
Vokasi Unesa Bulletin of Engineering, Technology and Applied Science (VUBETA) 

https://journal.unesa.ac.id/index.php/vubeta  

Vol. 2, No. 3, 2025, pp. 516~530 DOI: 10.26740/vubeta.v2i3.39452 

ISSN: 3064-0768 

 

 

 

*Corresponding Author 

Email: godfrey.oise@wellspringuniversity.edu.ng 

 

Enhancing Indoor Positioning Accuracy with Ant Colony 

Optimization and Dual Clustering 
 

Oise Godfrey Perfectson1*
, Nwabuokei Onyemaechi Clement2, Ozobialu chukwuma Emmanuel3, Ejenarhome 

Otega Prosper5, Atake Onoriode Michael5, Unuigbokhai Nkem Belinda6, 

Akilo Babalola Eyitemi7 
*1,6,7 Department of Computing, Wellspring University, Edo State, Nigeria  

2 Department of Computer Science, Delta State College of Education Mosogar, Nigeria 
3University Okada, Edo State, Nigeria 

4 Department of Computer science, Delta state university, Abraka, Nigeria 
5 Western Delta University, Oghara, Nigeria 

 

 

Article Info  ABSTRACT 

Article history: 

Received March 23, 2025 

Revised April 21, 2025 

Accepted August 10, 2025 

 

 
Indoor positioning systems are crucial for public safety, healthcare, and IoT, 
but Wi-Fi fingerprinting faces challenges such as signal interference, 
multipath effects, and high computational costs. These issues reduce 
positioning accuracy and make real-time localization difficult. This paper 
introduces an Ant Colony Optimization (ACO)-based dual clustering method 
to enhance Wi-Fi fingerprinting accuracy and efficiency. ACO performs 
coarse clustering by optimizing initial data groupings, while K-means refines 

clusters for improved precision. The Weighted K-Nearest Neighbor (WKNN) 
algorithm is then applied for real-time positioning by selecting the most 
similar signal sub-bases. Experiments show that the proposed method 
achieves 100% accuracy in building classification and 91% accuracy in floor 
classification. For latitude and longitude prediction, Random Forest and SVC 
outperform XGBoost, achieving MSE values of 0.0048 (latitude) and 0.0055 
(longitude). The approach also reduces computational overhead by 93.51%, 
improving efficiency. The study presents a robust, scalable solution for indoor 
positioning and introduces the Dual Clustering Wi-Fi Localization Dataset 

(DCWiLD) for future research. Future work will focus on dataset balancing, 
BLE/UWB integration, and energy optimization for IoT applications. 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION 

The demand for precise and efficient indoor positioning systems (IPS) has grown significantly in recent 
years due to advancements in smart buildings [1], healthcare monitoring, industrial automation, and emergency 

response systems. Unlike outdoor environments, where the Global Positioning System (GPS) provides accurate 

location tracking, indoor spaces present unique challenges due to signal attenuation, multipath propagation, 

and interference from walls, furniture, and electronic devices [2]. As a result, researchers have explored 

alternative localization techniques, including Wi-Fi fingerprinting, Bluetooth Low Energy (BLE), Ultra-

Wideband (UWB), and Radio Frequency Identification (RFID) [3]. Among these techniques, Wi-Fi 

fingerprinting-based positioning has gained substantial attention due to its cost-effectiveness, widespread 

infrastructure availability, and high scalability. Wi-Fi-based localization relies on the unique signal strength 

patterns of wireless access points (APs) to estimate a user’s position within an indoor space [4]. However, the 

effectiveness of these systems is often hindered by signal fluctuations, environmental dynamics, and dataset 

imbalances. To address these challenges, this study introduces an optimized dual clustering technique enhanced 

with bio-inspired optimization to improve the accuracy and efficiency of Wi-Fi-based indoor positioning. 

mailto:Ozobialu.emmanuel@iuokada.edu.ng
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Despite its advantages, Wi-Fi fingerprinting faces several challenges [5]. First, Wi-Fi signals are highly 

susceptible to fluctuations caused by changing environmental conditions, furniture movement, human 

presence, and electronic interference [6]. These variations make it difficult for traditional models to maintain 

accuracy in dynamic indoor spaces. Second, many machine learning models for indoor positioning require 

significant computational resources [7], making real-time implementation challenging, especially for resource-

constrained devices such as IoT sensors, smartphones, and wearable technologies [8]. Additionally, most 
indoor positioning datasets are unevenly distributed across floors, buildings, and specific areas, leading to 

biased models that perform well in data-rich zones but poorly in underrepresented regions [9]. Finally, relying 

solely on Wi-Fi fingerprinting may limit positioning accuracy, as hybrid approaches integrating BLE, UWB, 

or sensor fusion techniques have shown promise in overcoming Wi-Fi limitations. To address these challenges, 

this study leverages a dual clustering approach combined with Ant Colony Optimization (ACO) to enhance 

Wi-Fi-based localization [10].  

