

Optimization of CNC Milling Parameters for Surface Roughness and Hardness of SS 316

Muhammad Wildan Syifatillah^{1*}, Talifatim Machfuroh²

^{1,2}Department of Mechanical Engineering, Politeknik Negeri Malang, Malang, Indonesia

Article Info

Article history:

Received May 28, 2025

Revised September 21, 2025

Accepted December 10, 2025

Keywords:

CNC Milling
Hardness
Optimization
Stainless steel 316
Surface Roughness

ABSTRACT

CNC milling of stainless steel (SS) 316 faces considerable difficulties in obtaining the desired hardness and surface quality as a result of machining variability. This investigation focuses on the optimization of spindle speed, feed rate, and depth of cut using the Taguchi method, where soluble oil served as the cutting fluid. The Taguchi method was used with an L9 orthogonal array was implemented to design experimental trials and the responses of surface roughness (Ra) and hardness (HRB) were quantified according to ISO standards. The findings reveal that the minimum surface roughness is obtained at a spindle speed of 2100 rpm, feed rate of 50 mm/min, and depth of cut of 0.2 mm and the maximum hardness is achieved at 1500 rpm, 50 mm/min, and 0.2 mm. Generally, higher feed rates and depths of cut contribute to poorer surface finish, whereas elevated spindle speeds are associated with improved surface quality. The observed reduction in hardness is primarily linked to thermal accumulation in the cutting zone, which is partly alleviated by the use of soluble oil. These findings emphasize the need to consider distinct optimal conditions for surface roughness and hardness must be considered to ensure superior CNC milling outcomes for SS 316 stainless steel.

This is an open access article under the [CC BY-SA](#) license.

1. INTRODUCTION

Stainless steel (SS) 316 is an austenitic alloy composed of chromium, nickel, and molybdenum [1][2]. This material is extensively utilized in the manufacturing of industrial equipment components, particularly in the energy [3], biomedical [4], and food industries, among others [5]. Its corrosion resistance makes SS 316 a preferred choice across various industrial sectors. In addition to its corrosion resistance, austenitic stainless steel possesses high ductility, low thermal conductivity, and high compressive strength [6][7]. Therefore, cutting tools with high wear resistance, high hardness, and resistance to changes in feed motion are required [8].

The selection of cutting tool geometry is crucial for achieving optimal results in machining, particularly when working with difficult-to-machine materials. Proper tool geometry helps prevent excessive wear that may otherwise compromise machining outcomes [9]-[11]. Surface quality and dimensional accuracy in machining are influenced by various factors, including machining conditions, tool geometry, tool vibrations, and cutting parameters [12][13]. Vibrations generated during the milling process accelerate tool wear, thereby directly affecting the surface quality of the machined workpiece [14][15]. Furthermore, the use of cutting tools with larger grain sizes tends to shorten tool life. A 41.9% difference in grain size between 0.18 μm and 0.31 μm has been shown to increase tool life by 26.2%. Hence, employing carbide tools with smaller grain sizes has been proven to extend tool life in the milling of SS 316L [16].

To enhance cutting tool performance, the application of coated tools in machining processes has been shown to influence surface roughness significantly [17]. Among the various coating types, tools with Physical Vapor Deposition (PVD) coatings achieve lower surface roughness than those with Chemical Vapor Deposition (CVD) coatings, with a difference of approximately 25% in the minimum surface roughness [18]. In addition

*Corresponding Author

Email: talifatim.machfuroh@polinema.ac.id

to improving surface quality, coated tools also exhibit greater wear resistance. Studies on machining AISI 316 with coated inserts revealed improved tool wear resistance compared to uncoated tools, highlighting the role of coatings in reducing friction forces during the machining process [19][20].

Nevertheless, surface quality in machining is not solely determined by cutting tool characteristics. The effectiveness of machining operations is strongly influenced by cutting parameters, namely feed rate, depth of cut, and spindle speed, which directly affect chip formation, cutting forces, and the resulting surface [21][22]. In their investigation of CNC milling of AISI 316L using carbide inserts, Equbal et al. [23] reported that the feed rate had the greatest effect on surface roughness. At the same time, the depth of cut was the dominant factor influencing material removal rate (MRR). Consistent with this, Farooq [24] found that in dry machining of additively manufactured SS 316L, increasing both feed rate and depth of cut elevated surface roughness by as much as 62.5%. Similarly, Truong et al. [25] demonstrated that surface roughness is highly affected by the combined effects of feed rate and spindle speed. While higher spindle speeds generally improve surface finish, excessively low or high feed rates can induce plastic deformation, degrading surface quality.

Beyond conventional dry machining, prior research has highlighted the importance of cooling strategies in enhancing surface quality. The implementation of natural-based cutting fluids under MQL conditions during SS 316 turning has proven effective in achieving considerable reductions in surface roughness [26][27]. Moreover, the integration of nanoparticles into MQL systems has proven effective in mitigating tool wear and enhancing surface finish, attributed to the dual mechanisms of improved cooling and lubrication [28][29]. However, nanoparticle-enhanced coolants have also been reported to accelerate corrosion rates in SS 316 compared to conventional coolants [30]. In addition to surface roughness, machining process and cooling conditions have also been shown to influence other mechanical properties, such as material hardness.

The friction between the cutting edge and the workpiece surface generates frictional forces, which in turn produce heat in the cutting zone [31]. Kadi et al. [32] in a turning study on 316L using coconut-oil-based Minimum Quantity Lubrication (MQL), an increase in hardness up to 230 μ Hv. This effect was primarily attributed to the depth of cut parameter, as the heat generated during machining was concentrated in the cutting zone and partially dissipated through the chips. Similarly, Avci et al. [33] investigated CNC milling of AISI 1050 under wet-cooling conditions. They found that the use of cutting fluids enhanced surface hardness, with the effect strongly influenced by spindle speed. Such hardness improvement through heat treatment improves the material's resistance to frictional wear [34][35]. In industrial machine components, mating-part interaction typically occurs at the asperity peaks of machined surfaces. These interactions determine whether the contact response is elastic or plastic under applied loading [36][37]. The hardness of a material is directly related to its resistance in these contact areas, particularly under deformation caused by contact stresses. Hence, hardness plays a vital role in the ability of surface asperities to resist deformation and wear [38].

