Vokasi Unesa Bulletin of Engineering, Technology and Applied Science (VUBETA)

https://journal.unesa.ac.id/index.php/vubeta ’ ‘

Vol. 3, No. 1, 2026, pp. 188~204 DOI: 10.26740/vubeta.v3i1.43039 Q0

ISSN: 3064-0768

Investigating Soliton-Wave Dynamics Using the Focusing
Nonlinear Schro“dinger Equation

Jibrin Sale Yusuf'*

'"Department of Mathematics, Federal University Dutse, Nigeria

Article Info

ABSTRACT

Article history:

Received July 24, 2025
Revised October 10, 2025
Accepted January 15, 2026

Keywords:

Focusing NLSE

Kerr nonlinearity
Quadratic-Cubic nonlinearity
Optical solitons
Conservation laws

This research undertakes a comprehensive investigation of the optical
soliton solutions of the Focusing Non- linear Schr"odinger Equation (NLSE),
a fundamental model describing the propagation of optical solitons in
nonlinear media. We employ two versatile and efficient methods: the Ricatti-
Bernoulli Sub Ordinary Differential Equation (RBSODE) method and the
Bernoulli Sub Ordinary Differential Equation (BSODE) method. These
methods enable us to derive a wide range of optical soliton solutions.We
examine two distinct nonlinearities: the Kerr law nonlinearity and the
quadratic-cubic nonlinearity. These nonlinearities are crucial in determining
the behavior of optical solitons in various nonlinear optical media. Our
analysis reveals that the derived soliton solutions exhibit distinct
characteristics. Kerr nonlinearity supports sharper, narrower solitons, whereas
quadratic-cubic nonlinearity yields broader profiles with enhanced stability.
This study obtains soliton solutions of the NLSE with Kerr and QC
nonlinearities using the RBSODE and BSODE methods, analyzes the
qualitative differences in the obtained profiles, and examines the conservation
laws characterizing the dynamics. The RBSODE and BSODE methods are
chosen for their algebraic flexibility and their ability to handle the nonlinear
ODEs derived from the traveling-wave reduction of the NLSE. Furthermore,
we use the multiplier method to derive the conservation laws of the NLSE.
These conservation laws provide valuable insights into the underlying
dynamics of the optical solitons and have significant implications for the
design and optimization of nonlinear optical systems. Our research
contributes to the understanding of soliton behavior in nonlinear media, with
potential applications in optical signal transmission and ultrafast laser
propagation.

This is an open access article under the CC BY-SA license.
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1. INTRODUCTION

The nonlinear Schr”odinger equation is gaining prominence due to its extensive applications in areas such
as fluid dynamics and optical technology. The focusing nonlinear Schr”odinger equation is especially valuable
for studying solitons in optical fibers. Solitons, stable waves that retain their form over long distances, are
essential to optical communication systems.

The Focusing Nonlinear Schr”odinger Equation is given by [1]:

. 1
iqc + 5 dxx +19%1g = 0
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where ¢ = q(x,t) denotes the wave profile, where x represents a non-dimensional length within the
material, and t signifies the elapsed time. The term |q|2q reflects the cubic nonlinearity in the refractive index
of the material, which is definedasn = n0 + n2 |q|2, where n0 is the linear refractive index and n2 is the
Kerr coefficient. The governing equation is utilized to model the propagation of a light beam through a medium
with this refractive index. When the Kerr coefficient is negative (n2 << 0), the nonlinearity is self-
defocusing, leading to an expansion of the beam’s width in the transverse x-direction over time. In contrast, a
positive refractive index (n2 > 0) causes the beam’s width to contract, resulting in focusing. Numerous
researchers have explored this model equation, as seen in studies like ”The NLSE with Rogue periodic waves”
[1], ”Effective integration of ultra-elliptic solutions of the focusing NLSE” [2], ”Soliton shielding in the
focusing NLSE” [3], and “’The stability spectrum for elliptic solutions to the focusing NLSE” [5], among others.