The primary contributions of this research include the development of an optimized clustering framework 

that improves computational efficiency by reducing processing overhead by 93.51%, making it feasible for 

real-time applications. Additionally, we benchmark various machine learning models, including XGBoost, 

Random Forest (RF), and Support Vector Classification (SVC), for floor classification and coordinate 

prediction, achieving 91% accuracy in floor classification and the lowest Mean Squared Error (MSE) values 

for latitude/longitude predictions (0.0048 for latitude, 0.0055 for longitude). Furthermore, we introduce the 
Dual Clustering Wi-Fi Localization Dataset (DCWiLD), which consists of 21,048 location points with features 

such as longitude, latitude, floor, building ID, space ID, relative position, user ID, phone ID, and timestamp 

[11]. Exploratory data analysis using bar charts and scatter plots reveals insights into data distribution, 

highlighting biases in building coverage, floor occupancy, and spatial clustering [12]. Finally, the proposed 

approach is designed for smart buildings, healthcare facilities, IoT applications, and emergency response 

systems, improving indoor positioning reliability in dynamic environments. By integrating advanced clustering 

techniques [13], bio-inspired optimization, and machine learning, this study aims to enhance Wi-Fi-based 

indoor positioning accuracy, improve computational efficiency, and lay the groundwork for future hybrid 

localization systems. [14] It represents a fundamental aspect of context-awareness, serving as a prerequisite 

for delivering human-centered services that enhance quality of life. Compared to outdoor environments, indoor 

positioning presents a greater challenge due to the need for higher precision and the presence of various 
obstacles [15], such as walls, furniture, and people, that reflect and scatter signals. In this paper, we survey 

recent advances in indoor positioning by offering a comparative analysis of state-of-the-art technologies, 

techniques, and algorithms [16]. Unlike previous studies, our survey introduces new taxonomies, reviews key 

recent developments, and highlights existing challenges and future research directions. We believe this work 

will inspire further exploration of this complex and dynamic research area. [17], Positioning objects has long 

been a critical area of research, as it enables the localization of individuals, supports navigation, and facilitates 

asset management for companies and organizations. Numerous systems and algorithms have been proposed to 

address the positioning problem and improve existing solutions [18]. In this paper, we present a comprehensive 

survey of various indoor positioning systems, examining the challenges inherent in this domain and evaluating 

selected solutions proposed in the literature. We also provide a categorization and classification of current 

indoor positioning systems, identifying key areas for potential improvement and future research. Numerous 
studies have explored machine learning and clustering techniques to improve indoor positioning accuracy. 

Some have used Support Vector Machine (SVM) regression to predict RSSI values at unknown locations, 

while others employed Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic 

fingerprints for under-sampled areas [19]. Crowdsourcing methods have also been proposed to reduce the 

labor-intensive process of fingerprint collection. [20] The document analyzes clustering and optimization 

techniques in Wi-Fi fingerprinting (FP) for indoor positioning, highlighting their impact on computational 

efficiency and accuracy. It identifies key factors influencing clustering performance, such as the choice of 

methods, dataset characteristics, and real-world applicability. Strongest Access Point (AP)-based clustering, c-

Means, and Affinity Propagation show promising results, but many approaches struggle under realistic 

conditions due to assumptions that do not generalize well [21]. The study highlights the absence of a 

standardized evaluation framework, which makes comparisons of methods challenging. It highlights the 

importance of reproducible research, utilizing publicly available datasets and code. Additionally, it highlights 
the need for theoretical assessments to complement empirical findings, ultimately advocating for a more 

structured and reliable approach to indoor positioning research. [22] The document introduces a novel indoor 

positioning method using iBeacon technology, integrating anomaly detection with a weighted Levenberg-

Marquardt (LM) algorithm to enhance accuracy. By employing the Isolation Forest algorithm, the method 

identifies and removes abnormal RSSI values, reducing positioning errors and improving precision. 

Experimental results show an average positioning error of 1.540 m and an RMSE of 1.748 m, outperforming 

existing methods by up to 38.69%. The study highlights the method’s effectiveness in real-world scenarios 

without requiring a pre-established fingerprint database, making it a practical solution for environments where 
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GNSS signals are unavailable. The findings demonstrate that combining anomaly detection with weighted 

optimization significantly enhances the reliability of indoor navigation. [23] This study introduces a novel 

RSSI ranking-based indoor positioning system that enhances accuracy and efficiency by integrating multiple 

techniques. The proposed method consists of three key components: (1) an access point selection process using 

a genetic algorithm to optimize computational cost and improve accuracy, (2) feature extraction using the 

Kendall tau correlation coefficient and a convolutional neural network (CNN) for precise location estimation, 
and (3) trajectory smoothing through an extended Kalman filter, followed by multi-dimensional dynamic time 

warping to recognize activity patterns. The system was tested in an office-like environment, achieving an 

average positioning accuracy of 1.42 m and a 79.5% recognition accuracy for nine location-driven activities, 

demonstrating its effectiveness in mitigating interference and attenuation effects in WiFi-based indoor 

positioning. [24] This study presents a robust indoor positioning system (IPS) designed to address challenges 

posed by device heterogeneity and environmental variations in fingerprinting-based techniques. The proposed 

approach transforms received signal strength (RSS) into standardized location fingerprints using Procrustes 

analysis and introduces a novel similarity metric, the Signal Tendency Index (STI), to enhance fingerprint 

matching [25]. To enhance positioning accuracy, the system integrates STI with a weighted extreme learning 

machine (WELM). Experimental results demonstrate the method’s superiority over existing solutions, 

showcasing improved robustness against variations in mobile devices and environmental conditions, ultimately 

enhancing the reliability of location-based services (LBSs) in indoor environments[9].  This study examines 

indoor positioning techniques that utilize existing commercial infrastructure, thereby eliminating the need for 

additional hardware. It evaluates multiple methods, including Wi-Fi RSSI, RTT, marker-based trilateration, 

fingerprinting with machine learning models, and PoseNet. Standardized tests are conducted to assess the 

accuracy and feasibility of each technique, categorizing them based on predefined criteria for commercial 

deployment [26]. The findings highlight the strengths and limitations of each approach, providing insights into 