Extensive research has addressed the role of cutting parameters—including feed rate, depth of cut, and spindle speed—in the surface roughness of SS 316, primarily in dry machining and Minimum Quantity Lubrication (MQL) environments. Nevertheless, comprehensive investigations into how these parameters simultaneously affect surface roughness and hardness when soluble oil is applied as the cutting fluid remain scarce. In practice, however, soluble oil is still widely employed in industry due to its cost efficiency and ease of application. Therefore, this study is essential to investigate how the combination of machining parameters and soluble oil affects surface roughness and hardness, thereby supporting improvements in the service life and performance of machined components.

2. Materials and Methods

2.1. Material

2.1.1. Material specification

The material used in this study was stainless steel AISI 316, selected for its molybdenum content, which enhances corrosion resistance [39]. The specimens were prepared with dimensions of 50 mm \times 30 mm \times 10 mm. The chemical composition in Table 1 and the mechanical properties of SS 316 are presented in Table 2.

Table 1. Chemical Composition SS 316

Element	C	Si	Mn	P	S	Ni	Cr	Mo
Weight%	0.019	0.54	0.96	0.031	0.003	10.17	16.80	2.1

Table 2. Mechanical Properties of SS 316

Mechanical Properties	Value
Yield Strength	303 Mpa
Tensile Strength	581 Mpa
Elongation (%)	56
Hardness	88 HRB

2.1.2. Tool Material

Figure 1 illustrates a cylindrical carbide cutting tool with a 10 mm diameter, four flutes, and a total length of 71.4 mm. Due to its high wear resistance and hardness, carbide is well-suited as a cutting tool material for machining AISI 316 stainless steel [8].

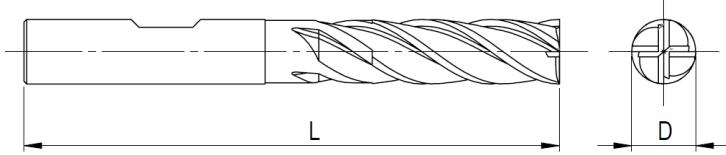


Figure 1. Design and geometry of the sample endmill tool

2.2. CNC Milling Process

In this study, the CNC milling machine employed was a DAHLIH MCV 1020, with the parameters summarized in Table 3. Soluble oil was used as both the coolant and lubricant during SS 316 machining. The selection of machining parameters was based on recommendations from industrial practice [26].

Table 3. Parameter CNC milling

Factor (Parameter)	Level		
	1	2	3
Spindle Speed (rpm)	1500	1800	2100
Feed Rate (mm/min)	50	100	150
Depth of Cut (mm)	0.2	0.5	0.8

2.3. Taguchi Experimental Design

The Taguchi method was employed in the experimental design due to its ability to minimize the number of experimental trials by systematically narrowing the input parameters and their levels, thereby ensuring the collection of relevant, statistically valid data [40]-[42]. Orthogonal array, considering three machining parameters at three levels. Optimization was performed by applying the “smaller-the-better” approach for surface roughness and the “larger-the-better” approach for hardness, thereby identifying the optimal machining conditions for SS 316. The signal-to-noise (S/N) ratio for surface roughness was subsequently derived using Equation (1) and for hardness using Equation (2):

$$S/N = -10 \log_{10} \left[\frac{1}{K} \sum_{k=1}^K (y_k)^2 \right] \quad (1)$$

$$S/N = -10 \log_{10} \left[\frac{1}{K} \sum_{k=1}^K \frac{1}{y_k^2} \right] \quad (2)$$

2.4. Surface Roughness and Hardness Testing

Figure 2 illustrates the measurement points, taken at three locations on the specimen surface, with a spacing of 12.5 mm between them. Surface roughness was evaluated using a portable surface roughness tester (LANDTEK SRT-6210) in compliance with ISO 21920-3:2021. A cut-off length of 0.8 mm was applied, and the arithmetic mean roughness (Ra) was determined as the average deviation of the surface profile from the mean line over the specified cut-off region.

Hardness testing was conducted using a CARSON MOPAO3 Hardness Tester with the Rockwell B (HRB) method. The procedure was performed in accordance with ISO E18-22, applying a load of 100 kgf with a steel ball indenter of 1.588 mm in diameter. Both the surface roughness tester and the hardness tester were calibrated every six months to ensure consistent, accurate results.

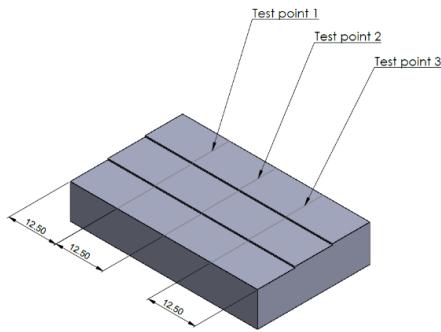


Figure 2. Specimen testing points

Figure 3 presents the research flow for obtaining surface roughness and hardness data of CNC-milled specimens. The process began with a literature review and field study to formulate the research problem, followed by the preparation of G-code, tools, and materials. The selection of cutting tools and machining parameters was carried out to achieve optimal results. After machining, the specimens were inspected; those that did not meet the required criteria were reprocessed. Eligible specimens were then tested for surface roughness and hardness according to standard procedures. Finally, the test results were analyzed to draw conclusions and provide research recommendations.