Despite the extensive literature on NLSE, challenges remain in constructing exact solutions for higher-
order or generalized nonlinearities. Traditional methods, such as inverse scattering or Hirota’s method, may
not accommodate complex nonlinear terms like QC. Therefore, there is a need to apply direct algebraic
approaches that can systematically handle these nonlinearities and yield physically meaningful solutions [26].
In this context, the NLSE, dispersion broadens optical pulses due to the frequency-dependence wave speed,
while nonlinearity counters this effect by inducing pulse compression. A balance between these two competing
effects gives rise to soliton structures—waveforms that maintain their shape during propagation. Kerr
nonlinearity contributes a cubic term to the refractive index, while quadratic-cubic nonlinearity introduces
higher-order corrections, enabling richer propagation dynamics in intense-field regimes [32].

The Riccati-Bernoulli sub-ODEs method (RBSODE) and the Bernoulli sub-ODEs method (BSODE)
are symbolic computational techniques that allow exact reduction of nonlinear differential equations to
algebraic systems, facilitating the analytical construction of soliton. Compared to inverse scattering or
variational methods, these approaches offer greater algebraic flexibility, especially for non-integrable forms
such as those with QC nonlinearity. These methods have been successfully applied to similar nonlinear models
in [10][26], showcasing their reproducibility and ease of generalization. Specifically, the RBSODE method
provides a symbolic algebraic framework to for reducing nonlinear ODEs to solvable forms via balance
procedures, making it suitable for the QC-type NLSE, given its success in handling higher-order polynomial
nonlinearities. We adopt it here for the systematic construction of soliton profiles, extending earlier
applications by [6][41]. By using both RBSODE and BSODE techniques, this study provides a unique
perspective on method sensitivity and solution structure, systematically contrasting Kerr and quadratic-cubic
effects using exact analytical methods.

This study aims to construct exact optical soliton solutions for the NLSE with Kerr and QC nonlinearities
using BSODE and RBSODE methods, and compare the qualitative impact of these nonlinearities on soliton
structure and conservation properties. By doing so, we investigate the dynamics of solitons in nonlinear optical
fibers, examining dispersion and nonlinearity to enhance data transmission efficiency, and we contribute to the
theoretical understanding of nonlinear waves and their practical use in contemporary communication systems.
Unlike earlier works [5][6][41] that focus largely on Kerr-type nonlinearities using perturbative or numerical
techniques, this study explores mixed nonlinear regimes, such as QC, and examines conservation laws in detail
alongside exact solutions, thereby enhancing physical interpretability and facilitating the development of
innovative solutions in optics and physics.

2. METHOD

The Riccati-Bernoulli sub-ODE (RBSODE) and Bernoulli Sub ODE (BSODE) methods are symbolic
computational techniques that allow exact reduction of nonlinear differential equations to algebraic systems,
facilitating the analytical construction of solitons. Compared to inverse scattering or variational methods, these
approaches offer greater algebraic flexibility, especially for non-integrable forms such as those with Quadratic-
Cubic nonlinearity. The RBSODE method, in particular, offers a symbolic algebraic framework for reducing
nonlinear ODEs to solvable forms via balance procedures, and its success in handling higher-order polynomial
nonlinearities makes it suitable for the QC-type NLSE. These methods have been successfully applied to
similar nonlinear models in [26][31], showcasing their reproducibility and ease of generalization.
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2.1. Description of the proposed Methods

The Riccati-Bernoulli sub-ODE (RBSODE) and Bernoulli Sub ODE (BSODE) methods are symbolic
computational techniques that allow exact reduction of nonlinear differential equations to algebraic systems,
facilitating the analytical construction of solitons. Compared to inverse scattering or variational methods, these
approaches offer greater algebraic flexibility, especially for non-integrable forms such as those with Quadratic-
Cubic nonlinearity. The RBSODE method, in particular, offers a symbolic algebraic framework for reducing
nonlinear ODEs to solvable forms via balance procedures, and its success in handling higher-order polynomial
nonlinearities makes it suitable for the QC-type NLSE. These methods have been successfully applied to
similar nonlinear models in [26][31], showcasing their reproducibility and ease of generalization.

2.1.1. Ricatti-Bernoulli Sub ODE Methods
Let us consider a PDE given as

P(q28,28,2924 )0, @

ot’ ax’ ot2’ ax2’

where q(x,t) = q(&)
Stage 1:
Using the conversion

ax,t) = q(§) X eip(x,b), 3
where §¢ = A(x £ vt) and ¢p(x,t) = —klx + wt + 6.

Eq. (2) can be rewritten as the accompanying following ODE.