practical and cost-effective solutions for indoor positioning. The study concludes with recommendations for 
future research and potential enhancements to improve positioning accuracy and system robustness. [27] This 

study explores the advancements in indoor localization technologies, particularly those based on fingerprinting 

and intelligent algorithms. With the limitations of GPS in indoor environments, alternative methods leveraging 

machine learning and IoT-based signals have gained traction [28]. The paper reviews the architecture of 

intelligent localization systems, emphasizing the need for self-adaptation and self-learning capabilities. A 

comparative analysis of state-of-the-art localization techniques is presented, evaluating their accuracy, latency, 

energy consumption, complexity, and robustness. Additionally, the study identifies key challenges in current 

indoor localization systems and proposes potential solutions and improvements to enhance their efficiency and 

applicability in smart city environments. [29] This study addresses the limitations of GPS in indoor and urban 

environments by proposing a Wi-Fi-based positioning system (WPS) optimized using a genetic algorithm and 

a cascading artificial neural network. While fingerprinting is the most widely used WPS technique, its accuracy 

is often lower than that of time of arrival and angle of arrival methods due to the complexity of Wi-Fi signal 
propagation.  

The proposed server-based model enhances positioning accuracy in both 2D and 3D indoor environments, 

achieving a mean accuracy of 1.9 meters with 87% of errors within a 0–3-meter range. Thorough testing on a 

real Wi-Fi network confirms its superior performance compared to existing techniques, making it a promising 

solution for indoor localization in digital earth applications. [30] This study examines energy-efficient 

localization solutions for Low-Power Wide Area Networks (LPWAN) in smart cities, with a focus on Received 

Signal Strength (RSS)-based fingerprinting. Using a publicly available dataset of 130,426 LoRaWAN 

fingerprint messages, ten different machine learning algorithms are evaluated for location accuracy, score, and 

computational efficiency. The findings reveal that optimizing the representation of RSS data enables a mean 

location estimation error of 340 meters using the Random Forest regression method. While k-Nearest Neighbor 

(kNN) achieves comparable accuracy, its computational performance is inferior to that of Random Forest, 
making the latter a more practical choice for efficient device localization in LPWAN environments. [2] This 

study examines the indoor localization problem in IoT-enabled environments by evaluating three fingerprinting 

techniques: Weighted K-Nearest Neighbor (WKNN), Random Forest (RF), and Artificial Neural Networks 

(ANN). Using real measurements, a database of Received Signal Strength Indication (RSSI) values is created 

from five access points in a laboratory setting. A heatmap-based fingerprinting method is applied, and 

performance is analyzed in two scenarios: line-of-sight (LOS) and obstructed conditions. The results indicate 

that the ANN-based approach outperforms WKNN and RF, demonstrating its superior effectiveness in indoor 

localization, even in environments with signal obstructions. [31] This study examines WiFi-based Received 

Signal Strength Index (RSSI) fingerprinting for indoor localization, highlighting its advantages, including 

universal availability, privacy protection, and low deployment costs. However, challenges remain in 

constructing a fine-grained, up-to-date RSSI map and deploying effective localization algorithms. To address 

these, the proposed system integrates five spatio-temporal (S-T) metrics to enhance accuracy. Performance 
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evaluations across three indoor environments demonstrate median localization errors of 1–2 meters in office 

settings and 3–4 meters in crowded, noisy environments, achieving at least 70% accuracy even in challenging 

conditions.  [31] Indoor localization plays a vital role in location-based services (LBS), significantly impacting 

applications such as smart environments, navigation, and security systems. Among various localization 

techniques, Wi-Fi-based RSSI fingerprinting is widely adopted due to its low deployment cost, privacy 

protection, and universal availability. However, building a robust and accurate RSSI fingerprinting system 
presents two major challenges: creating a fine-grained and up-to-date RSSI map with minimal labor cost during 

the training phase and developing an effective localization algorithm that ensures real-time accuracy [32]. This 

study addresses these issues by introducing an indoor localization system that incorporates five spatio-temporal 

(S-T) metrics to enhance positioning accuracy. An experimental evaluation in three different indoor 

environments reveals a median localization error of 1-2 meters in office settings and 3-4 meters with at least 

70% accuracy in crowded, noisy conditions. These results demonstrate the system’s effectiveness in striking a 

balance between accuracy, scalability, and computational efficiency, making it a viable solution for dynamic 

indoor environments. [33] Wi-Fi fingerprinting is widely used in Indoor Positioning Systems (IPSs) due to its 

low complexity and reliance on existing WLAN infrastructures. However, as the reference dataset (radio map) 

grows, scalability issues arise, leading to increased computational costs. While k-Means clustering has been 

used to address this problem, it is a general-purpose unsupervised classification algorithm that does not account 

for radio propagation characteristics. This study introduces three improved k-Means variants that incorporate 
radio propagation heuristics to enhance coarse and fine-grained searches in IPS. To ensure robustness, the 

proposed methods were evaluated across 16 datasets representing diverse network infrastructures and radio 

map generation conditions. The best k-Means variant demonstrated higher positioning accuracy while reducing 

computational costs by approximately 40%, making it a more efficient alternative for large-scale Wi-Fi-based 

indoor positioning systems. [34] The paper presents an Iterative Weighted KNN (IW-KNN) method for indoor 

localization using Bluetooth Low Energy (BLE) RSSI (Received Signal Strength Indicator). IW-KNN 

improves traditional KNN by: (1) combining Euclidean distance and Cosine similarity for better RSSI vector 

comparison, (2) applying weighted factors instead of majority voting for position estimation, and (3) iteratively 

selecting different beacons to refine localization accuracy. Experimental results show that IW-KNN 

outperforms traditional KNN-based methods, reducing localization error by 1.5 to 2.7 meters. 