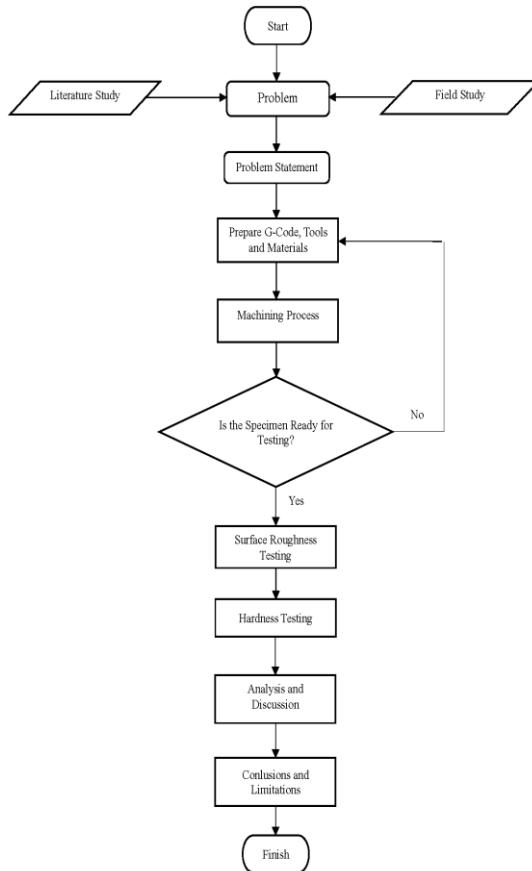


Figure 3. Research Flow Chart

3. RESULTS AND DISCUSSION

The measurement results of surface roughness and hardness are presented in Table 4. The primary objective of this experimental design was to identify the most influential factors and their interactions in achieving the lowest possible surface roughness and the highest possible hardness. Here, R_a represents the surface roughness, while HRB denotes the hardness obtained from the machining process.

Table 4. Experimental results of surface roughness and hardness

Spindle Speed	Feed Rate	DoC	R _a	HRB
1500	50	0.2	0.252	77.2
1500	100	0.5	1.235	74.7
1500	150	0.8	1.163	69.8
1800	50	0.5	0.457	68.2
1800	100	0.8	0.677	65.2
1800	150	0.2	0.478	68.7
2100	50	0.8	0.302	69.2
2100	100	0.2	0.405	70.0
2100	150	0.5	0.500	66.7

3.1 Surface Roughness

The optimal machining parameters in CNC milling were identified using Signal-to-Noise (S/N) ratio analysis based on the “smaller-the-better” criterion. The parameter combination with the highest S/N ratio was recognized as the optimal condition, since it corresponds to the lowest mean surface roughness. A summary of these results is provided in [Table 5](#).

Table 5. Response table for S/N ratios of surface roughness

Factor	Surface Roughness (R _a)			
	Level 1	Level 2	Level 3	Delta
S/N Ratio				
Spindle Speed	2.938	5.536	8.089	5.151
Feed Rate	9.717	3.136	3.710	6.581
Depth of Cut	8.743	3.666	4.155	5.077

The data analysis shown in [Figure 4](#) illustrates the effect of variations in the input parameters on surface roughness. The spindle speed parameter exhibited a decreasing trend in surface roughness, with the optimal value obtained at 2100 rpm, corresponding to the lowest average roughness of 0.402 μm . The relationship between feed rate and surface roughness showed a nonlinear trend, with the optimal feed rate at 50 mm/min, yielding the lowest average roughness of 0.337 μm . Similarly, the depth of cut showed a nonlinear relationship, with the optimal depth of cut at 0.2 mm, resulting in the lowest average surface roughness of 0.378 μm .

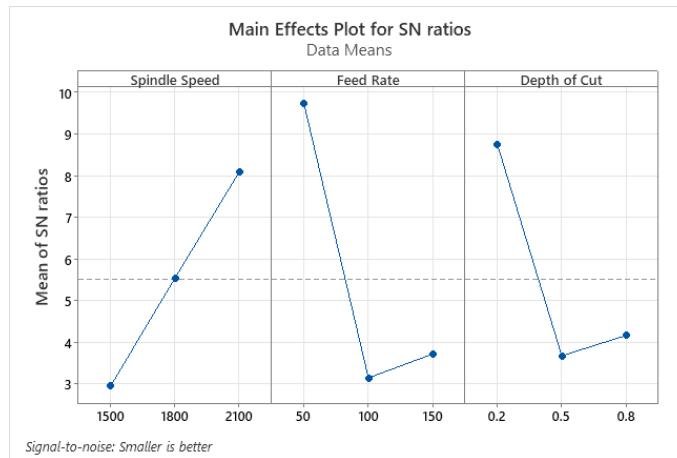


Figure 4. Surface Roughness main effects plot

Following the Taguchi S/N ratio analysis, the surface roughness results were further validated using Analysis of Variance (ANOVA). ANOVA was employed to identify the dominant factors and their percentage contributions to the response. The ANOVA results for surface roughness are presented in [Table 6](#) at a 95% confidence level. Based on the results, the parameter with the most significant contribution to surface roughness was spindle speed, accounting for 36.28%, followed by feed rate at 32.82% and depth of cut at 23.28%. The 7.62% error may be attributed to coolant pressure and tool wear during the cutting process.

Table 6. Results of ANOVA surface roughness

Parameter	DF	Adj SS	Adj MS	F-Value	P-Value	Contribution
Spindle Speed	2	0.369	0.184	4.76	0.174	36.28%

Parameter	DF	Adj SS	Adj MS	F-Value	P-Value	Contribution
Feed Rate	2	0.334	0.167	4.31	0.188	32.82%
Depth of Cut	2	0.237	0.118	3.05	0.247	23.28%
Error	2	0.077	0.038			7.62%
Total	8	1.018				100%

The interaction plot in Figure 5 shows that surface roughness (Ra) is affected by the combined influence of spindle speed, feed rate, and depth of cut. The presence of non-parallel or intersecting lines indicates that the effect of one parameter depends on the levels of the others. Increasing the feed rate at low spindle speeds tends to significantly increase Ra, whereas higher spindle speeds result in lower surface roughness. Similarly, variations in depth of cut exhibit different effects depending on the combination of the other two parameters. This confirms that surface quality results from the combined effects of all three cutting variables.