P(q,q9.9",...) = 0, “)
. a

with q(§) = a—‘;‘

Stage 2:

Presuming that the solution to Eq.(4) satisfies the Riccati-Bernoulli Equation.
q' = bq + aq®*" + cqr, Q)
with constants a,b,c, and r.

Taking the derivative of Eq.(5). We have:

q’' =q—1-—2r(aq2 + cq2 —r + cql +r)(—a)(—2 + r))q2 + crg2r + bql +r ©6)
q" = q—21+r)(bg + aq2 —r + cqr)(@2(—2 + r)(—3 + 2r))g4 + c2r(—1 + 2r)q4r +
ab(—3 + (-2 + g3 +r+ (b2 + 2ac)q2 + 2r + ber(1 + rql + 3r), @)
Remarks

Eq. (5) is a Riccati equation if ac # 0 and r = 0.
Eq.(5) is Bernoulli equation if a# 0, c=0 and r # 1.

To avoid the introducing new terminologies, we called Eq.(5) Riccati-Bernoulli equation Equation (5)
possesses the subsequent solutions.:

Classification of solution:
Case 1: If r =1, Eq. (5) possesses the solution
q®) = Ce®*a+og ®)

Case 2: If r#1,b=0, and c = 0, Eq. (5) possesses the following solution.

1

a® = (a(r — E + O)r )
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Case 3: If r# 1, b# 0, and c = 0, Eq. (5) possesses the solution
1

q(®) = CePm~1Y — Zr=3 (10)

Case 4: Ifr # 1, a# 0 and b?> —4ac < 0, Eq. (5) possesses the following solution.

1

a® = (—%+@tan [(onfiacb? C)])E (an
and

1
a(® = (—;;a—\/ﬁi_bzcot [Anfaaeb? C)])E (12)
Case 5: Ifr # 1, a# 0 and b?> —4ac > 0, Eq. (5) possesses the following solution.

1
q(e) = (=2 — LoTtac oy [T | y)) " .
and

1
q(® = (— b _ Jbiosac oy (Qoobitac C)]): .
Case 6: Ifr # 1, a # 0 and b2 — 4ac = 0, Eq. (5) possesses the following solution

1

q®) = a(r—1§(§+c) - alb_r (15)

Stage 3:

When we substitute y and its derivatives into Equation (4), we derive a system of algebraic equations.
By choosing the value of » according to the steps discussed above, doing all necessary computation, and
substituting the value of g, b, ¢, and other parameters into any of the cases Eq.(8) - (15) that fit, the solution
of the PDE (2) may be obtained.

2.1.2. Bernoulli Sub ODE Methods
Consider a PDE given as

dq 0q 0%*q 0%q _
P (q,a—t,g,a—tz,ﬁ,...)—o (16)
Stage 1:
Using the conversion
qxt) = q(§) x etV A7)
where § = A(x £ vt) and ¢d(x,t) = —klx + wt + 6. Eq. (16) can be converted into the
following ODE
P(q,9,q9",...) = 0 (18)

. a
withq(§) = 32

Stage 2:
Assume that Equation (18) possesses a solution in the following form.

q(&) =X a;g" (19)

where G = G(¢) satisfied the equation
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G! + AG = pG? 20)
a; are constants and u~ 0, 1~ 0.

The solution to Equation (20) is a particular form of the Bernoulli equation, which can be expressed
as follows

A AE
G = —Z(Tanh[7] ~1) 1)
and

- _2 ALy
G =—5-(Coth[]~1 (22)
Stage 3:

The positive integer m is determined by equating the highest-order derivatives with the highest order non-
linear term present in equation (18). The balancing formula is given as

D (Z::—Z) =m+a, D (ub (Z%)C) = bm + c(n+a) (23)
Stage 4:

By replacing equation (19) into (18), applying (20), and consolidating terms with the same power of G(&),
we establish a set of algebraic equations. Setting each coefficient of G’ to zero leads us to a system of
algebraic equations. Solving this system yields the values of a; and other associated parameters. Lastly,
by putting the values of a; and the associated parameters is into equation (19), we obtain the solution to
equation (16).

2.2. Applications of the Methods

2.2.1. Application of the RBSODE Method to F-NLSE
a. Kerr Law non-linearity

Regarding the Kerr law nonlinearity F(q) = q.