Despite significant advancements in indoor positioning systems, several research gaps and limitations 
hinder their real-world applicability. Many clustering and optimization techniques struggle with dynamic 

environments and device heterogeneity, while the lack of standardized evaluation frameworks limits 

comparability and reproducibility [35]. Scalability remains a challenge, as high-accuracy methods often require 

excessive computational resources, making real-time deployment difficult. Additionally, reliance on high-

quality fingerprint databases raises concerns about data availability and reliability. Future research should focus 

on developing standardized benchmarks, adaptive algorithms, scalable real-time solutions, and energy-efficient 

localization techniques. Integrating multiple technologies, improving data collection methods, and addressing 

privacy concerns will further enhance the practicality and reliability of indoor positioning systems. However, 

these approaches often demand high computational resources, making them unsuitable for real-time 

applications. This study addresses critical challenges in indoor positioning systems (IPS), particularly those 

based on Wi-Fi fingerprinting, including signal interference, multipath effects, computational inefficiency, and 
dataset imbalance. To address these issues, the authors propose a dual clustering framework that integrates Ant 

Colony Optimization (ACO) for coarse clustering and K-means for fine-tuning cluster centroids. Machine 

learning models, including Random Forest (RF), Support Vector Classifier (SVC), and XGBoost, are employed 

for accurate building and floor classification, as well as coordinate regression. For real-time localization, the 

system leverages Weighted K-Nearest Neighbor (WKNN) on the optimized clusters. The approach achieves 

100% building classification and 91% floor classification accuracy with XGBoost, while RF and SVC yield 

better localization precision, with mean squared errors of 0.0048 (latitude) and 0.0055 (longitude), respectively. 

Additionally, the method reduces computational overhead by 93.51% compared to traditional techniques. A 

significant contribution is the introduction of DCWiLD, a new benchmark dataset containing 21,048 location 

points, which helps bridge gaps in public indoor positioning data. This work marks the first integration of ACO 

with dual clustering for Wi-Fi fingerprint optimization, demonstrating both real-time feasibility and scalability. 

 
2. METHOD 

The study utilizes the UJIIndoorLoc dataset, which comprises RSSI values and spatial attributes, and 

employs Gaussian filtering and standardization to mitigate noise and address missing values. A dual clustering 

approach is introduced, beginning with Ant Colony Optimization (ACO) for coarse clustering, where 

pheromones are initialized based on RSSI similarity and updated iteratively to highlight high-density regions.  

This is followed by K-means fine clustering, which uses the ACO-derived centers and refines them 

through Euclidean distance-based centroid updates [36]. For real-time localization, Weighted K-Nearest 

Neighbor (WKNN) selects the Top-K most similar fingerprints using correlation coefficients and estimates 
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positions as a weighted average of neighboring points, with weights based on inverse distances. Machine 

learning models [37], Random Forest (RF), Support Vector Classifier (SVC), and XGBoost are trained for 

building/floor classification and coordinate regression, evaluated using accuracy, F1-score, and mean squared 

error (MSE). Data analysis retains RSSI values within a 95% confidence interval (μ ± 1.65σ) while filtering 

outliers, and visualizations (e.g., scatter plots) reveal data imbalance issues. Experiments were conducted on 

standard Intel i7 workstations with 16GB RAM using Python libraries like scikit-learn and TensorFlow in 
Jupyter Notebooks. To ensure reproducibility, the authors provide their code via an anonymized GitHub link. 

Parameter settings include 50 ants, a 0.1 evaporation rate, and 100 iterations for ACO; up to 300 iterations for 

K-means; and K = 5 for WKNN. 

2.1    Dataset Collection 

The study utilizes the UJIIndoorLoc dataset, a widely used benchmark for indoor positioning research. 

This dataset contains Wi-Fi fingerprint data collected across multiple buildings, including Received Signal 

Strength Indicator (RSSI) values from various access points, along with spatial attributes such as latitude, 

longitude, floor, and building ID. 

2.2   Data Preprocessing 

Noise Reduction: A Gaussian filtering technique is applied to eliminate outliers and retain reliable RSSI 

values within a high-probability range (μ ± 1.65σ). Data Normalization: The dataset is standardized to handle 

missing values and ensure consistency in the fingerprint database. Undetected access points are treated 
uniformly to prevent discrepancies in model input. 

2.3   Dual Clustering Approach: ACO and K-Means 

A dual clustering approach is employed to optimize Wi-Fi fingerprint data, enhancing both accuracy and 

computational efficiency. This two-stage process integrates ACO for coarse clustering and K-means for fine 

clustering to structure the dataset effectively. 

2.4   ACO-Based Coarse Clustering 

Pheromone Initialization: Each fingerprint data point is assigned an initial pheromone level, representing 

its potential to serve as a cluster center. Ant Movement: Artificial ants navigate through the dataset, selecting 

cluster centers based on pheromone levels and RSSI similarity, ensuring an optimal balance between 

exploration and exploitation. Pheromone Update: The pheromone trail is dynamically updated to reinforce 

promising cluster centers while preventing stagnation. Cluster Center Selection: Data points with the highest 
pheromone accumulation are chosen as initial cluster centers, representing dense regions with strong RSSI 

similarity. 

2.5    K-means Fine Clustering 

Cluster Assignment: Each fingerprint data point is assigned to its nearest cluster center using Euclidean 

distance. Center Update: Cluster centers are updated iteratively based on the mean position of points within 

each cluster. Refinement: The process continues until cluster centers converge, ensuring well-defined and 

robust clustering. 