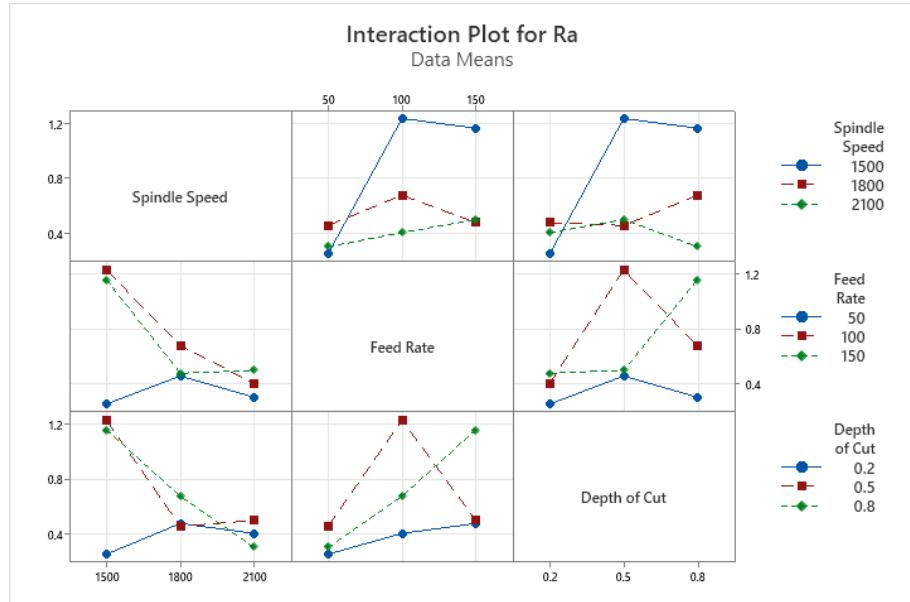


Figure 5. Interaction plot for surface roughness

An increase in spindle speed leads to the formation of thinner chips, as the cutting tool engages with the workpiece more rapidly, thereby producing a smoother surface finish [25][40][32]. At higher spindle speeds, the formation of built-up edge (BUE) decreases, thereby reducing scratches on the machined surface that typically result from material adhesion at the tool tip [43].

However, increasing the feed rate results in higher thrust forces and vibrations, thereby elevating surface roughness [44][45]. Moreover, depth of cut is recognized as another critical parameter governing machining performance [23]. Larger depths of cut generally increase surface roughness due to higher resistance, vibration, and tool wear [44]. At 0.5 mm, the highest roughness is observed, attributed to machining instability and chatter [46]. Interestingly, further increasing the depth of cut to 0.8 mm, a reduction in surface roughness occurs as the cutting process becomes more stable [46][26].

To minimize surface roughness, higher spindle speeds and controlled feed rates can be applied. However, the concurrent increase in both parameters can raise the cutting temperature, which in turn accelerates tool wear and deteriorates the workpiece's surface finish [25][9].

3.2 Material Hardness

To determine the optimal machining parameters in CNC milling, the Signal-to-Noise (S/N) ratio was analyzed using the 'larger-the-better' criterion, along with average hardness. The results of the S/N ratio analysis and the mean hardness are presented in Table 7.

Table 7. Response table for S/N ratios of hardness

Factor	Hardness			
	Level 1	Level 2	Level 3	Delta
S/N Ratio				
Spindle Speed	37.36	36.56	36.73	0.80
Feed Rate	37.07	36.88	36.70	0.37
Depth of Cut	37.13	36.87	36.65	0.48

Figure 6 illustrates the effect of input parameter variations on hardness. The spindle speed parameter exhibits a nonlinear relationship with hardness, with an optimal value of 1500 rpm, corresponding to the highest average hardness of 73.83 HRB. A similar trend is observed for the feed rate, which shows a decreasing hardness trend, with the highest average hardness of 71.51 HRB. Likewise, the depth of cut also demonstrates a decreasing hardness trend, with the highest average hardness of 71.94 HRB.

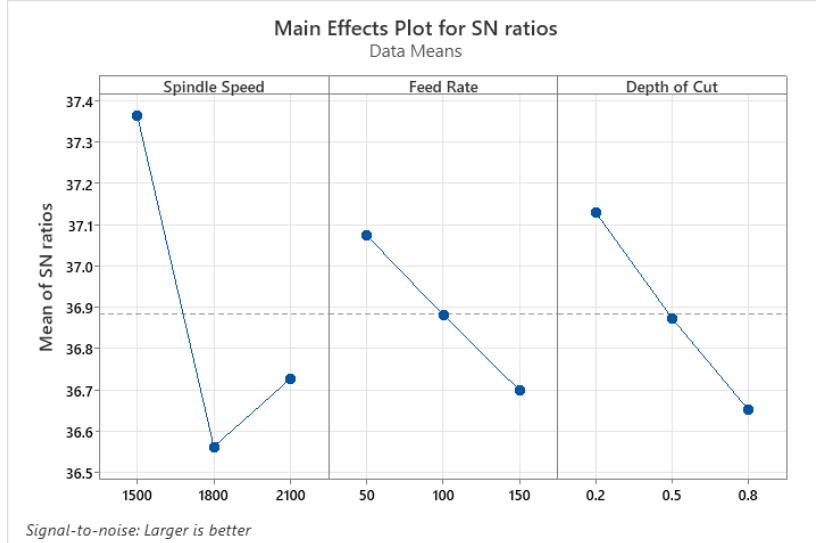


Figure 6. Hardness main effects plot

After obtaining the S/N ratios from the Taguchi analysis, the hardness test results were further analyzed using ANOVA (Analysis of Variance). ANOVA was employed to identify the dominant factors and their percentage contributions to the test results. The ANOVA results for hardness are presented in [Table 8](#) at the 95% confidence level. According to the ANOVA results presented in [Table 8](#), spindle speed exerts the dominant influence on hardness, accounting for 69.17% of the total variation. Depth of cut and feed rate contribute comparatively less, at 15.40% and 4.20%, respectively. However, the 3.24% error rate in the ANOVA results may be attributed to uninvestigated variables.

