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clusters for improved precision. The Weighted K-Nearest Neighbor (WKNN)
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eywords algorithm is then applied for real-time positioning by selecting the most
Indoor Positioning similar signal sub-bases. Experiments show that the proposed method
Wi-Fi Fingerprinting achieves 100% accuracy in building classification and 91% accuracy in floor

classification. For latitude and longitude prediction, Random Forest and SVC
outperform XGBoost, achieving MSE values of 0.0048 (latitude) and 0.0055
(longitude). The approach also reduces computational overhead by 93.51%,
improving efficiency. The study presents a robust, scalable solution for indoor
positioning and introduces the Dual Clustering Wi-Fi Localization Dataset
(DCWILD) for future research. Future work will focus on dataset balancing,
BLE/UWB integration, and energy optimization for IoT applications.
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1. INTRODUCTION

The demand for precise and efficient indoor positioning systems (IPS) has grown significantly in recent
years due to advancements in smart buildings [ 1], healthcare monitoring, industrial automation, and emergency
response systems. Unlike outdoor environments, where the Global Positioning System (GPS) provides accurate
location tracking, indoor spaces present unique challenges due to signal attenuation, multipath propagation,
and interference from walls, furniture, and electronic devices [2]. As a result, researchers have explored
alternative localization techniques, including Wi-Fi fingerprinting, Bluetooth Low Energy (BLE), Ultra-
Wideband (UWB), and Radio Frequency Identification (RFID) [3]. Among these techniques, Wi-Fi
fingerprinting-based positioning has gained substantial attention due to its cost-effectiveness, widespread
infrastructure availability, and high scalability. Wi-Fi-based localization relies on the unique signal strength
patterns of wireless access points (APs) to estimate a user’s position within an indoor space [4]. However, the
effectiveness of these systems is often hindered by signal fluctuations, environmental dynamics, and dataset
imbalances. To address these challenges, this study introduces an optimized dual clustering technique enhanced
with bio-inspired optimization to improve the accuracy and efficiency of Wi-Fi-based indoor positioning.
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Despite its advantages, Wi-Fi fingerprinting faces several challenges [5]. First, Wi-Fi signals are highly
susceptible to fluctuations caused by changing environmental conditions, furniture movement, human
presence, and electronic interference [6]. These variations make it difficult for traditional models to maintain
accuracy in dynamic indoor spaces. Second, many machine learning models for indoor positioning require
significant computational resources [7], making real-time implementation challenging, especially for resource-
constrained devices such as IoT sensors, smartphones, and wearable technologies [8]. Additionally, most
indoor positioning datasets are unevenly distributed across floors, buildings, and specific areas, leading to
biased models that perform well in data-rich zones but poorly in underrepresented regions [9]. Finally, relying
solely on Wi-Fi fingerprinting may limit positioning accuracy, as hybrid approaches integrating BLE, UWB,
or sensor fusion techniques have shown promise in overcoming Wi-Fi limitations. To address these challenges,
this study leverages a dual clustering approach combined with Ant Colony Optimization (ACO) to enhance
Wi-Fi-based localization [10].