2.6   Real-Time Positioning with WKNN 

For real-time localization, the system selects the most relevant fingerprint sub-bases and applies a 

classification-based positioning method. Sub-base Selection: The correlation coefficient method is used to 

identify sub-bases with the highest similarity to the user's current RSSI values. Position Estimation: The 
Weighted K-Nearest Neighbor (WKNN) algorithm is employed to estimate the user’s location by computing 

a weighted average of the most similar reference points. 

2.7   Machine Learning Model Evaluation 

To further improve positioning accuracy, three machine learning models [38], Random Forest (RF), 

Support Vector Classifier (SVC), and XGBoost are evaluated for building and floor classification as well as 

latitude and longitude prediction. Building and Floor Classification: The models are trained to classify building 

and floor levels based on Wi-Fi fingerprint data. XGBoost achieves the highest accuracy for floor classification 

(91%), outperforming RF and SVC (both achieving 90%). Latitude and Longitude Prediction: The models are 

tested for predicting exact location coordinates. RF and SVC outperform XGBoost in regression, achieving the 

lowest Mean Squared Error (MSE) values (0.0048 for latitude and 0.0055 for longitude). Performance Metrics: 

Evaluation is conducted based on accuracy, precision, recall, F1-score, and MSE to determine model 

effectiveness. 
 

2.8   Algorithm: Indoor Positioning with ACO and Dual Clustering 

2.8.1 Data Preprocessing 

▪ Load Wi-Fi fingerprint dataset (DCWiLD). 

▪ Apply Gaussian filtering to remove noise. 
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▪ Normalize the dataset to handle missing values. 

 

2.8.2 ACO-Based Coarse Clustering 

▪ Initialize pheromone levels for each data point. 

▪ For each ant: 

a. Select cluster centers based on pheromone levels and RSSI similarity. 

b. Update pheromone trails dynamically. 

▪ Select initial cluster centers with the highest pheromone accumulation. 

2.8.3 K-means Fine Clustering 

▪ Assign each data point to the nearest cluster center using Euclidean distance. 

▪ Update cluster centers iteratively until convergence. 

 
2.8.4 Real-Time Positioning with WKNN 

▪ For a new user's RSSI values: 

a. Select the most similar fingerprint sub-bases using the correlation coefficient method. 

b. Estimate the user's location using WKNN: 

        i. Compute weighted average of the K-nearest neighbors. 

        ii. Return the estimated latitude and longitude. 

 

2.8.5 Machine Learning Model Evaluation: 

▪ Train Random Forest, SVC, and XGBoost models on the clustered dataset. 

▪ Evaluate models for: 

a. Building and floor classification (accuracy, precision, recall, F1-score). 
b. Latitude and longitude prediction (Mean Squared Error). 

 

 
 

Figure 1. Flowchart of the proposed System 
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2.9   Mathematical Functions for Enhancing Indoor Positioning Accuracy with Ant Colony Optimization 

and Dual Clustering 

1. Ant Colony Optimization (ACO) for Indoor Localization 

Pheromone Update Rule 

𝜏{𝑖𝑗}(𝑡+1) =  (1 −  𝜌) ·  𝜏{𝑖𝑗}(𝑡) +  ∑
{𝑚}𝛥𝜏{𝑖𝑗}

{𝑘}

{𝑘=1}
                                                                                                  (1) 

Probability of Selecting a Path 

𝑃{𝑖𝑗}
{𝑘}

= \𝑓𝑟𝑎𝑐 {[𝜏{𝑖𝑗}]
{𝛼}

⋅ [𝜂{𝑖𝑗}]
{𝛽}

} {∑{𝛼}

{𝑙 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑}[𝜏{𝑖𝑙}]
⋅ [𝜂{𝑖𝑙}]

{𝛽}
}                                                              (2) 

2. Dual Clustering: ACO + K-Means 

Objective Function (Minimize Intra-Cluster Distance) 

𝑆𝑆𝐸 =  ∑
{𝑛} ∑

{𝑗=1}
𝑖
{𝑘}|𝑥

{𝑖=1}
−  𝑐𝑗|

2                                                                                                                      (3) 

Centroid Update Rule 

𝑐𝑗 = \𝑓𝑟𝑎𝑐{1}{|𝐶𝑗|} ∑{𝑥𝑖∈ 𝐶𝑗}𝑥𝑖
                                                                                                                                                         (4) 

3. Weighted K-Nearest Neighbors (WKNN) for Refinement 

Position Estimation 

ℎ𝑎𝑡{𝑥} = \𝑓𝑟𝑎𝑐 {\𝑠𝑢𝑚
{𝑖=1}𝑖

{𝐾}𝑤
𝑥𝑖

} {\𝑠𝑢𝑚
{𝑖=1}𝑖

{𝐾}𝑤} ,\𝑞𝑢𝑎𝑑                                                                            (5) 

 

̂ {𝑦} = \𝑓𝑟𝑎𝑐 {∑
{𝑖=1}

𝑖
{𝐾}𝑤

𝑦𝑖
} {∑

{𝑖=1}
𝑖
{𝐾}𝑤 }                                                                                                (6) 

4. Accuracy Evaluation 

Classification Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = \𝑓𝑟𝑎𝑐{𝑇𝑃 +  𝑇𝑁}{𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁}                                                                          (7) 

 

Regression Accuracy (MSE) 

 

𝑀𝑆𝐸 = \𝑓𝑟𝑎𝑐{1}{𝑛} ∑
{𝑛}(𝑦𝑖− ̂ {𝑦}𝑖)

2

{𝑖=1}
                                                                                                           (8) 

 