Tabel 8. Results of ANOVA Hardness

Parameter	DF	Adj SS	Adj MS	F-Value	P-Value	Contribution
Spindle Speed	2	72.200	36.100	19.71	0.048	63.38%
Feed Rate	2	14.519	7.259	3.96	0.201	12.84%
Depth of Cut	2	22.727	11.363	6.20	0.139	20.09%
Error	2	3.663	1.832			3.24%
Total	8	113.109				100%

To clarify the relationships among the variables, an interaction plot analysis was conducted. [Figure 7](#) shows that the interaction between spindle speed, feed rate, and depth of cut influences material hardness (HRB). The intersecting lines indicate that the effect of one parameter depends on the values of the other parameters. At low spindle speeds, an increase in feed rate tends to significantly reduce hardness, whereas at high spindle speeds, the effect is more negligible. The variation in depth of cut also shows a non-constant effect: a greater cutting depth can decrease hardness, depending on its combination with the other two parameters.

Figure 7. Interaction plot for hardness

From the interaction plot and the S/N ratio, the highest spindle speed corresponds to the lowest hardness. Frictional interaction between the cutting edge and the workpiece surface during spindle rotation produces considerable heat in the machining zone [31]. Owing to the limited thermal conductivity of 316 stainless steel, the dissipation of this heat is restricted, thereby causing thermal concentration in the vicinity of the cutting interface [48]. The introduction of soluble oil as a coolant partially alleviates heat concentration, ultimately reducing material hardness [49].

Beyond the effect of spindle speed, feed rate significantly influences the thermal characteristics of the machining process, fostering localized heat accumulation at the cutting edge and the workpiece interface [50]. As the feed rate increases, the material removal rate (MRR) rises proportionally, thereby intensifying the cutting energy demand [23]. Consequently, heat accumulation in the contact area tends to increase with higher feed rates. However, when machining is performed with a cooling medium, the generated heat can be reduced, leading to a decrease in hardness [51]. The thermal state of the cutting zone is greatly affected by the depth of cut. Thus, most of the heat generated during machining is removed by the chips, whereas only a small portion is transferred to the tool and workpiece. In the case of austenitic stainless steels, which exhibit low thermal conductivity, a reduced depth of cut diminishes the chip's capacity to transport heat away from the cutting zone. This results in higher thermal retention within the workpiece, thereby increasing the local surface temperature of the machined material [26].

4. CONCLUSION AND LIMITATION

The study demonstrates that the optimal conditions for minimizing surface roughness are obtained at 2100 rpm spindle speed, 50 mm/min feed rate, and 0.2 mm depth of cut. The percentage contributions of machining parameters to surface roughness are 36.28% for spindle speed, 32.82% for feed rate, and 23.28% for depth of cut, confirming spindle speed as the most critical factor. This is attributed to its ability to suppress the formation of built-up edges, thereby improving the surface finish. Conversely, increases in feed rate exacerbate roughness due to higher thrust forces and increased vibration, while a depth of cut of 0.5 mm leads to machining instability. At 0.8 mm, however, the process becomes more stable, resulting in reduced surface roughness.

For hardness, the optimal results are achieved at a spindle speed of 1500 rpm, a feed rate of 50 mm/min, and a depth of cut of 0.2 mm. Parameter contribution analysis reveals that spindle speed has the most significant influence (63.38%), followed by depth of cut (20.09%) and feed rate (12.84%). The observed decline in hardness is predominantly attributed to thermal accumulation within the cutting zone, induced by intense tribological interactions at the tool–workpiece interface. Such localized heating alters the microstructural stability of the machined layer, thereby reducing its hardness. Due to SS 316's low thermal conductivity, more heat is absorbed by the workpiece. The use of soluble oil helps reduce the cutting temperature but generally lowers the surface layer's hardness.

This study was conducted only on the parameters and soluble oil. Future research should focus on exploring a wider range of cutting parameters, including higher spindle speeds and depths of cut. Additionally, investigating alternative environmentally friendly cooling fluids, such as minimum quantity lubrication (MQL) or vegetable oil-based cutting fluids, is essential to support the sustainability of the machining process.