. 1
iqc + S 4qxx + 1ql?q = 0. (24)

By employing equation (3) in equation (24) and segregating the real and imaginary components of the equation,
we arrive at the following. The imaginary component is:

v=k (25)
The real component is:
k?q—q" +2wqg—2q3 = 0 (26)

By inserting equation (5) along with its derivatives into equation (26) and assigning m = 0, we obtain an
overdetermined equation. To resolve this, we collect terms with identical exponents of ¢’ and equate them
to zero, thereby deriving the following system of algebraic equations.

¢’ : —bc = 0, @7
q' :(—2ac — b? + k? + 20) = 0 (28)
¢ 3ab = 0 (29)

¢ :=2@@ +1) =0 (30)
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From solving Eq. (27) - (30), we obtained the following values:

a=i;b=0;v=k;c=%(—ak2—2a(u);§=x+vt

The solution of the obtained values is given as follows:

CASE A:
If k, w < 0, we acquire the subsequent solutions in terms of trigonometric functions

. [K? k2 i(O—kx+tw)
qii(x,t) =i S twceot | [=+w(C+kt+x)|xe 31
and

. k2 k2 i(O—kx+t

G12(x, ) = =i [+ wtan | |[>+ w(C +kt +x) | x /@7 kx+tw) (32)
CASE B:

If k, w, > 0, we obtain the following solutions in terms of hyperbolic functions.

qrs(x,t) =i ’—k?z — wcoth ( —kz—z —w(C+kt+ x)) x el@—kx+tw) (33)

and
qra(x,t) =i ’—k?z — wtanh ( —k?z —w(C+kt+ x)) X gl(0—kx+tw) (34)

b. Quadratic Cubic law non-linearity
Regarding Quadratic Cubic law non-linearity, F (q) = \/E + g, where the coefficient of nonlinearity is 1.

iqe +5 @xx + (gl + 1q1%)g = 0. (33)

By employing equation (3) in equation (35) and segregating the real and imaginary components of the equation,
we arrive at the following.
The imaginary component is:

v=k. (36)
The real component is:
k?q—q" +2wq—2q®—2q%> = 0 37)

By substituting equation (5) and its derivatives into equation (37) with m = 0, we obtain an overdetermined
equation. To resolve this, we collect terms with identical exponents of ¢’ and set them to zero. This process
leads us to formulate the following system of algebraic equations.

¢":—bc = 0, (38)
q':(—2ac—b*+k?+2w) =0, (39)
¢ :(=3ab—2) = 0, (40)
¢ —2@@ + 1) =0, (41)

From solving Eq. (38) - (41), we obtained the following Set of values:
a=i;c=O;bzz?a;vzk;k=§\/§\/—9w—2;5=x+vt



194 Jibrin Sale Yusuf /VUBETA Vol 3 No 1 (2026) pp. 188~204

The solution of the obtained values is given as follows:
CASE A:
If k, ® <0, we obtain the following solutions in terms of trigonometric functions.

q21(x,t) = gi (Cot (g (C + %ﬁtm + x)) + i) % ei(9+tw—§ﬁxdﬁ) (42)
and

q2,2(x, ) = —%i (tan G (C + éﬁtm + x)) - i) x gl@+tw— V2=90-2) @3)
CASE B:

If &, w, > 0, we obtain the following solutions in terms of hyperbolic functions.

42306 t) =21 cot (§ (c+ivaey=9w -2+ x)) 4 1) x i@t L 2x=96-2) "
and

G206 t) = —3i(tan G (c+3vatv=ow -2+ x)) — i) x elOtm L vy =sa=2) )

2.2.2. Application of BSODE Method to F-NLSE
a. Kerr Law non-linearity
Regarding the Kerr law nonlinearity, F(q) = q.

. 1
iqe + S qxx + lql?q = 0. (46)

By substituting equation (17) into equation (46) and then separating the equation into its real and imaginary
parts, we obtain the following results. The imaginary component is:

v=k (47)
The real component is:
k?’qg—q" +2wq—2q% =0 (48)

By equating the coefficients of ¢° and ¢” in equation (48), we find m = 1. Plugging in m = I into equation (19),
we get the following.

q(€) = ap +a,G($) . (49)

