[29] O. Gramstad and K. Trulsen, “Hamiltonian form of the modified nonlinear Schr¨odinger equation for 

gravity waves on arbitrary depth”, J. Fluid Mech, vol. 670, pp. 404–426, 2011. 

https://doi.org/10.1017/S0022112010005355 

[30] P. Guyenne, D.P. Nicholls and C. Sulem (eds.), “Hamiltonian Partial Differential Equations and Appli - 

cations”, Springer, New York, 2015. https://doi.org/10.1007/978-1-4939-2950-4 

[31] Galadima B. A, Yusuf J. S, Aliyu A. I, A. A Wachin and S. U Zuwaira, “Optical Soliton Solutions of 

Burgers-Fisher and Burgers-Huxley Equations”, Kasu journal of mathematical sciences (KJMS), vol. 

5, no. 1, 2024. https://doi.org/10.5281/zenodo.12627471 

[32] Jibrin Sale Yusuf, “Dynamics of Generalized Unstable Nonlinear Schrodinger Equation:  Insta- bilities, 

Solitons, and Rogue Waves”, American Journal of Science, Engineering and Technology, v o l .  11, no. 1, 

pp. 1-18, 2025 https://doi.org/10.11648/j.ijamtp.20251101.11 

[33] Ahmad, K., Bibi, K., Arif, M.S., Abodayeh, K., “New exact solutions of Lan- dau–Ginzburg–

Higgs equation using power index method”, J. Funct. Spaces, pp. 1–6, 2023. 

https://doi.org/10.1155/2023/4351698 

[34] Ahmad, S., Mahmoud, E.E., Saifullah, S., Ullah, A., Ahmad, S., Akgül ,  A., El Din, S.M., “New waves 

solutions of a nonlinear Landau–Ginzburg–Higgs equation: the Sardar-subequation and energy balance 

approaches”, Results Phys., vol. 51, 106736, 2023. https://doi.org/10.1016/j.rinp.2023.106736 

[35] Akram, G., Sajid, N., Abbas, M., Hamed, Y.S., Abualnaja, K.M., “Optical solutions of the Date - Jimbo–

Kashiwara–Miwa equation via the extended direct algebraic method”, J. Math., pp. 1–18, 2021. 

https://doi.org/10.1155/2021/5591016 

[36] Akram, G., Sadaf, M., Khan, M.A.U., “Soliton Dynamics of the generalized shallow water like equation in 

nonlinear phenomenon”, Front. Phys., vol. 10, 822042, 2022. https://doi.org/10.3389/fphy.2022.822042 

[37] Akram, G., Sadaf, M., Sarfraz, M., Anum, N., “Dynamics investigation of (1+1) -dimensional time- 

fractional potential Korteweg-de Vries equation”, Alexandria Eng. J., vol. 61, pp. 501–509, 2022. 

https://doi.org/10.1016/j.aej.2021.06.023 

[38] Akram, G., Zainab, I., Sadaf, M., Bucur, A., “Solitons, one- l i ne  rogue wave and breather wave solutions 

of a new extended KP-equation”, Results Phys., vol. 55, 107147, 2023. 

https://doi.org/10.1016/j.aej.2021.06.023 

[39] Akram, G., Sajid, N., “Solitary wave solutions of (2+1)-dimensional Maccari system”, Modern Phys. Lett. 

B., vol. 35, no. 25, 2150391, 2021. 

[40] Ali, M.R., Khattab, M.A., Mahrouk, S.M., “Travelling wave solution for the Landau–Ginburg–Higgs 

model via the inverse scattering transformation method”, Nonlinear Dyn.,  v o l .  111, no. 4, pp. 7687–7697,  

2023. https://doi.org/10.1007/s11071-022-08224-6 

[41] M. Pichler and G. Biondini,” On the focusing non-linear Schrödinger equation with non-zero boundary 

conditions and double poles,” IMA Journal of Applied Mathematics, vol. 82, no. 1, pp. 131-151, Feb. 2017. 