REFERENCES

- [1] A. Reyad, E. Hornus, F. Bhatti, S. Parapurath, T. Sapanathan, & M. Iannuzzi, "Impact of Minor Changes in Molybdenum Content on the Localized Corrosion Resistance of Austenitic Stainless Steels", *Materials and Corrosion*, vol. 76, no. 8, pp. 1169-1182, 2025. <https://doi.org/10.1002/maco.202414703>
- [2] A. Palaniappan, V. D., S. Hans, & P. Janarthanan, "Investigation of Stainless Steel 316 Coated with Nickel", *Materials Today: Proceedings*, vol. 62, pp. 2376-2379, 2022. <https://doi.org/10.1016/j.matpr.2022.04.852>
- [3] T. Li, M. Zhu, P. Deng, A. Chen, H. Yan, & H. Yi, "Corrosion of 316 SS in Chloride Molten Salt for Therm Energy Storage: Inhibitory Effects of Al Powder," *Journal of Physics: Conference Series*, vol. 2838, no. 1, p 012013, 2024, doi: <https://doi.org/10.1088/1742-6596/2838/1/012013>
- [4] Y. Xu, Y. Li, T. Chen, C. Dong, K. Zhang, & X. Bao, "A Short Review of Medical-Grade Stainless Steel: Corrosion Resistance and Novel Techniques", *Journal of Materials Research and Technology*, vol. 29, p. 2788-2798, 202 <https://doi.org/10.1016/j.jmrt.2024.01.1240>
- [5] S. Rossi, S. Leso, & M. Calovi, "Study of the Corrosion Behavior of Stainless Steel in Food Industry", *Material* vol. 17, no. 7, pp. 1617, 2024. <https://doi.org/10.3390/ma17071617>
- [6] J. Gubicza, K. Mukhtarova, & M. Kawasaki, "Nanostructuring of Additively Manufactured 316L Stainless Steel Using High-Pressure Torsion Technique: An X-ray Line Profile Analysis Study", *Materials*, vol. 17, no. 2, pp. 45 2024. <https://doi.org/10.3390/ma17020454>
- [7] H. Fukuyama, H. HIGASHI, & H. Yamano, "Normal Spectral Emissivity, Specific Heat Capacity, and Therm Conductivity of Type 316 Austenitic Stainless Steel Containing up to 10 Mass% B4C in a Liquid State", *Journal Nuclear Materials*, vol. 568, pp. 153865, 2022. <https://doi.org/10.1016/j.jnucmat.2022.153865>
- [8] M. Malek, M. Grabowski, & S. Skoczypiec, "Selected Aspects of the Design of Special Monolithic Carbide Millir Cutters for Austenitic Steels", *Technical Transactions*, vol. 2023, no. 1, pp. 1-11, 202 <https://doi.org/10.37705/techtrans.e2023017>
- [9] M. Grabowski, M. Malek, R. Teimouri, & S. Skoczypiec, "Effect of Cutting-Edge Geometry on the Machinability of 316L Austenitic Steel", *Advances in Science and Technology Research Journal*, vol. 18, no. 1, pp. 110-117, 202 <https://doi.org/10.12913/22998624/177031>
- [10] M. Malekan, K. Madsen, J. Airao, C. Ilvig, & R. Aghababaei, "Numerical Assessment of Tool Geometry for Improving Productivity in Milling Stainless Steel 316 L", *The International Journal of Advanced Manufacturing Technology*, vol. 136, no. 7-8, pp. 3451-3463, 2025. <https://doi.org/10.1007/s00170-025-15061-5>
- [11] S. Yüksel, T. ŞİRİN, M. Ay, M. Uçar, & M. Kurt, "A Study on End Mill Tool Geometry Parameters for End Milling of 316L: Finite Element Analysis and Response Surface Methodology Optimization based on Resultant Cutting Force", *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, vol. 46, no. 8, 202 <https://doi.org/10.1007/s40430-024-05027-1>
- [12] C. Sukkam and S. Chaijitt, "Investigation of Influencing Factors on Surface Quality during Low-Speed Cutting of Steels with a Hardness exceeding 50 HRC for forging Dies", *Engineering, Technology & Applied Science Research* vol. 14, no. 3, pp. 14056-14061, 2024. <https://doi.org/10.48084/etasr.7079>
- [13] M. Malekan, C. Ilvig, & R. Aghababaei, "Effects of Edge Radius and Coating Thickness on the Cutting Performance of AlCrN-Coated Tool", *International Journal of Precision Engineering and Manufacturing*, vol. 25, no. 10, p 2059-2075, 2024. <https://doi.org/10.1007/s12541-024-01074-9>
- [14] A. Rahman, K. Jauhari, M. Huda, N. Untariyati, M. Azka, R. Rusnaldi et al., "Correlation Analysis of Vibratory Signal Frequency with Tool Wear During the Milling Process on Martensitic Stainless Steel Material", *Arabic Journal for Science and Engineering*, vol. 49, no. 8, pp. 10573-10586, 2023. <https://doi.org/10.1007/s13369-020-08397-1>
- [15] Z. Su, W. Lin, Y. Lin, & J. Hung, "Enhancing Milling Surface Finish: The Role of Servo Parameters and Machinability Stability", *Engineering, Technology & Applied Science Research*, vol. 14, no. 5, pp. 16357-16364, 202 <https://doi.org/10.48084/etasr.8132>
- [16] E. Franczyk and M. Malek, "Empirical Study on the Effect of Tungsten Carbide Grain Size on Wear Resistance, Cutting Temperature, Cutting Forces and Surface Finish in the Milling Process of 316L Stainless Steel", *Advances in Science and Technology Research Journal*, vol. 17, no. 6, pp. 367-377, 202 <https://doi.org/10.12913/22998624/175142>
- [17] A. Ali, M. Younas, M. Khan, S. Jaffery, & Z. Khan, "Machinability Performance of Single Coated and Multicoated Carbide Tools During Turning Ti6Al4V Alloy", *International Journal of Precision Engineering and Manufacturing*, vol. 26, no. 1, pp. 43-58, 2024. <https://doi.org/10.1007/s12541-024-01147-9>
- [18] F. Kara, F. Bayraktar, F. Savaş, and O. Özbeş, "Experimental and Statistical Investigation of the Effect of Coating Type on Surface Roughness, Cutting Temperature, Vibration and Noise in Turning of Mold Steel," *Journal of Materials and Manufacturing*, vol. 2, no. 1, pp. 31-43, 2023. <https://doi.org/10.5281/zenodo.8020553>
- [19] L. Sirtuli, F. Lindberg, D. Boing, V. Bushlya, & S. Norgren, "Impact of Cutting Tool and Workpiece Material on Initial Notch Wear in Turning", *Wear*, vol. 570, pp. 205942, 2025. <https://doi.org/10.1016/j.wear.2025.205942>
- [20] C. Kumar, G. Urbikaín, F. Fernandes, A. Rjoub, & L. Lacalle, "Influence of V Concentration in TiAlSiVN Coating on Self-Lubrication, Friction and Tool Wear During Two-Pass Dry Turning of Austenitic Steel 316 L", *Tribology International*, vol. 193, pp. 109355, 2024. <https://doi.org/10.1016/j.triboint.2024.109355>
- [21] J. Abellán-Nebot, C. Vila, & H. Siller, "A Review of the Factors Influencing Surface Roughness in Machining and Their Impact on Sustainability", *Sustainability*, vol. 16, no. 5, pp. 1917, 2024. <https://doi.org/10.3390/su1605191>