Where ap and a; are constants to be determined. By substituting equation (49) and its derivatives into equation
(48), we obtain an overdetermined expression. After gathering the terms of G’ and performing all the
required calculations, we obtain the following results:

G ag(—2a2 + k? + 2w) = 0, (50)
G':a (—6a3 + k?— 22 +2w) = 0, (51)
G?:3a,(Ap — 2aq4a,) = 0, (52)
G’ —2a,(a? +p?) = 0, (53)

From Eq. (50) - (53), we get the following Set of values.
il 2ag K,

V-A2—4w
Q=prv=ka=-—"k="—#7—7¢

=tv+x

The solution of the obtained values is given as follows:
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, xV-A2—4w
’ O+tw— A0
qar(x,t) = %ilcoth <%/1 <t —% —2w + x)) X el( ¢ V2 ) (54)

and

. x/-A%2-4w
O+tw— AW
Qa2(x,t) = %Mtanh (%/’l <t f—%z —2w + x>> X el< “ vz (55)

b. Quadratic Cubic law non-linearity

For Quadratic Cubic law non-linearity, F (q) = \/a + q.

iqe + 5 qxx + (g1 + 1q1%)g = 0. (56)

Employing equation (17) in equation (56) and segregating the real and imaginary components of the equation,
we arrive at the following. The imaginary component is:

v=k (57)
The real component is:
k?qg—q" +2wqg—2q3—2g%> = 0 (58)

By equating the coefficients of ¢° and ¢ in equation (58), we find m = 1. Plugging in m = 1 into equation (19),
we get the following.

q(€) = ap +a,G(&) . (59

where ag and a; are constants to be determined. By substituting equation (59) and its derivatives into equation
(58), we obtain an overdetermined system. After gathering the terms of G’ and performing all the required
calculations, we get:

G’:ag(—2a3 + 2ay, + k? + 2w) = 0, (60)
G':a;(—6a3—2ay + k? — 2> + 2w) = 0, 61)
G?:a,(3An — 2(3ay + 1)a,) =0, (62)
G’ —2a,(a? +p?) = 0, (63)

From solving Eq. (60) - (63), we obtained the following set values.
Set 1:

1 1 3An6k2+32%2+12w+1 2i
=5\/§\/—9w—2;a0=52k2+AZ+4w;a1=— L YE) ;/1=?;v=k

The solution of the obtained values is given as follows:

451 (x,8) =21 cot ( (V2tv=9w —2 + 3x)) § 1) x g0t ERI0D) .
and

gs2(x,t) = —%i (tan (g (ﬁtm + 3x)> _ i) x pl(@+tw— Zx=90-2) 65)
Set 2:

a0=0;/’1=%;v=k;a1 B/m ik =vVA%2 - 2w
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The solution of the obtained values is given as follows:
i|O+tw—x [-2w— i)
Qo1 t) = —3i (cot (g (V2tN—9w — 2 + 3x)) - i) X e ( ﬁ (©6)

and

Ge2(x, ) = gi <tan <§ (t /—Zw - g + x>> + i> X ei(9+tw_ X\J—Zw—a) ©7)

2.3. Analysis of Conservation Laws

In this section, we analyse the conservation laws (CLs) of the focusing nonlinear Schrédinger equation
using the direct method, which employs multipliers. To do this, we will start by converting the equation into a
system of nonlinear partial differential equations (NLPDEs) through the following transformation [22]:

q(x,t) = u(x,t) + iv(x,t), (68)

where u(x,¢) and v(x,t) are functions. Substituting Eq. (68) into Eq. (1) and separating the real and imaginary
parts, we get:

e s 2 4 =0 ©

1
Uy +vax +@W?+vH)v=0

Next, we will provide a concise overview of the methods and subsequently apply these principles to the
generalized unstable nonlinear Schrédinger equation.