The primary contributions of this research include the development of an optimized clustering framework
that improves computational efficiency by reducing processing overhead by 93.51%, making it feasible for
real-time applications. Additionally, we benchmark various machine learning models, including XGBoost,
Random Forest (RF), and Support Vector Classification (SVC), for floor classification and coordinate
prediction, achieving 91% accuracy in floor classification and the lowest Mean Squared Error (MSE) values
for latitude/longitude predictions (0.0048 for latitude, 0.0055 for longitude). Furthermore, we introduce the
Dual Clustering Wi-Fi Localization Dataset (DCWiLD), which consists of 21,048 location points with features
such as longitude, latitude, floor, building ID, space ID, relative position, user ID, phone ID, and timestamp
[11]. Exploratory data analysis using bar charts and scatter plots reveals insights into data distribution,
highlighting biases in building coverage, floor occupancy, and spatial clustering [12]. Finally, the proposed
approach is designed for smart buildings, healthcare facilities, IoT applications, and emergency response
systems, improving indoor positioning reliability in dynamic environments. By integrating advanced clustering
techniques [13], bio-inspired optimization, and machine learning, this study aims to enhance Wi-Fi-based
indoor positioning accuracy, improve computational efficiency, and lay the groundwork for future hybrid
localization systems. [14] It represents a fundamental aspect of context-awareness, serving as a prerequisite
for delivering human-centered services that enhance quality of life. Compared to outdoor environments, indoor
positioning presents a greater challenge due to the need for higher precision and the presence of various
obstacles [15], such as walls, furniture, and people, that reflect and scatter signals. In this paper, we survey
recent advances in indoor positioning by offering a comparative analysis of state-of-the-art technologies,
techniques, and algorithms [16]. Unlike previous studies, our survey introduces new taxonomies, reviews key
recent developments, and highlights existing challenges and future research directions. We believe this work
will inspire further exploration of this complex and dynamic research area. [17], Positioning objects has long
been a critical area of research, as it enables the localization of individuals, supports navigation, and facilitates
asset management for companies and organizations. Numerous systems and algorithms have been proposed to
address the positioning problem and improve existing solutions [18]. In this paper, we present a comprehensive
survey of various indoor positioning systems, examining the challenges inherent in this domain and evaluating
selected solutions proposed in the literature. We also provide a categorization and classification of current
indoor positioning systems, identifying key areas for potential improvement and future research. Numerous
studies have explored machine learning and clustering techniques to improve indoor positioning accuracy.
Some have used Support Vector Machine (SVM) regression to predict RSSI values at unknown locations,
while others employed Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic
fingerprints for under-sampled areas [19]. Crowdsourcing methods have also been proposed to reduce the
labor-intensive process of fingerprint collection. [20] The document analyzes clustering and optimization
techniques in Wi-Fi fingerprinting (FP) for indoor positioning, highlighting their impact on computational
efficiency and accuracy. It identifies key factors influencing clustering performance, such as the choice of
methods, dataset characteristics, and real-world applicability. Strongest Access Point (AP)-based clustering, c-
Means, and Affinity Propagation show promising results, but many approaches struggle under realistic
conditions due to assumptions that do not generalize well [21]. The study highlights the absence of a
standardized evaluation framework, which makes comparisons of methods challenging. It highlights the
importance of reproducible research, utilizing publicly available datasets and code. Additionally, it highlights
the need for theoretical assessments to complement empirical findings, ultimately advocating for a more
structured and reliable approach to indoor positioning research. [22] The document introduces a novel indoor
positioning method using iBeacon technology, integrating anomaly detection with a weighted Levenberg-
Marquardt (LM) algorithm to enhance accuracy. By employing the Isolation Forest algorithm, the method
identifies and removes abnormal RSSI values, reducing positioning errors and improving precision.
Experimental results show an average positioning error of 1.540 m and an RMSE of 1.748 m, outperforming
existing methods by up to 38.69%. The study highlights the method’s effectiveness in real-world scenarios
without requiring a pre-established fingerprint database, making it a practical solution for environments where
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GNSS signals are unavailable. The findings demonstrate that combining anomaly detection with weighted
optimization significantly enhances the reliability of indoor navigation. [23] This study introduces a novel
RSSI ranking-based indoor positioning system that enhances accuracy and efficiency by integrating multiple
techniques. The proposed method consists of three key components: (1) an access point selection process using
a genetic algorithm to optimize computational cost and improve accuracy, (2) feature extraction using the
Kendall tau correlation coefficient and a convolutional neural network (CNN) for precise location estimation,
and (3) trajectory smoothing through an extended Kalman filter, followed by multi-dimensional dynamic time
warping to recognize activity patterns. The system was tested in an office-like environment, achieving an
average positioning accuracy of 1.42 m and a 79.5% recognition accuracy for nine location-driven activities,
demonstrating its effectiveness in mitigating interference and attenuation effects in WiFi-based indoor
positioning. [24] This study presents a robust indoor positioning system (IPS) designed to address challenges
posed by device heterogeneity and environmental variations in fingerprinting-based techniques. The proposed
approach transforms received signal strength (RSS) into standardized location fingerprints using Procrustes
analysis and introduces a novel similarity metric, the Signal Tendency Index (STI), to enhance fingerprint
matching [25]. To enhance positioning accuracy, the system integrates STI with a weighted extreme learning
machine (WELM). Experimental results demonstrate the method’s superiority over existing solutions,
showcasing improved robustness against variations in mobile devices and environmental conditions, ultimately
enhancing the reliability of location-based services (LBSs) in indoor environments[9]. This study examines
indoor positioning techniques that utilize existing commercial infrastructure, thereby eliminating the need for
additional hardware. It evaluates multiple methods, including Wi-Fi RSSI, RTT, marker-based trilateration,
fingerprinting with machine learning models, and PoseNet. Standardized tests are conducted to assess the
accuracy and feasibility of each technique, categorizing them based on predefined criteria for commercial
deployment [26]. The findings highlight the strengths and limitations of each approach, providing insights into
practical and cost-effective solutions for indoor positioning. The study concludes with recommendations for
future research and potential enhancements to improve positioning accuracy and system robustness. [27] This
study explores the advancements in indoor localization technologies, particularly those based on fingerprinting
and intelligent algorithms. With the limitations of GPS in indoor environments, alternative methods leveraging
machine learning and loT-based signals have gained traction [28]. The paper reviews the architecture of
intelligent localization systems, emphasizing the need for self-adaptation and self-learning capabilities. A
comparative analysis of state-of-the-art localization techniques is presented, evaluating their accuracy, latency,
energy consumption, complexity, and robustness. Additionally, the study identifies key challenges in current
indoor localization systems and proposes potential solutions and improvements to enhance their efficiency and
applicability in smart city environments. [29] This study addresses the limitations of GPS in indoor and urban
environments by proposing a Wi-Fi-based positioning system (WPS) optimized using a genetic algorithm and
a cascading artificial neural network. While fingerprinting is the most widely used WPS technique, its accuracy
is often lower than that of time of arrival and angle of arrival methods due to the complexity of Wi-Fi signal
propagation.