[22] F. Silva, R. Martinho, L. Magalhães, F. Fernandes, R. Sales-Contini, L. Durão et al., "A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration", *Journal of Manufacturing and Materials Processing*, vol. 8, no. 3, pp. 115, 2024. <https://doi.org/10.3390/jmmp8030115>

[23] A. Equbal, M. Equbal, M. Equbal, P. Ravindrannair, Z. Khan, I. Badruddin et al., "Evaluating CNC Milling Performance for Machining AISI 316 Stainless Steel with Carbide Cutting Tool Insert", *Materials*, vol. 15, no. 2 pp. 8051, 2022. <https://doi.org/10.3390/ma15228051>

[24] M. Farooq, S. Anwar, R. Ullah, & R. Haber, "Sustainable Machining of Additive Manufactured SS-316 Underpinning Low Carbon Manufacturing Goal", *Journal of Materials Research and Technology*, vol. 24, pp. 229~2318, 2023. <https://doi.org/10.1016/j.jmrt.2023.03.122>

[25] H. Truong, T. Nguyen, & T. Bui, "Evaluating the Impact of Cutting Speed and Feed Rate on Surface Roughness Utilizing a Four-Insert Carbide Face Milling Cutter on CNC Machines", *Proceedings in Technology Transfer*, p 347-356, 2025. https://doi.org/10.1007/978-981-97-7083-0_34

[26] M. Shah and A. Utpat, "Performance Evaluation of Al_2O_3 -based Castor Oil Nanofluid in MQL-Assisted Turning of AISI 316L Stainless Steel", *Journal of Materials Science: Materials in Engineering*, vol. 20, no. 1, 202 <https://doi.org/10.1186/s40712-025-00341-5>

[27] C. Natesha, Y. Shashidhara, H. Amarendra, R. Shetty, S. Harisha, V. Shenoy et al., "Tribological and Morphologic Study of AISI 316L Stainless Steel during Turning under Different Lubrication Conditions", *Lubricants*, vol. 11, n 2, pp. 52, 2023. <https://doi.org/10.3390/lubricants11020052>

[28] M. Danish, M. Gupta, S. Irfan, S. Ghazali, M. Rathore, G. Królczyk et al., "Machine Learning Models for Prediction and Classification of Tool Wear in Sustainable Milling of Additively Manufactured 316 Stainless Steel", *Results Engineering*, vol. 22, pp. 102015, 2024. <https://doi.org/10.1016/j.rineng.2024.102015>

[29] N. Ross, P. Mashinini, R. Rai, & M. Gupta, "Carbon Nano Dots Mixed Rice Bran Oil as a Cutting Fluid for Enhanced Lubrication/Cooling in Milling of Additively Manufactured 316 Stainless Steel", *Journal of Molecular Liquids*, vol. 391, pp. 123200, 2023. <https://doi.org/10.1016/j.molliq.2023.123200>

[30] Y. Asmara, J. Raman, S. Suparjo, F. Bahfie, & C. Yap "Empirical Study of the Effect of Nanocoolant Particles on Corrosion Rate of 316 Stainless Steel", *International Journal of Corrosion*, vol. 2024, no. 1, 202 <https://doi.org/10.1155/2024/5577674>

[31] M. Guimaraes, V. Saciotto, Q. He, J. DePaiva, A. Diniz, & S. Veldhuis, "Optimizing Machining Efficiency in High-Speed Milling of Super Duplex Stainless Steel with SiAlON Ceramic Inserts", *Machines*, vol. 12, no. 5, pp. 34, 2024. <https://doi.org/10.3390/machines12050349>

[32] R. Kadi, S. Dundur, D. Goudar, & J. Haider, "Applying Multi-Response Optimization for Sustainable Machining of 316 Stainless Steel with Coconut Oil-Assisted Minimum Quantity Lubrication", *Tribology - Materials, Surfaces Interfaces*, vol. 17, no. 1, pp. 48-61, 2023. <https://doi.org/10.1080/17515831.2023.2174333>

[33] B. Avcı, Ö. Varal, İ. Dalmış, & S. Yılmaz, "Examination of Surface Hardness and Roughness of AISI 1050 Steel Material in Milling Based on Surface Processing Conditions", *European Journal of Engineering and Applied Sciences*, vol. 7, no. 1, pp. 27-34, 2024. <https://doi.org/10.55581/ejeas.1408250>

[34] T. Machfuroh, A. Lostari, M. Ulum, & E. Pramartaningthyas, "Pengaruh Temperatur Pemanasan Dan Pendinginan Pada Proses Flame Hardening Terhadap Nilai Kekerasan Pada Baja S45c", *Otopro*, vol. 20, no. 1, p 1-6, 2024. <https://doi.org/10.26740/otopro.v20n1.p1-6>

[35] D. Tsamroh, D. Puspitasari, P. Puspitasari, & M. Mustapha, "Microstructure and Hardness Study of Al606 Resulting from Artificial Aging", *Vokasi Unesa Bulletin of Engineering, Technology and Applied Science*, vol. no. 1, pp. 48-56, 2025. <https://doi.org/10.26740/vubeta.v2i1.34984>

[36] M. Kalin, B. Zugelj, M. Lamut, & K. Hamouda, "Elastic and Plastic Deformation of Surface Asperities and The Load-Carrying Mechanisms During the Formation of a Real Contact Area", *Tribology International*, vol. 178, p 108067, 2023. <https://doi.org/10.1016/j.triboint.2022.108067>