https://doi.org/10.1093/imamat/hxw009 

[42] Arnous, A.H., Mirzazadeh, M., Akbulut, A., Akinyemi, L., “Optical solutions and conservation laws of 

the Chen–Lee–Liu equation with Kudryashov’s refractive index via two integrable techniques”, Waves Random 

Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2045044 

[43] M. Younis, N. Cheemaa, S.A. Mahmood, S.T.R. Rizvi, “On optical solitons:  the chiral nonlin- 

earSchrödinger equation with perturbation and Bohm potential”, Opt. Quantum Electron, vol. 48, no. 54, 

2016. https://doi.org/10.1007/s11082-016-0809-2 

[44] W.H. Zhu, L. Zhou, G.P. Ai, “Different complex wave structures described by theHirota equation with variable 

coefficients in inhomogeneous optical fibers”, Appl. Phys. B, vol. 125, no. 9, pp. 175, 2019. 

https://doi.org/10.1007/s00340-019-7287-8 

[45] A.M. Wazwaz, “A study on linear and nonlinear Schrodinger equations by the variational iteration method”, 

Chaos Solitons Fractals, vol. 37, no. 4, pp. 1136–1142, 2008. https://doi.org/10.1016/j.chaos.2006.10.009 

 

 

https://doi.org/10.3390/sym16091194
https://doi.org/10.1016/j.wavemoti.2010.04.002
https://doi.org/10.1016/j.euromechflu.2011.09.008
https://doi.org/10.1017/S0022112010005355
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.5281/zenodo.12627471
https://doi.org/10.11648/j.ijamtp.20251101.11
https://doi.org/10.1155/2023/4351698
https://doi.org/10.1016/j.rinp.2023.106736
https://doi.org/10.1155/2021/5591016
https://doi.org/10.3389/fphy.2022.822042
https://doi.org/10.1016/j.aej.2021.06.023
https://doi.org/10.1016/j.aej.2021.06.023
https://doi.org/10.1007/s11071-022-08224-6
https://doi.org/10.1093/imamat/hxw009
https://doi.org/10.1080/17455030.2022.2045044
https://doi.org/10.1007/s11082-016-0809-2
https://doi.org/10.1007/s00340-019-7287-8
https://doi.org/10.1016/j.chaos.2006.10.009


204 Jibrin Sale Yusuf /VUBETA Vol 3 No 1 (2026) pp. 188~204 

 

  

[46] J. Manafian, “ Optical soliton solutions for Schrodinger type nonlinear evolution equations by the 

tan(ϕ/2)-expansion method”, Optik, vol. 127, no. 10, pp. 4222–4245, 2016. 

https://doi.org/10.1016/j.ijleo.2016.01.078 

[47] Q. Zhou, A. Biswas, “Optical soliton in parity-time-symmetric mixed linear and nonlinear lattice withnon Kerr 

law nonlinearity”, Superlattices Microstruct., vol. 109, pp. 588–598, 2017. 

https://doi.org/10.1016/j.spmi.2017.05.049 

[48] C.-G.R. Teh, W.K. Koo, B.S. Lee, “ Jacobian elliptic wave solutions for the Wadati–Segur–Ablowitz 

equation”, Int. J. Mod. Phys. B, vol. 11, no. 23, pp. 2849–2854, 1997. 

https://doi.org/10.1142/S0217979297001398 

[49] E. Yomba, “The general projective Riccati equations method and exact solutions for a class of 

nonlinearpartial differential equations Chin”, J. Phys. Taipei, vol. 43, no. 6, 2005. 

[50] N. Taghizadeh, M. Mirzazadeh, “ The first integral method to some complex nonlinear partial differential 

equations” J. Comput. Appl. Math., vol. 235, no. 16, pp. 4871–4877, 2011. 

https://doi.org/10.1016/j.cam.2011.02.021 

 

 

https://doi.org/10.1016/j.ijleo.2016.01.078
https://doi.org/10.1016/j.spmi.2017.05.049
https://doi.org/10.1142/S0217979297001398
https://doi.org/10.1016/j.cam.2011.02.021