2.3.1. Conservation Laws Using the Multiplier Approach
Let x = (x1,x2,...,xn) denote n independent variables, and u = wh, u? ..., u™ represent m
dependent variables. We consider a system of » PDEs of A”-order described by [22]:

Ralu] = Ra(x,u,u(l),u(Z),...,u(k)), a=1,2,....,r (70)

_ a a_ ouf a __ 92u~ .
where u ;) = {u(m}, {u(i)} = ox {u(ij)} = —axl-axj ,....Let (M2,M2,...,MN) denote arbitrary

. . . . o a . .
functions of the independent variables x, and denote partial derivatives Ey by subscripts i [22], i.e.,
i

_amM° , ., B2mMm°

My Bx; " U T Bxgxy

1. The local conservation laws multiplier is given in the form

2. Ci:aim+u%aiﬁ+u%k%ﬁ+""'

3. Multipliers for system Eq. (70) are a set of functions {Va[M ]} satisfying:

Ya[M ]Ra[M] = CiNi[M ], (73)

For some functions Ni[M |.If Mo = Mo(x) is the solution of PDE Eq. (70), from Eq.
(101), we obtain the CLs [22]

CiNi[M] = 0 (74)

of Eq. (98) and for each i, Ni[M ] is a flux.
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4. The standard Euler operators with respect to the differential function M/ and the derivatives
Mi,Ml-j ., are defined by:
1ip
j—-_9 _ 9 —1)5C; 9
5. Ey =57 a7 +o A (—1)5C;,... Cyy om/ (75)

Foreach j = 1,2,..., m.{¥%[M ]} yields a set of multipliers for the CLs of Eq. (70) if each
Euler operator in Eq. (70) annihilates the left side of Eq. (73):

El (W*[M]R,[M] =0, j = 1,...,n (76)

for arbitrary M, Mi, Mij, .. ..
2.3.2. Application of the Multiplier Approach to Focusing on NLSE
Substituting equation (69) in equation (75) multiplied by ¥ yield

Ey (‘{Jl (—ut + %uxx +u? + vzu) + P2 (Ut + ivxx +u? + 17217)) (7N

After expansion with respect to different combinations of derivatives of u and v, we yield the
following overdetermined system for the multipliers P' and ¥?

Y2v, Ylu =W uvy + W ugvy + P2 + Wy,

uu; + v,

1 _
e =

Y2, =0,%, =0,¥}= ,WE = "v , Wl =

=W uev + W uyve + P20 + Plu,
uu; + v,
Y uut+ v+ Pru+ Py

Y2 =0,¥ =0,¥W2 = WL = 0,92,

uu; + v ’
LR =0 =0,¥2 =¥ =0,%2 =0 (78)

—¥y U u+ ¥y v v+ Piu+ Py

UUAHVY,

1 _
¥, =

By solving the system of partial differential equations described in Eq. (78), we derive the following
zeroth- order multipliers for the model: ¥1(x, t, u, v, ut, vt, ux, vx) and ¥?(x, t,u, v, ut, vt, ux, vx),
which are expressed as follows:

'“1,1 = (Dlx + Dz)u + (_D1 - D3)vx - D417t,
Wz = (Dlx + DZ)U + (_Dl - D3)ux - D4ut (79)

where D1, D,, D3 and D4 are constants. Using Eq. (98) and Eq. (78), we obtained the following
flux equations:

— ZD ZD ZD ZD 3D tZ ZD ZD
flux, = — 4—ux2 s 4L 21x+%+w71+%—v3vxD3t—uvxD1t—uvxDlt—uvxD3 +ux4 4 (80)
2 2 2 3 2 2
—ux=D ux<D uv, D u“D. u°D. vV, D ux u“Dit  u,vD usu, D,
fluxx= 3_ 3+ x 2+ 2+ 3+quD3_ tVx 4_ Dlt— 1 _ 2_ tYx4
4 4 2 2 4 2 4 4 2 2
_ 1721.;2D3 u1.;D1 vtv32D1t2 wv, Dyt + uvxlex _ uxszlx + 17317tD3t _ vzuZZDlt (81)

From the obtained flux, we get the following conserved vectors:

— If D, = 1,D,,D3; = 0 and D, = 0 then we have the following conserved vectors:
yl=yp, w2 =y,
2 342
7t =2 BTt (82)

