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One Station, Kaduna, Nigeria, to investigate its impact on improving and
addressing the network’s poor voltage profile and reducing the active power
loss experienced by the network. For analysis, the bus voltage, power, and the
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Y current passing through the chosen feeders were measured and noted
Power System appropriately. The network parameters, including route length, transformer
Distribution Network parameters, and maximum power flow, were obtained from the Kaduna

Electricity Distribution Company in Kaduna, Nigeria. The distribution
network was modelled and simulated in the ETAP software environment, both
with and without Static Var Compensator (SVCs). The results obtained from
the simulation indicated that buses 5, 7, 8, and 47, among others, have a
voltage magnitude of 0.743— 0.932 pu, which is clearly outside the acceptable
limit of 0.95— 1.05 pu. Further results showed that the network experienced
real and reactive power losses of 8,527 kW and 23,535 kVAr, respectively.
After the placement of the SVC with a 5.75SMVAR rating, the active power
loss decreased from 8527 kW to 6751 kW, indicating a 20.82% reduction in
total active power loss experienced by the network. Additionally, the
minimum network’s bus voltage improved from 0.743 to 1.02 p.u.
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1. INTRODUCTION

The world population's demand for electrical energy is steadily increasing, resulting in increased energy
usage across a range of activities, including farming, businesses, household purposes, clinics, and more [1][2].
Network connection systems must be robust and optimized to meet the required power needs [3][4]. Electrical
energy has become the backbone of the world economy, thus necessitating its proper utilization, as power
demand continues to grow globally [5][6]. Its rapid growth and complexity of high- and low-voltage electricity
distribution systems, in addition to its attendant losses, underscore the need for efficient distribution network
reconfiguration techniques to adapt to changing operational conditions and, by extension, minimize its losses
[7]-[10]. These distribution systems comprise interconnected nodes, which often encounter issues such as
network congestion, suboptimal routing, losses, and component failures, which affect their overall
performance. By implementing distribution network enhancement through FACTS controller devices, which
involves identifying the weakest individual nodes and their interconnections for optimal reconfiguration of the
network [11]. Network reconfiguration consists of the installation, monitoring, and management of systems to
enhance the behavior, resilience, and overall performance of the network [12][13]. The total power loss in a
distribution system can be high for large-scale systems. According to [14] power losses on transmission and
sub-transmission lines made up 30% of the total power losses. In comparison, losses in the distribution network
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system accounted for 70% of the total losses in the power system network. Power loss directly affects the
operational cost of a power system. In [15][16], it was estimated that operational losses amounted to USD
5,851.85 million, which was attributed to power system losses. Technically, power losses could also reduce
the voltage profile of the distribution system, especially in heavily loaded systems [17]-[19]. The Town One
Power network of the Kaduna Municipal area is radiated from the 5X150MVA, 330/132 kV Mando
transmission station. The 132/33/11 kV Town One network receives its supply from the 150 MVA power
transformer TS5 at the 330/132 kV Mando transmission station in Kaduna. In Nigeria, according to Nigerian
Electricity Regulatory Commission (NERC) data, power losses in the electricity distribution network represent
the single most significant component of its supply chain. These distribution network losses have become a
massive concern to the system, as it has become necessary to improve power quality and efficiency in
distribution networks, thereby minimizing losses. To enhance the efficiency of the distribution system, loss
minimization is the only alternative [20][21]. Thus, it is found that, for the last three decades, research in
distribution systems has been focused on line loss minimization and voltage regulation [22][23]. This research
is poised to identify efficient ways to minimize the losses by utilizing distribution network reconfiguration
using optimal placement of a FACTS controller device, specifically the Static Var Compensator (SVC) device,
due to its proven effectiveness, fast response time, and cost efficiency for reactive power compensation and
voltage regulation on the Town One power network of the Kaduna municipal area distribution network.