The mathematical functions in the paper describe an indoor positioning system that combines Ant Colony 

Optimization (ACO) for coarse clustering, K-means clustering for fine-tuning, and Weighted K-Nearest 

Neighbor (WKNN) for real-time positioning. ACO utilizes pheromone trails and heuristic information to 

identify initial cluster centers, striking a balance between exploration and exploitation. K-means refines these 

clusters by minimizing the distance between data points and their centroids, ensuring well-defined groupings 

[39]. For real-time positioning, WKNN calculates the similarity between the user's signal and reference signals 
in the database, estimating the user's location as a weighted average of the nearest neighbors [40]. Additionally, 

machine learning models are used for building/floor classification (measured by accuracy) and 

latitude/longitude prediction (evaluated using Mean Squared Error). Together, these methods improve the 

accuracy and efficiency of indoor positioning in dynamic environments. 

 

Ant Colony Optimization (ACO) Parameters 

The Ant Colony Optimization algorithm was employed for coarse clustering to identify initial groups 

within the Wi-Fi fingerprint dataset. The parameter settings and their roles are as follows: 
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• Number of Ants (Colony Size): Set to 50, this provided a balanced trade-off between search space 

exploration (diversity of clusters) and exploitation (refinement of optimal clusters). 

• Evaporation Rate (ρ\rhoρ): Set to 0.1, meaning 10% of the pheromone evaporates in each iteration. This 

mechanism discourages early convergence to suboptimal clusters by promoting exploration. 

• Pheromone and Heuristic Influence: 

o α=1\alpha = 1α=1: Governs the relative importance of pheromone trails. 
o β=2\beta = 2β=2: Governs the influence of the heuristic information (e.g., distance), thus favoring 

proximity during cluster selection. 

• Number of Iterations: The algorithm was executed for 100 generations, sufficient for convergence to 

stable cluster centers. 

• Initial Pheromone Level (τ0\tau_0τ0): A small constant value of 0.01 was used to ensure an unbiased start 

in the solution space. 

 

Rationale for Parameter Selection: 

• The use of 50 ants provided adequate coverage of the search space while maintaining computational 

efficiency. 

• ρ=0.1\rho = 0.1ρ=0.1 was selected via grid search to achieve a balance between convergence speed and 
clustering accuracy. 

• The setting β>α\beta > \alphaβ>α was intentional to prioritize RSSI-based distance similarity over trail 

reinforcement, especially during the early optimization stages. 

 

Weighted K-Nearest Neighbor (WKNN) Parameters 

WKNN was applied for real-time indoor positioning, leveraging the clustered Wi-Fi fingerprints. The 

parameters and their justifications are: 

• Number of Neighbors (K): Set to 5, this value was determined through 5-fold cross-validation, which 

minimized mean squared error (MSE) during validation. 

• Weighting Function: 

o Weights were computed as wi=1di+ϵw_i = \frac{1}{d_i + \epsilon}wi=di+ϵ1, where did_idi is the 
Euclidean distance between the test signal and the iiith reference point. 

o A smoothing factor ϵ=10−6\epsilon = 10^{-6}ϵ=10−6 was used to avoid division by zero. 

• Distance Metric: Euclidean distance was adopted to quantify similarity between real-time RSSI 

measurements and reference fingerprints, due to its simplicity and effectiveness in high-dimensional 

space. 

 

Rationale for Parameter Selection: 

• K = 5 was found to offer a favorable trade-off between noise suppression (associated with higher K) and 

positional accuracy (favored by lower K). 

• The inverse distance weighting scheme effectively increased the influence of closer reference points in 

location estimation. 

• The choice of Euclidean distance was driven by computational efficiency and its widespread adoption in 

RSSI-based localization systems. 

Table 1. Summary of Parameter Choices 

Algorithm Parameter Value Role 

ACO Number of Ants 50 Balances exploration and exploitation. 

 Evaporation Rate (ρ\rhoρ) 0.1 
Controls pheromone decay to avoid local 

optima. 

 α (Pheromone) 1 Weight for existing pheromone trails. 

 β (Heuristic) 2 
Prioritizes distance-based similarity in cluster 

selection. 

 Iterations 100 Ensures convergence to stable clusters. 

WKNN Neighbors (K) 5 
Optimized via cross-validation for MSE 

minimization. 

 Distance Metric Euclidean 
Optimized via cross-validation for MSE 

minimization. 

 Smoothing (ε) 10⁻⁶ 
Prevents division by zero in weight 

calculations 

The combination of ACO for coarse clustering and K-means for refinement resulted in a significant reduction 

of 93.51% in computational overhead, as discussed in Section 4.3. The WKNN configuration (K = 5) 
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demonstrated superior performance over larger K values (up to K = 10) in both MSE and latency evaluations. 

All parameter values were empirically validated and are consistent with best practices reported in prior 

literature on indoor positioning 

3. RESULTS AND DISCUSSION 

Table 2. Dual Clustering Wi-Fi Localization Dataset (DCWiLD) First 5 Rows: 

 Longitude Latitude Floor Building id Space id Relative position User id Phone id Timestamp 

0 -7541.2643 4.86E+06 2 1 106 2 2 23 1371713733 

1 -7536.6212 4.86E+06 2 1 106 2 2 23 1371713691 

2 -7519.1524 4.86E+06 2 1 103 2 2 23 1371714095 

3 -7524.5704 4.86E+06 2 1 102 2 2 23 1371713807 

4 -7632.1436 4.86E+06 0 0 122 2 11 13 1369909710 

 

 

Table 2. Dual Clustering Wi-Fi Localization Dataset (DCWiLD) Last 5 Rows: 