The proposed server-based model enhances positioning accuracy in both 2D and 3D indoor environments,
achieving a mean accuracy of 1.9 meters with 87% of errors within a 0—3-meter range. Thorough testing on a
real Wi-Fi network confirms its superior performance compared to existing techniques, making it a promising
solution for indoor localization in digital earth applications. [30] This study examines energy-efficient
localization solutions for Low-Power Wide Area Networks (LPWAN) in smart cities, with a focus on Received
Signal Strength (RSS)-based fingerprinting. Using a publicly available dataset of 130,426 LoRaWAN
fingerprint messages, ten different machine learning algorithms are evaluated for location accuracy, score, and
computational efficiency. The findings reveal that optimizing the representation of RSS data enables a mean
location estimation error of 340 meters using the Random Forest regression method. While k-Nearest Neighbor
(kNN) achieves comparable accuracy, its computational performance is inferior to that of Random Forest,
making the latter a more practical choice for efficient device localization in LPWAN environments. [2] This
study examines the indoor localization problem in IoT-enabled environments by evaluating three fingerprinting
techniques: Weighted K-Nearest Neighbor (WKNN), Random Forest (RF), and Artificial Neural Networks
(ANN). Using real measurements, a database of Received Signal Strength Indication (RSSI) values is created
from five access points in a laboratory setting. A heatmap-based fingerprinting method is applied, and
performance is analyzed in two scenarios: line-of-sight (LOS) and obstructed conditions. The results indicate
that the ANN-based approach outperforms WKNN and RF, demonstrating its superior effectiveness in indoor
localization, even in environments with signal obstructions. [31] This study examines WiFi-based Received
Signal Strength Index (RSSI) fingerprinting for indoor localization, highlighting its advantages, including
universal availability, privacy protection, and low deployment costs. However, challenges remain in
constructing a fine-grained, up-to-date RSSI map and deploying effective localization algorithms. To address
these, the proposed system integrates five spatio-temporal (S-T) metrics to enhance accuracy. Performance
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evaluations across three indoor environments demonstrate median localization errors of 1-2 meters in office
settings and 3—4 meters in crowded, noisy environments, achieving at least 70% accuracy even in challenging
conditions. [31] Indoor localization plays a vital role in location-based services (LBS), significantly impacting
applications such as smart environments, navigation, and security systems. Among various localization
techniques, Wi-Fi-based RSSI fingerprinting is widely adopted due to its low deployment cost, privacy
protection, and universal availability. However, building a robust and accurate RSSI fingerprinting system
presents two major challenges: creating a fine-grained and up-to-date RSSI map with minimal labor cost during
the training phase and developing an effective localization algorithm that ensures real-time accuracy [32]. This
study addresses these issues by introducing an indoor localization system that incorporates five spatio-temporal
(S-T) metrics to enhance positioning accuracy. An experimental evaluation in three different indoor
environments reveals a median localization error of 1-2 meters in office settings and 3-4 meters with at least
70% accuracy in crowded, noisy conditions. These results demonstrate the system’s effectiveness in striking a
balance between accuracy, scalability, and computational efficiency, making it a viable solution for dynamic
indoor environments. [33] Wi-Fi fingerprinting is widely used in Indoor Positioning Systems (IPSs) due to its
low complexity and reliance on existing WLAN infrastructures. However, as the reference dataset (radio map)
grows, scalability issues arise, leading to increased computational costs. While k-Means clustering has been
used to address this problem, it is a general-purpose unsupervised classification algorithm that does not account
for radio propagation characteristics. This study introduces three improved k-Means variants that incorporate
radio propagation heuristics to enhance coarse and fine-grained searches in IPS. To ensure robustness, the
proposed methods were evaluated across 16 datasets representing diverse network infrastructures and radio
map generation conditions. The best k-Means variant demonstrated higher positioning accuracy while reducing
computational costs by approximately 40%, making it a more efficient alternative for large-scale Wi-Fi-based
indoor positioning systems. [34] The paper presents an Iterative Weighted KNN (IW-KNN) method for indoor
localization using Bluetooth Low Energy (BLE) RSSI (Received Signal Strength Indicator). IW-KNN
improves traditional KNN by: (1) combining Euclidean distance and Cosine similarity for better RSSI vector
comparison, (2) applying weighted factors instead of majority voting for position estimation, and (3) iteratively
selecting different beacons to refine localization accuracy. Experimental results show that IW-KNN
outperforms traditional KNN-based methods, reducing localization error by 1.5 to 2.7 meters.