2. LITERATURE SURVEY

An optimal placement of distributed generation in an 11 kV distribution network was carried out. This
work primarily focuses on assessing the reliability of the distribution network to evaluate the impact of
optimally sizing and placing distributed generation (DG) in the Ikwerre Road 11 kV distribution network. The
results obtained showed that total branch losses without DG are 113.668 kW and 64.41 kVAr; with DG at the
optimal bus, the branch losses are 27.046 kW and 16.277 kVAr. Voltage at the least bus improved from 0.943
pu to 1.003 pu. The work done by [24] proposed an approach that employed the ABC algorithm to determine
the size and location of the DG unit, aiming to reduce the system’s real power loss and enhance the voltage
profile. The result obtained is then tested on the IEEE 34-bus system using MATLAB and ETAP 12.6 to assess
the reliability of the algorithm. The authors achieved a significant reduction in active power losses and a
substantial improvement in the voltage profile.

2.1 Power Flow Analysis

To determine the intricate electrical power system, load flow analysis is an appropriate method [25][26].
It is a useful tool for efficient planning and behavior monitoring, as well as for determining the ideal size and
placement of shunt devices to raise voltage levels, improve power factor, and reduce network power loss
[27][28].

2.2 The Flexible AC Transmission System (FACTS) Controllers

These are devices (controllers) that are used for improving the controllability and raising transferability
of electrical energy in a power network [22]. FACTS controllers are of several types and configurations, some
of which include: Static Var Compensator (SVC), Static Synchronous Compensator (STATCOM), Thyristor-
controlled series compensator (TCSC), Thyristor-controlled phase shifter (TCPS), and Static Synchronous
Series Compensator (SSSC)[29][30]. The FACTS controller considered in this study is the Static Var
Compensator.
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Figure 1. Static Var Compensator
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2.3 General Classification of FACTS Devices

FACTs devices are classified into four types. These are: Series Compensation Devices, Shunt
Compensation Devices, Series-Shunt Compensation, and Series-Series Compensation [31]-[33]. They are
further classified in Figure 2 below.

CLASSIFICATION OF FACTS DEVICES

SERIES SHUNT SERIES-SHUNT SERIES-SERIES
1 THYRISTOR
CONTROLLED 1 STATIC VAR
SERIES
CAPASITOR COMPENSATOR 1 UNIFIED
(SVO) 1 INTER LINE
(TCSC) POWER FLOW
2 STATIC POWER FLOW
2 STATIC SYNCHRONOUS CONTROLLER CONTROLLER
SYNCHRONOUS (UPFC)
SERIES COMPENSATOR
COMPENSATOR (STATCOM)
(SSSC)

Figure 2. Classes of FACTS Devices

3. MATERIALS AND METHODS

The test networks considered in this study are a 132/33 kV sub-transmission network and a 33/11 kV
distribution network located in the municipal area of Kaduna, Nigeria. The sub-transmission station comprises
4 x 60 MVA power transformers and 10 33 kV outgoing feeders. The distribution station consists of 11 15
MVA Power transformers, 7 7.5 MV A power transformers, and 2 2.5 MV A power transformers, located in 10
different 33/11 kV injection substations, with a total of 35 11 kV outgoing feeders. The network has a total
radial route length of 297.475km. The one-line diagram of the station is as shown in Figure 3. The relevant
network data chosen in this study were obtained from the Kaduna Electricity Distribution Company, Nigeria.
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Figure 3. One Line Diagram of 132/33kV Town I power station, Kaduna

3.1 Simulation Environment and Implementation:
The simulations were carried out using ETAP 19.0.1. The town's one power network’s grid energy
allocation is 115 MW, and the SVC sizing and placement were carried out using 5% of the rated network’s
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megawatt allocation capacity. Load flow analysis was performed for the two scenarios using ETAP's built-in
Newton-Raphson iterative load flow techniques, and the results for both scenarios were recorded accordingly.
Materials and data used include:

e Line and Bus data of the town’s one power network (as provided in Tables IV & V in the appendix

below)

e Network Capacity: 115 MW

o Software: ETAP 19.0.1

e SVCsize selected: 4 x 5.75 MVAR

e  Processor: Intel Core 17, 16GB RAM

e  Operating System: Windows 10 Pro

3.2 Load Flow analysis procedure of the Network using Newton-Raphson technique

The network is represented by an equivalent one-line diagram in a balanced distribution system, as shown
in Figure 3 above. The shunt capacitance of the line at distribution voltage levels is relatively small and,
therefore, can be neglected [34][35]. The procedure for the load flow techniques is given in Figure 4.
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Figure 4. A typical Bus Loading of a power system