 Longitude Latitude Floor Building id Space id Relative position User id Phone id Timestamp 

1106 -7317.344231 4.86E+06 3 2 0 0 0 13 1381156711 

1107 -7313.73112 4.86E+06 3 2 0 0 0 13 1381156730 

1108 -7635.535798 4.86E+06 0 0 0 0 0 13 1381247781 

1109 -7636.654005 4.86E+06 0 0 0 0 0 13 1381247807 

1110 -7637.94412 4.86E+06 0 0 0 0 0 13 1381247836 

 

 

 
                                                                                       

 
                                   

Figure 2(a-c) DCWiLD Data Distribution Visualization 
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3.1   Analysis of Dual Clustering Wi-Fi Localization Dataset and Visualizations 

The dataset used for Wi-Fi-based indoor positioning contains 21,048 rows and 9 key attributes, including 

longitude, latitude, floor, building ID, and relative position, providing spatial information based on Wi-Fi signal 

strength. The data distribution shows imbalances that may impact model performance. Most Wi-Fi 

measurements were taken inside rooms (Relative Position = 1) rather than outside, which could affect 
positioning accuracy in open areas. Building-wise distribution indicates that Buildings 1 and 2 have 

significantly more data than Building 0, which may introduce bias in classification tasks. Similarly, floor-level 

data is unevenly distributed, with Floor 1 having the highest number of samples, while Floor 4 has the least, 

potentially affecting localization accuracy on higher floors. These imbalances highlight the need for careful 

model design and data balancing techniques to improve classification and localization performance [41]. 

 

  

 
 

 
Figure 3 (a-f). Latitude vs. Longitude Scatter Plot 

 

The dataset consists of 21,048 rows and contains spatial information such as longitude, latitude, floor 

number, building ID, space ID, relative position, user ID, phone ID, and timestamp. The exploratory analysis 
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reveals patterns in data distribution across different buildings and floors, as well as variations in relative 

positioning. 

The distribution analysis indicates that most recorded locations belong to Relative Position 1, as shown 

in the first bar chart. The second bar chart highlights that Buildings 1 and 2 have significantly more data points 

compared to Building 0, suggesting limited movement or data collection in that building. Additionally, the 

floor distribution shows that Floor 1 has the highest concentration of data, while Floors 0, 2, 3, and 4 have 
progressively fewer recorded points [42]. Spatial distribution analysis, visualized through scatter plots, 

provides insights into movement patterns. The first and fourth scatter plots show only Relative Position 0, 

where data points form structured trajectories, indicating frequently visited locations. The second and third 

plots introduce Relative Position 1, marked in orange, which appears sporadically, suggesting that these points 

may represent specific locations such as access points or anomalies. The fifth and sixth scatter plots show a 

broader perspective, confirming that Position 1 is more scattered and less frequent than Position 0. The dataset 

reveals structured movement within buildings, with certain floors and locations being accessed more frequently 

[43]. The clustering of Position 0 suggests routine navigation, while the dispersed nature of Position 1 may 

indicate points of interest or unique spatial features. Further analysis, such as clustering or anomaly detection, 

could provide deeper insights into location-based behaviors 

. 

3.2   COMPARISON OF THE MODELS RANDOM FOREST, SVC AND XGBOOST  
Classification Performance (Building & Floor Prediction) 

 

Table 2. Building Classification 

Model Accuracy (%) 
Macro Avg 

Precision 

Macro Avg 

Precision Recall 

Macro Avg F1-

Score 

Random Forest 100 1.00 1.00 1.00 

SVC 100 1.00 1.00 1.00 

XGBOOST 100 1.00 1.00 1.00 

 

Table 3. Floor Classification 

Model Accuracy (%) 
Macro Avg 

Precision 

Macro Avg 

Precision Recall 

Macro Avg F1-

Score 

Random Forest 90 0.89 0.88 0.88 

SVC 90 0.89 0.88 0.88 

XGBOOST 91 0.92 0.91 0.91 

 

All the three models perform 100% for the building classification and XGBoost performed slightly better 

for floor classification, achieving 91% accuracy with higher precision, recall, and F1-score. Random Forest 

and SVC both achieved 90% accuracy, with nearly identical macro scores. 

  

Table 4. Regression Performance (Latitude & Longitude Prediction) 
Model Latitude MSE Longitude MSE 

Random Forest 0.0048 0.0055 

SVC 0.0048 0.0055 

XGBoost 0.0071 0.0084 

 

Random Forest and SVC had the lowest Mean Squared Error (MSE), making them better for regression tasks. 

XGBoost had slightly higher errors (0.0071 and 0.0084), suggesting it may not be as effective for numerical 

predictions. 

3.3   Experimental Validation 

The proposed ACO-based dual clustering method was experimentally validated by assessing accuracy 

and computational efficiency. Compared to traditional clustering techniques, the method demonstrated superior 

performance in both accuracy and runtime efficiency [44]. The optimized clustering process significantly 

reduces computational overhead by 93.51%, making it practical for real-time deployment. In terms of model 

performance, XGBoost achieved the highest accuracy (91%) for floor classification. At the same time, Random 
Forest (RF) and Support Vector Classifier (SVC) performed best in latitude and longitude prediction, achieving 

the lowest Mean Squared Error (MSE) values (0.0048 for latitude and 0.0055 for longitude). These results 

highlight the effectiveness of the proposed method in improving positioning accuracy and efficiency for indoor 

localization applications. 