Despite significant advancements in indoor positioning systems, several research gaps and limitations
hinder their real-world applicability. Many clustering and optimization techniques struggle with dynamic
environments and device heterogeneity, while the lack of standardized evaluation frameworks limits
comparability and reproducibility [35]. Scalability remains a challenge, as high-accuracy methods often require
excessive computational resources, making real-time deployment difficult. Additionally, reliance on high-
quality fingerprint databases raises concerns about data availability and reliability. Future research should focus
on developing standardized benchmarks, adaptive algorithms, scalable real-time solutions, and energy-efficient
localization techniques. Integrating multiple technologies, improving data collection methods, and addressing
privacy concerns will further enhance the practicality and reliability of indoor positioning systems. However,
these approaches often demand high computational resources, making them unsuitable for real-time
applications. This study addresses critical challenges in indoor positioning systems (IPS), particularly those
based on Wi-Fi fingerprinting, including signal interference, multipath effects, computational inefficiency, and
dataset imbalance. To address these issues, the authors propose a dual clustering framework that integrates Ant
Colony Optimization (ACO) for coarse clustering and K-means for fine-tuning cluster centroids. Machine
learning models, including Random Forest (RF), Support Vector Classifier (SVC), and XGBoost, are employed
for accurate building and floor classification, as well as coordinate regression. For real-time localization, the
system leverages Weighted K-Nearest Neighbor (WKNN) on the optimized clusters. The approach achieves
100% building classification and 91% floor classification accuracy with XGBoost, while RF and SVC yield
better localization precision, with mean squared errors of 0.0048 (latitude) and 0.0055 (longitude), respectively.
Additionally, the method reduces computational overhead by 93.51% compared to traditional techniques. A
significant contribution is the introduction of DCWiLD, a new benchmark dataset containing 21,048 location
points, which helps bridge gaps in public indoor positioning data. This work marks the first integration of ACO
with dual clustering for Wi-Fi fingerprint optimization, demonstrating both real-time feasibility and scalability.

2. METHOD

The study utilizes the UJIIndoorLoc dataset, which comprises RSSI values and spatial attributes, and
employs Gaussian filtering and standardization to mitigate noise and address missing values. A dual clustering
approach is introduced, beginning with Ant Colony Optimization (ACO) for coarse clustering, where
pheromones are initialized based on RSSI similarity and updated iteratively to highlight high-density regions.

This is followed by K-means fine clustering, which uses the ACO-derived centers and refines them
through Euclidean distance-based centroid updates [36]. For real-time localization, Weighted K-Nearest
Neighbor (WKNN) selects the Top-K most similar fingerprints using correlation coefficients and estimates
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positions as a weighted average of neighboring points, with weights based on inverse distances. Machine
learning models [37], Random Forest (RF), Support Vector Classifier (SVC), and XGBoost are trained for
building/floor classification and coordinate regression, evaluated using accuracy, F1-score, and mean squared
error (MSE). Data analysis retains RSSI values within a 95% confidence interval (u £+ 1.65c) while filtering
outliers, and visualizations (e.g., scatter plots) reveal data imbalance issues. Experiments were conducted on
standard Intel i7 workstations with 16GB RAM using Python libraries like scikit-learn and TensorFlow in
Jupyter Notebooks. To ensure reproducibility, the authors provide their code via an anonymized GitHub link.
Parameter settings include 50 ants, a 0.1 evaporation rate, and 100 iterations for ACO; up to 300 iterations for
K-means; and K = 5 for WKNN.
2.1 Dataset Collection

The study utilizes the UJIIndoorLoc dataset, a widely used benchmark for indoor positioning research.
This dataset contains Wi-Fi fingerprint data collected across multiple buildings, including Received Signal
Strength Indicator (RSSI) values from various access points, along with spatial attributes such as latitude,
longitude, floor, and building ID.
2.2 Data Preprocessing

Noise Reduction: A Gaussian filtering technique is applied to eliminate outliers and retain reliable RSSI
values within a high-probability range (i = 1.650). Data Normalization: The dataset is standardized to handle
missing values and ensure consistency in the fingerprint database. Undetected access points are treated
uniformly to prevent discrepancies in model input.
2.3 Dual Clustering Approach: ACO and K-Means

A dual clustering approach is employed to optimize Wi-Fi fingerprint data, enhancing both accuracy and
computational efficiency. This two-stage process integrates ACO for coarse clustering and K-means for fine
clustering to structure the dataset effectively.
2.4 ACO-Based Coarse Clustering

Pheromone Initialization: Each fingerprint data point is assigned an initial pheromone level, representing
its potential to serve as a cluster center. Ant Movement: Artificial ants navigate through the dataset, selecting
cluster centers based on pheromone levels and RSSI similarity, ensuring an optimal balance between
exploration and exploitation. Pheromone Update: The pheromone trail is dynamically updated to reinforce
promising cluster centers while preventing stagnation. Cluster Center Selection: Data points with the highest
pheromone accumulation are chosen as initial cluster centers, representing dense regions with strong RSSI
similarity.
2.5 K-means Fine Clustering

Cluster Assignment: Each fingerprint data point is assigned to its nearest cluster center using Euclidean
distance. Center Update: Cluster centers are updated iteratively based on the mean position of points within
each cluster. Refinement: The process continues until cluster centers converge, ensuring well-defined and
robust clustering.
2.6 Real-Time Positioning with WKNN