[37] Y. Wen, J. Tang, W. Zhou, L. Li, & C. Zhu, "New Analytical Model of Elastic-Plastic Contact for Three-Dimensional Rough Surfaces Considering Interaction of Asperities", *Friction*, vol. 10, no. 2, pp. 217-231, 202 <https://doi.org/10.1007/s40544-020-0419-7>

[38] G. Pintaúde, "Hardness as An Indicator of Material Strength: A Critical Review", *Critical Reviews in Solid State and Materials Sciences*, vol. 48, no. 5, pp. 623-641, 2022. <https://doi.org/10.1080/10408436.2022.2085659>

[39] B. Baltazar-García, D. Baltazar-Zamora, L. Landa-Ruiz, J. Reyes, D. Lozano, C. Méndez et al., "Anticorrosion Efficiency of the AISI 316 SS in Sustainable Ecological Concrete Manufactured with SCBA-SF Exposed Magnesium Sulphate", *European Journal of Engineering and Technology Research*, vol. 8, no. 6, pp. 24-30, 202 <https://doi.org/10.24018/ejeng.2023.8.6.3121>

[40] G. Kónya, J. Takács, I. MISKOLCZI, & Z. Kovács, "Investigation of The Effects of Machining Parameters on Cutting Conditions During Orthogonal Turning of Austenite Stainless Steel", *Production Engineering Archives*, vol. 30, no. 1, pp. 86-93, 2024. <https://doi.org/10.30657/pea.2024.30.8>

[41] P. Jadhav, R. Sahai, S. Solanke, & S. Gawande, "Multi-Objective Optimization of EN19 Steel Milling Parameters using Taguchi, ANOVA, and TOPSIS Approaches", *Journal of Alloys and Metallurgical Systems*, vol. 7, p 100102, 2024. <https://doi.org/10.1016/j.jalmes.2024.100102>

[42] B. Avcı, S. Yılmaz, & İ. Dalmış, "Experimental Optimization of Surface Roughness in Milling of Aisi 304 Stainless Steel on a CNC Vertical Machining Center", *Trakya Üniversitesi Mühendislik Bilimleri Dergisi*, vol. 25, no. 2, p 117-128, 2024. <https://doi.org/10.59314/tujes.1597200>

[43] A. Twardowska, Ł. Ślusarczyk, & M. Kowalski, "Impact of Deposition of the (TiB_x/TiSi_yC_z) x3 Multilayer on M-HSS on the Cutting Force Components and Temperature Generated in the Machined Area during the Milling of 316L Steel", *Materials*, vol. 15, no. 3, pp. 746, 2022. <https://doi.org/10.3390/ma15030746>

- [44] O. Tuyboyov, Z. Muxiddinov, S. Sirojedinov, M. Aliyeva, & N. Urinov, "Optimization of Cutting Depth Parameters to Achieve Stability in the Machining Process", *E3S Web of Conferences*, vol. 627, pp. 04009, 202 <https://doi.org/10.1051/e3sconf/202562704009>
- [45] G. Kónya, B. Csorba, N. Szabó, & Z. Kovács, "The Effects of Cutting Parameters on Cutting Force and Tribologic Properties of Machined Surface Under Dry Turning of AISI304L Austenitic Stainless Steel", *Journal of Manufacturing and Materials Processing*, vol. 8, no. 6, pp. 257, 2024. <https://doi.org/10.3390/jmmp8060257>
- [46] M. Casuso, A. Rubio-Mateos, F. Veiga, & A. Lamikiz, "Influence of Axial Depth of Cut and Tool Position on Surface Quality and Chatter Appearance in Locally Supported Thin Floor Milling", *Materials*, vol. 15, no. 3, p 731, 2022. <https://doi.org/10.3390/ma15030731>
- [47] M. Grabowski, E. Franczyk, M. Malek, & S. Skoczyłec, "Primary Research on Dry Milling of AISI 316L Stainless Steel Using Coated Monolithic Carbide Tools", *Lecture Notes in Mechanical Engineering*, pp. 138-149, 202 https://doi.org/10.1007/978-3-031-56463-5_11
- [48] M. Alsoufi and S. Bawazeer, "Predictive Modeling of Surface Integrity and Material Removal Rate in Computer Numerical Control Machining: Effects of Thermal Conductivity and Hardness", *Materials*, vol. 18, no. 7, pp. 155 2025. <https://doi.org/10.3390/ma18071557>
- [49] O. Şahin and D. Karayel, "Development of an Original Integrated System for Heat Recovery from Coolant in the Machining Process and Investigation of Its Efficiency", *Applied Sciences*, vol. 14, no. 24, pp. 11499, 202 <https://doi.org/10.3390/app142411499>
- [50] I. Espinoza-Torres, I. Martínez-Ramírez, J. Sierra-Hernandez, D. Jáuregui-Vázquez, M. Rivera, F. Torres et al "Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry", *Sensors*, vol. 23, n 21, pp. 8968, 2023. <https://doi.org/10.3390/s23218968>
- [51] E. Ünal and F. Karaca, "Effect of Turning Parameters of AISI 316 Stainless Steel on Temperature and Cutting Force with Finite Element Model", *Thermal Science*, vol. 26, no. Spec. issue 1, pp. 61-66, 202 <https://doi.org/10.2298/tsci22s1061u>

BIOGRAPHIES OF AUTHORS

Muhammad Wildan Syifatillah is a student of D4 Mechanical Engineering Production and Maintenance at the Department of Mechanical Engineering, Politeknik Negeri Malang. He is pursuing studies in mechanical engineering with a concentration in production. His academic interests are centered on production. For further information or to communicate with Muhammad Wildan Syifatillah, he can be contacted at email: wildansyifatillah@gmail.com

Talifatim Machfuroh is a lecturer and researcher in the Department of Mechanical Engineering, Politeknik Negeri Malang, Indonesia. As an academic, Talifatim is active in research and community service, focusing on design, vibration dynamics, engineering materials, and automation. She can be contacted at email: talifatim.machfuroh@polinema.ac.id