2 4 2 3.2 2,2
—ux u*t uv vx“t vevct UVxX UxV veu“t
Zt = t—— -t tunt+ - - —— (83)
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—IfD;, = 0, D,,=1, D3 =0and D, = 0 then we have the following conserved vectors:

zi= (84)
x — Wox _ Ux¥
z* =~ 5 (8%5)
-If D = 0, D,,=0, D3 =1 and D, = 0 then we have the following conserved vectors:
Zt = —viu,t —uw, (86)
_ 2 2 4 2,,2
Zt=_ vx _K_u_+uut_—vu +'U3'l7tt (87)
4 4 4 2
—1IfD; = 0, D;,=0, D3 =0and D, = 1 then we have the following conserved vectors:
—q2 2,2 2 2
gt =W _ruw v uxr (88)
4 2 2 4
Z* = %utvx — %u,,u,t (89)

3.  RESULTS AND DISCUSSION

From an optical physics standpoint, Kerr nonlinearity produces highly localized solitons that are more
sensitive to input power, whereas quadratic-cubic nonlinearity leads to broader, more stable waveforms that
resist perturbations. These distinctions are crucial for designing robust transmission lines in nonlinear fiber
optics, where trade-offs between pulse shape, bandwidth, and power thresholds are critical.

Figure 1 displays the bright soliton profile under Kerr nonlinearity, illustrating the localized amplitude
decay typical of cubic interactions. In contrast, Figure 2 shows that QC-based solitons display asymmetric
widths and slight amplitude shifts, indicating that the additional cubic-quadratic interaction affects pulse
compression. These findings align with prior reports by [41] on pulse broadening in QC media, though our
profiles show stronger peak retention. This analysis aids in designing fiber systems with nonlinear
compensation mechanisms, particularly in media where both quadratic and cubic terms coexist, such as
photorefractive or birefringent media.

3.1. Visual Representation of Results

This section presents the results in 3D graphs, offering a comprehensive understanding of the solutions'
physical behavior. Figures 1 and Figure 2 illustrate the solutions derived using the Ricatti-Bernoulli Sub ODE
method under Kerr law and Quadratic-Cubic law nonlinearities, respectively. These visualizations facilitate
the identification of patterns and trends in the solutions, enabling a deeper understanding of the underlying
dynamics.

Figure 1 shows bell-shaped solitary waves that rise from a zero background, indicating localized wave
packets; specifically, a bright soliton emerges with a distinct peak with Symmetric decay on both ends. In
contrast, Figure 2 depicts dark solitons, characterized by localized dips or notches in amplitude against a
constant (non-zero) background, typically in a continuous wave.

Similarly, Figures 4 and Figure 5 depict the physical behaviors of the solutions obtained with the Bernoulli
Sub-ODE method under Kerr law and Quadratic-Cubic law nonlinearities, respectively. These graphical
representations provide valuable insights into the solutions' characteristics, enabling a more nuanced
interpretation of the results. Figure 4 specifically exhibits periodic solitons or cnoidal wave patterns with
localized peaks and troughs that appear to maintain their form. In contrast, Figures 5 show dark soliton dips in
amplitude, featuring localized dips that propagate without significantly changing shape.
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(c) (d)
Figure 1: Graphical depiction of solutions from Egs. (31)-(34) for @ = 0.15 and 6 = 3%, showing a

bright soliton. Solution profile with a localized wave packet and a distinct peak.

e

(c) @
Figure 2: Graphical depiction of the solutions from eq.(42)-(45) for the values of w = 0.1, €4= z
showing a dark Solitons, characterized by localized dips or notches
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Figure 3: Graphical depiction of the model showing dark soliton dips in amplitude, featuring
localized dips.
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(b)
Figure 4: Graphical depiction of the solutions from eq.(67)-(68) for the values of ® = 0.5, 0 =%

showing periodic. Solitons or cnoidal wave patterns with localized peaks and troughs
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)

(©) (d)

Figure 5: Graphical depiction of the solutions from eq. (77)-(80) for the values of ® =0.2, A=5,0=m
showing dark soliton dips in amplitude, featuring localized dips

4. CONCLUSION AND LIMITATION

This study yielded bright soliton solutions for both Kerr and QC nonlinearities. Amplitude and phase
velocity were found to be sensitive to the strength of the nonlinear terms. Conservation laws confirmed that
energy and momentum are preserved across all cases. Kerr nonlinearities support steeper soliton profiles,
making them suitable for applications requiring high signal localization, while quadratic-cubic terms stabilize
broader solitons, offering resilience against dispersion. In future work, we aim to extend the analysis to coupled
NLSE systems and include higher-order perturbative effects, such as self-steepening and Raman scattering.
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