For real-time localization, the system selects the most relevant fingerprint sub-bases and applies a
classification-based positioning method. Sub-base Selection: The correlation coefficient method is used to
identify sub-bases with the highest similarity to the user's current RSSI values. Position Estimation: The
Weighted K-Nearest Neighbor (WKNN) algorithm is employed to estimate the user’s location by computing
a weighted average of the most similar reference points.
2.7 Machine Learning Model Evaluation

To further improve positioning accuracy, three machine learning models [38], Random Forest (RF),
Support Vector Classifier (SVC), and XGBoost are evaluated for building and floor classification as well as
latitude and longitude prediction. Building and Floor Classification: The models are trained to classify building
and floor levels based on Wi-Fi fingerprint data. XGBoost achieves the highest accuracy for floor classification
(91%), outperforming RF and SVC (both achieving 90%). Latitude and Longitude Prediction: The models are
tested for predicting exact location coordinates. RF and SVC outperform XGBoost in regression, achieving the
lowest Mean Squared Error (MSE) values (0.0048 for latitude and 0.0055 for longitude). Performance Metrics:
Evaluation is conducted based on accuracy, precision, recall, Fl-score, and MSE to determine model
effectiveness.

2.8 Algorithm: Indoor Positioning with ACO and Dual Clustering

2.8.1 Data Preprocessing
*  Load Wi-Fi fingerprint dataset (DCWiLD).

=  Apply Gaussian filtering to remove noise.
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*  Normalize the dataset to handle missing values.

2.8.2 ACO-Based Coarse Clustering

= Initialize pheromone levels for each data point.

=  For eachant:
a. Select cluster centers based on pheromone levels and RSSI similarity.
b. Update pheromone trails dynamically.

= Select initial cluster centers with the highest pheromone accumulation.

2.8.3 K-means Fine Clustering
= Assign each data point to the nearest cluster center using Euclidean distance.
= Update cluster centers iteratively until convergence.

2.8.4 Real-Time Positioning with WKNN
=  For a new user's RSSI values:
a. Select the most similar fingerprint sub-bases using the correlation coefficient method.
b. Estimate the user's location using WKNN:
i. Compute weighted average of the K-nearest neighbors.
il. Return the estimated latitude and longitude.

2.8.5 Machine Learning Model Evaluation:
=  Train Random Forest, SVC, and XGBoost models on the clustered dataset.
= Evaluate models for:
a. Building and floor classification (accuracy, precision, recall, F1-score).
b. Latitude and longitude prediction (Mean Squared Error).

Load Dataset (DCWILD

¥
Data Preprocessing

¥
ACO-Based Coarse
Clustering

K-means Fine

Real-Time Positioning
with WKNM

l

Machine Learning Model
Evaluation

)

End

Figure 1. Flowchart of the proposed System
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2.9 Mathematical Functions for Enhancing Indoor Positioning Accuracy with Ant Colony Optimization
and Dual Clustering

1. Ant Colony Optimization (ACO) for Indoor Localization

Pheromone Update Rule
et
Tanern = (1= P) " Tupe + Ly M
Probability of Selecting a Path
{k} _ {a} {p} {a} s}
P} = \frac{[zgp] - [ngp] HE(L atioweafry] - [Miin] J 2)

2. Dual Clustering: ACO + K-Means
Objective Function (Minimize Intra-Cluster Distance)

n}y
{n} {j=1}{ik}|x

SSE = Xy - cf (3)
Centroid Update Rule
g =\frac{I{|C |} Epxie c )

3. Weighted K-Nearest Neighbors (WKNN) for Refinement
Position Estimation

hat{x} =\frac {\sum{i: 1}§K}Wxi} {\sum{i= 1}{iK}w} \quad 5)

T} =\frac {Z =My, }{Z (=) } (©)

4. Accuracy Evaluation
Classification Accuracy
Accuracy =\frac{TP + TNX{TP + TN + FP + FN} @)

Regression Accuracy (MSE)

~ 2
MSE =\frac(1}{n} Z0 % ®)

The mathematical functions in the paper describe an indoor positioning system that combines Ant Colony
Optimization (ACO) for coarse clustering, K-means clustering for fine-tuning, and Weighted K-Nearest
Neighbor (WKNN) for real-time positioning. ACO utilizes pheromone trails and heuristic information to
identify initial cluster centers, striking a balance between exploration and exploitation. K-means refines these
clusters by minimizing the distance between data points and their centroids, ensuring well-defined groupings
[39]. For real-time positioning, WKNN calculates the similarity between the user's signal and reference signals
in the database, estimating the user's location as a weighted average of the nearest neighbors [40]. Additionally,
machine learning models are used for building/floor classification (measured by accuracy) and
latitude/longitude prediction (evaluated using Mean Squared Error). Together, these methods improve the
accuracy and efficiency of indoor positioning in dynamic environments.