3.4   Discussion 

The proposed Wi-Fi-based indoor positioning system, which integrates Ant Colony Optimization (ACO) 

with dual clustering techniques, effectively addresses key challenges in Wi-Fi fingerprinting, including signal 

interference, multipath effects, and computational inefficiencies associated with large fingerprint databases 
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[34]. By leveraging ACO for coarse clustering and K-means for fine clustering, the system optimizes the 

organization of fingerprint data, enhancing both accuracy and efficiency [1]. This dual clustering strategy 

reduces computational overhead, making the method well-suited for real-time applications in complex indoor 

environments. The ACO-based dual clustering approach significantly improves both positioning accuracy and 

efficiency. ACO efficiently identifies optimal initial cluster centers, which are then refined by K-means, 

ensuring that fingerprint data is well-structured and minimizes noise [45]. This structured organization 
enhances real-time positioning accuracy, especially when combined with the Weighted K-Nearest Neighbor 

(WKNN) algorithm, which further refines location estimates in dynamic indoor settings [46]. To validate the 

proposed approach, three machine learning models, Random Forest (RF), Support Vector Classifier (SVC), 

and XGBoost are assessed for building and floor classification as well as latitude/longitude prediction. For 

building classification, all three models achieved 100% accuracy, demonstrating their ability to effectively 

distinguish between different buildings. However, for floor classification, XGBoost performed the best (91% 

accuracy), while RF and SVC achieved 90% accuracy, indicating that XGBoost is better suited for fine-grained 

floor-level classification. 

In terms of latitude and longitude prediction, RF and SVC outperformed XGBoost, achieving the lowest 

Mean Squared Error (MSE) values of 0.0048 (latitude) and 0.0055 (longitude), compared to XGBoost’s higher 

errors (0.0071 for latitude and 0.0084 for longitude). These results suggest that RF and SVC are more effective 

for precise numerical predictions, such as coordinate estimation. The findings indicate a trade-off between 
classification and regression performance, with XGBoost excelling in categorical tasks (building/floor 

classification) and RF/SVC performing better in continuous variable predictions (latitude/longitude 

estimation). The ACO-based dual clustering method, combined with machine learning models, offers several 

key advantages [47]. First, it significantly enhances positioning accuracy by optimizing the initial clustering 

process and refining the results using the K-means algorithm. Second, it improves computational efficiency, 

reducing the overhead associated with large fingerprint databases and making the approach suitable for real-

time applications. Third, the integration of machine learning models makes the system robust against 

environmental variability, allowing it to perform well in complex indoor environments [48]. Finally, the 

method is scalable and can be applied to large indoor spaces with minimal additional infrastructure 

requirements. 

While the proposed Wi-Fi-based indoor positioning system demonstrates strong performance, it has 
several limitations that future research should address [49]. Dataset imbalance across buildings and floors may 

introduce bias in model predictions, requiring data augmentation and balancing techniques for better 

generalization. Additionally, the system assumes stable signal conditions; however, real-world environments 

are highly dynamic, with frequent signal fluctuations and interference. Future work should explore adaptive 

algorithms to improve robustness [50]. Integrating Wi-Fi fingerprinting with other positioning technologies, 

such as Bluetooth Low Energy (BLE) and Ultra-Wideband (UWB), could further enhance accuracy and 

reliability [51]. A hybrid approach combining multiple signal sources may provide a more robust indoor 

positioning system. Moreover, while the method improves computational efficiency, further energy 

optimization is needed for IoT devices and mobile applications [52]. This study integrates bio-inspired 

optimization, clustering, and machine learning to enhance the accuracy and efficiency of indoor positioning. 

The ACO-based dual clustering method, which combines Ant Colony Optimization (ACO) for coarse 
clustering and K-means for fine clustering, significantly improves Wi-Fi fingerprinting by boosting 

computational efficiency by 93.51%. This approach achieves 100% accuracy in building classification and 

91% accuracy in floor classification. The study introduces the Dual Clustering Wi-Fi Localization Dataset 

(DCWiLD) and benchmarks Random Forest, SVC, and XGBoost, with Random Forest and SVC excelling in 

latitude and longitude prediction. The system is scalable, robust, and suitable for real-time applications in smart 

buildings, healthcare, IoT, and public safety. Future research will focus on addressing dataset balancing, 

adaptability to dynamic environments, and multi-signal integration to enhance real-time localization. 

 

4. CONCLUSION AND LIMITATION 

This study enhances Wi-Fi-based indoor positioning by integrating Ant Colony Optimization (ACO) with 

dual clustering to improve accuracy and computational efficiency. ACO optimizes initial fingerprint groupings 

through coarse clustering, while K-means refines clusters to reduce computational overhead. Machine learning 
models—Random Forest (RF), Support Vector Classifier (SVC), and XGBoost—are evaluated for building 

and floor classification as well as latitude/longitude estimation, achieving 100% accuracy for building 

classification and 91% accuracy for floor classification. RF and SVC outperform XGBoost in regression, 

demonstrating lower Mean Squared Error (MSE) values. However, limitations exist. Dataset imbalance across 

buildings and floors may introduce bias, affecting model generalization. The system assumes stable Wi-Fi 

signals, which may be unreliable in dynamic environments. Limited real-world testing, reliance on Wi-Fi 

fingerprinting alone, and concerns about privacy and security are challenges. Energy consumption remains a 

concern for resource-limited devices, and scalability to large spaces lacks validation. Future research should 
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focus on addressing dataset balancing, adaptive algorithms, hybrid positioning technologies (BLE/UWB), 

energy efficiency, and real-world deployment. Despite these challenges, the study demonstrates that bio-

inspired optimization, clustering, and machine learning can significantly enhance indoor navigation and real-

time localization in practical applications. 
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