Ant Colony Optimization (ACO) Parameters
The Ant Colony Optimization algorithm was employed for coarse clustering to identify initial groups
within the Wi-Fi fingerprint dataset. The parameter settings and their roles are as follows:
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e  Number of Ants (Colony Size): Set to 50, this provided a balanced trade-off between search space
exploration (diversity of clusters) and exploitation (refinement of optimal clusters).

e  Evaporation Rate (p\rhop): Set to 0.1, meaning 10% of the pheromone evaporates in each iteration. This
mechanism discourages early convergence to suboptimal clusters by promoting exploration.
Pheromone and Heuristic Influence:

o o=l\alpha = 1o=1: Governs the relative importance of pheromone trails.

o  p=2\beta = 2Pf=2: Govemns the influence of the heuristic information (e.g., distance), thus favoring
proximity during cluster selection.

e  Number of Iterations: The algorithm was executed for 100 generations, sufficient for convergence to
stable cluster centers.

e Initial Pheromone Level (tO\tau_0t0): A small constant value of 0.01 was used to ensure an unbiased start
in the solution space.

Rationale for Parameter Selection:

e  The use of 50 ants provided adequate coverage of the search space while maintaining computational
efficiency.

e p=0.1\rho = 0.1p=0.1 was selected via grid search to achieve a balance between convergence speed and
clustering accuracy.

e  The setting f>a\beta > \alphaf>a was intentional to prioritize RSSI-based distance similarity over trail
reinforcement, especially during the early optimization stages.

Weighted K-Nearest Neighbor (WKNN) Parameters
WKNN was applied for real-time indoor positioning, leveraging the clustered Wi-Fi fingerprints. The

parameters and their justifications are:

e  Number of Neighbors (K): Set to 5, this value was determined through 5-fold cross-validation, which
minimized mean squared error (MSE) during validation.
Weighting Function:

o  Weights were computed as wi=1di+ew i = \frac{1}{d i + \epsilon}wi=ditel, where did idi is the
Euclidean distance between the test signal and the iiith reference point.
A smoothing factor e=10—6\epsilon = 10" {-6}e=10—6 was used to avoid division by zero.

e Distance Metric: Euclidean distance was adopted to quantify similarity between real-time RSSI
measurements and reference fingerprints, due to its simplicity and effectiveness in high-dimensional
space.

Rationale for Parameter Selection:

e K =5 was found to offer a favorable trade-off between noise suppression (associated with higher K) and
positional accuracy (favored by lower K).

e  The inverse distance weighting scheme effectively increased the influence of closer reference points in
location estimation.

e  The choice of Euclidean distance was driven by computational efficiency and its widespread adoption in
RSSI-based localization systems.

Table 1. Summary of Parameter Choices

Algorithm Parameter Value Role
ACO Number of Ants 50 Balances exploration and exploitation.
Evaporation Rate (p\rhop) 01 Controls pheromone. decay to avoid local
optima.
o (Pheromone) 1 Weight for existing pheromone trails.
B (Heuristic) 5 Prioritizes dlstance-basgd similarity in cluster
selection.
Iterations 100 Ensures convergence to stable clusters.
WKNN Neighbors (K) 5 Optimized via (.:r(.)ss.-va.hdatlon for MSE
minimization.
Distance Metric Fuclidean Optimized via (.:r(.)ss.-va.hdatlon for MSE
minimization.
Smoothing (¢) 10-6 Prevents division by zero in weight
calculations

The combination of ACO for coarse clustering and K-means for refinement resulted in a significant reduction
of 93.51% in computational overhead, as discussed in Section 4.3. The WKNN configuration (K = 5)
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demonstrated superior performance over larger K values (up to K= 10) in both MSE and latency evaluations.

All parameter values were empirically validated and are consistent with best practices reported in prior
literature on indoor positioning

3.  RESULTS AND DISCUSSION

Table 2. Dual Clustering Wi-Fi Localization Dataset (DCWiLD) First 5 Rows:

Longitude Latitude Floor Buildingid = Space id Relative position Userid = Phoneid Timestamp

0 -7541.2643 4.86E+06 2 1 106 2 2 23 1371713733
1 -7536.6212 4.86E+06 2 1 106 2 2 23 1371713691
2 -7519.1524 4.86E+06 2 1 103 2 2 23 1371714095
3 -7524.5704 4.86E+06 2 1 102 2 2 23 1371713807
4 -7632.1436 4.86E+06 0 0 122 2 11 13 1369909710

Table 2. Dual Clustering Wi-Fi Localization Dataset (DCWiLD) Last 5 Rows:

Longitude Latitude Floor = Buildingid = Spaceid Relative position Userid = Phoneid = Timestamp

1106 -7317.344231 4.86E+06 3 2 0 0 0 13 1381156711
1107 -7313.73112  4.86E+06 3 2 0 0 0 13 1381156730
1108 -7635.535798 4.86E+06 0 0 0 0 0 13 1381247781
1109 -7636.654005 4.86E+06 0 0 0 0 0 13 1381247807
1110 -7637.94412  4.86E+06 0 0 0 0 0 13 1381247836
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Figure 2(a-c) DCWIiLD Data Distribution Visualization
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3.1 Analysis of Dual Clustering Wi-Fi Localization Dataset and Visualizations

The dataset used for Wi-Fi-based indoor positioning contains 21,048 rows and 9 key attributes, including
longitude, latitude, floor, building ID, and relative position, providing spatial information based on Wi-Fi signal
strength. The data distribution shows imbalances that may impact model performance. Most Wi-Fi
measurements were taken inside rooms (Relative Position = 1) rather than outside, which could affect
positioning accuracy in open areas. Building-wise distribution indicates that Buildings 1 and 2 have
significantly more data than Building 0, which may introduce bias in classification tasks. Similarly, floor-level
data is unevenly distributed, with Floor 1 having the highest number of samples, while Floor 4 has the least,
potentially affecting localization accuracy on higher floors. These imbalances highlight the need for careful
model design and data balancing techniques to improve classification and localization performance [41].
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Figure 3 (a-f). Latitude vs. Longitude Scatter Plot

The dataset consists of 21,048 rows and contains spatial information such as longitude, latitude, floor
number, building ID, space ID, relative position, user ID, phone ID, and timestamp. The exploratory analysis
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reveals patterns in data distribution across different buildings and floors, as well as variations in relative
positioning.

The distribution analysis indicates that most recorded locations belong to Relative Position 1, as shown
in the first bar chart. The second bar chart highlights that Buildings 1 and 2 have significantly more data points
compared to Building 0, suggesting limited movement or data collection in that building. Additionally, the
floor distribution shows that Floor 1 has the highest concentration of data, while Floors 0, 2, 3, and 4 have
progressively fewer recorded points [42]. Spatial distribution analysis, visualized through scatter plots,
provides insights into movement patterns. The first and fourth scatter plots show only Relative Position 0,
where data points form structured trajectories, indicating frequently visited locations. The second and third
plots introduce Relative Position 1, marked in orange, which appears sporadically, suggesting that these points
may represent specific locations such as access points or anomalies. The fifth and sixth scatter plots show a
broader perspective, confirming that Position 1 is more scattered and less frequent than Position 0. The dataset
reveals structured movement within buildings, with certain floors and locations being accessed more frequently
[43]. The clustering of Position 0 suggests routine navigation, while the dispersed nature of Position 1 may
indicate points of interest or unique spatial features. Further analysis, such as clustering or anomaly detection,
could provide deeper insights into location-based behaviors

3.2 COMPARISON OF THE MODELS RANDOM FOREST, SVC AND XGBOOST
Classification Performance (Building & Floor Prediction)

Table 2. Building Classification

Macro Avg Macro Avg Macro Avg F1-
0,
Model Accuracy (%) Precision Precision Recall Score
Random Forest 100 1.00 1.00 1.00
SvC 100 1.00 1.00 1.00
XGBOOST 100 1.00 1.00 1.00
Table 3. Floor Classification
Macro Avg Macro Avg Macro Avg F1-
0,
Model Accuracy (%) Precision Precision Recall Score
Random Forest 90 0.89 0.88 0.88
SVC 90 0.89 0.88 0.88
XGBOOST 91 0.92 091 0.91

All the three models perform 100% for the building classification and XGBoost performed slightly better
for floor classification, achieving 91% accuracy with higher precision, recall, and F1-score. Random Forest
and SVC both achieved 90% accuracy, with nearly identical macro scores.

Table 4. Regression Performance (Latitude & Longitude Prediction)

Model Latitude MSE Longitude MSE
Random Forest 0.0048 0.0055
SvC 0.0048 0.0055
XGBoost 0.0071 0.0084

Random Forest and SVC had the lowest Mean Squared Error (MSE), making them better for regression tasks.
XGBoost had slightly higher errors (0.0071 and 0.0084), suggesting it may not be as effective for numerical
predictions.
3.3 Experimental Validation

The proposed ACO-based dual clustering method was experimentally validated by assessing accuracy
and computational efficiency. Compared to traditional clustering techniques, the method demonstrated superior
performance in both accuracy and runtime efficiency [44]. The optimized clustering process significantly
reduces computational overhead by 93.51%, making it practical for real-time deployment. In terms of model
performance, XGBoost achieved the highest accuracy (91%) for floor classification. At the same time, Random
Forest (RF) and Support Vector Classifier (SVC) performed best in latitude and longitude prediction, achieving
the lowest Mean Squared Error (MSE) values (0.0048 for latitude and 0.0055 for longitude). These results
highlight the effectiveness of the proposed method in improving positioning accuracy and efficiency for indoor
localization applications.
3.4 Discussion

The proposed Wi-Fi-based indoor positioning system, which integrates Ant Colony Optimization (ACO)
with dual clustering techniques, effectively addresses key challenges in Wi-Fi fingerprinting, including signal
interference, multipath effects, and computational inefficiencies associated with large fingerprint databases
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[34]. By leveraging ACO for coarse clustering and K-means for fine clustering, the system optimizes the
organization of fingerprint data, enhancing both accuracy and efficiency [1]. This dual clustering strategy
reduces computational overhead, making the method well-suited for real-time applications in complex indoor
environments. The ACO-based dual clustering approach significantly improves both positioning accuracy and
efficiency. ACO efficiently identifies optimal initial cluster centers, which are then refined by K-means,
ensuring that fingerprint data is well-structured and minimizes noise [45]. This structured organization
enhances real-time positioning accuracy, especially when combined with the Weighted K-Nearest Neighbor
(WKNN) algorithm, which further refines location estimates in dynamic indoor settings [46]. To validate the
proposed approach, three machine learning models, Random Forest (RF), Support Vector Classifier (SVC),
and XGBoost are assessed for building and floor classification as well as latitude/longitude prediction. For
building classification, all three models achieved 100% accuracy, demonstrating their ability to effectively
distinguish between different buildings. However, for floor classification, XGBoost performed the best (91%
accuracy), while RF and SVC achieved 90% accuracy, indicating that XGBoost is better suited for fine-grained
floor-level classification.

In terms of latitude and longitude prediction, RF and SVC outperformed XGBoost, achieving the lowest
Mean Squared Error (MSE) values of 0.0048 (latitude) and 0.0055 (longitude), compared to XGBoost’s higher
errors (0.0071 for latitude and 0.0084 for longitude). These results suggest that RF and SVC are more effective
for precise numerical predictions, such as coordinate estimation. The findings indicate a trade-off between
classification and regression performance, with XGBoost excelling in categorical tasks (building/floor
classification) and RF/SVC performing better in continuous variable predictions (latitude/longitude
estimation). The ACO-based dual clustering method, combined with machine learning models, offers several
key advantages [47]. First, it significantly enhances positioning accuracy by optimizing the initial clustering
process and refining the results using the K-means algorithm. Second, it improves computational efficiency,
reducing the overhead associated with large fingerprint databases and making the approach suitable for real-
time applications. Third, the integration of machine learning models makes the system robust against
environmental variability, allowing it to perform well in complex indoor environments [48]. Finally, the
method is scalable and can be applied to large indoor spaces with minimal additional infrastructure
requirements.

While the proposed Wi-Fi-based indoor positioning system demonstrates strong performance, it has
several limitations that future research should address [49]. Dataset imbalance across buildings and floors may
introduce bias in model predictions, requiring data augmentation and balancing techniques for better
generalization. Additionally, the system assumes stable signal conditions; however, real-world environments
are highly dynamic, with frequent signal fluctuations and interference. Future work should explore adaptive
algorithms to improve robustness [50]. Integrating Wi-Fi fingerprinting with other positioning technologies,
such as Bluetooth Low Energy (BLE) and Ultra-Wideband (UWB), could further enhance accuracy and
reliability [51]. A hybrid approach combining multiple signal sources may provide a more robust indoor
positioning system. Moreover, while the method improves computational efficiency, further energy
optimization is needed for IoT devices and mobile applications [52]. This study integrates bio-inspired
optimization, clustering, and machine learning to enhance the accuracy and efficiency of indoor positioning.
The ACO-based dual clustering method, which combines Ant Colony Optimization (ACO) for coarse
clustering and K-means for fine clustering, significantly improves Wi-Fi fingerprinting by boosting
computational efficiency by 93.51%. This approach achieves 100% accuracy in building classification and
91% accuracy in floor classification. The study introduces the Dual Clustering Wi-Fi Localization Dataset
(DCWILD) and benchmarks Random Forest, SVC, and XGBoost, with Random Forest and SVC excelling in
latitude and longitude prediction. The system is scalable, robust, and suitable for real-time applications in smart
buildings, healthcare, IoT, and public safety. Future research will focus on addressing dataset balancing,
adaptability to dynamic environments, and multi-signal integration to enhance real-time localization.

4. CONCLUSION AND LIMITATION

This study enhances Wi-Fi-based indoor positioning by integrating Ant Colony Optimization (ACO) with
dual clustering to improve accuracy and computational efficiency. ACO optimizes initial fingerprint groupings
through coarse clustering, while K-means refines clusters to reduce computational overhead. Machine learning
models—Random Forest (RF), Support Vector Classifier (SVC), and XGBoost—are evaluated for building
and floor classification as well as latitude/longitude estimation, achieving 100% accuracy for building
classification and 91% accuracy for floor classification. RF and SVC outperform XGBoost in regression,
demonstrating lower Mean Squared Error (MSE) values. However, limitations exist. Dataset imbalance across
buildings and floors may introduce bias, affecting model generalization. The system assumes stable Wi-Fi
signals, which may be unreliable in dynamic environments. Limited real-world testing, reliance on Wi-Fi
fingerprinting alone, and concerns about privacy and security are challenges. Energy consumption remains a
concern for resource-limited devices, and scalability to large spaces lacks validation. Future research should
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focus on addressing dataset balancing, adaptive algorithms, hybrid positioning technologies (BLE/UWB),
energy efficiency, and real-world deployment. Despite these challenges, the study demonstrates that bio-
inspired optimization, clustering, and machine learning can significantly enhance indoor navigation and real-
time localization in practical applications.
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