About Figure 4 above, the power flow equations in polar form are formulated for an ‘n’ bus system in the form
of a bus admittance matrix Y as;

n
Iy = ZJ’UV;' )
=1
n
1i=Z|Yif||Vf|<9ij+51 )
=

Where i and j represent the bus's ith and jth, respectively.

The real and reactive power at the bus i is given by:

P +jQ; = Vil{ (3)
or I, =00 (4)

Vi

Substituting for I; Equation 4 above gives:
n

Pi_jQi=Z|Vi||Yij||Vj| < (8i +6;—6)) )
j=1
The real and imaginary parts is separated as:
n
Py =Z|Vi||Vj||Yij|COS(9ij—5i+5j) (6)
j=1
Q; = _Z?=1|Vi||vj||yij|5in(eij -8, +6)) (7N

Expansion of Equations 6 & 7 in Taylor’s series and ignoring higher order terms results in:
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The APi & AQi terms in equation (8) are the difference between the preset and calculated values of power

given as:
AP;= P;sch—p; )
AQi= Qis"—Q: (10)

Substituting Equation (8) into Equations (9) and (10), and calculating AVi and Adi to complete an iteration.
The calculated new values are used for the next iteration (k+1).

sED = 689 4 a5 (11)
V10D = 119 + Ay | ¥ (12)
The Newton-Raphson method of iteration can be implemented using the following algorithm:

Step 1: Read the system data, i.e., bus data, line data, etc.

Step 2: Create the bus admittance matrix Y},

Step 3: Select the initial phase angle and voltage magnitude settings to match the slack bus values. |V;| =
1.0 and &; = 0.0, in a load bus P;and Q; is specified. P’°and|V;| are definite for generator buses, the phase
angle is set at the slack bus angle, §; = 0.0

Step 4: Set the Iterative count at k = 0 and set the tolerance € < 0.0001

Step 5: Use the estimated value of |V;| = 1.0 and &; = 0.0 to determine the applied P¥and Q¥and an equal
number of AQFand AP} mismatch.

Step 6: Use the estimated value of |V;| = 1.0 and §; = 0.0 to determine the Jacobian elements of the matrix
Le. J1, J2,Jzsand J,.

Step 7: Solve for A|V;|and §;and update 6l.(k+1) = 6i(k) + A6i(k), [V; |0 = ;| 4 AV;] @,

Step 8: Check if the residuals AQF andAP} are < e. Stop the process if YES. If not, go back to step 5 to start
the next iteration with the update in step 7, and with the advanced iteration count of k = k + 1.

3.3 Static VAR Compensator (SVC) Device Placement
I. SVC Sizing: can be determined based on the reactive power (Q) requirement for voltage support [36][37].

Q=V¥X (13)

Equation (13) gives the equation to calculate the reactive power needed
Where;
Q is the reactive power provided by the SVC

V is the voltage at the point of connection
X is the reactance of the line where the SVC is connected

I1. SVC Placement: can be determined by minimizing the system’s total reactive losses [38][39].
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3.4 Research Approach
The modeling and simulation of the Town I power station network in Kaduna were carried out using data

obtained from Kaduna Electric on the Electrical Transient Analyzer Program (ETAP software).

1.  Simulation without Static Var compensator (SVCs):

Simulation without SVCs was carried out. The one-line diagram network shown in Figure 3 was modeled
and simulated in the ETAP software environment. Figure 4 illustrates how a virtual diagrammatic simulator
was created using the chosen network data as inputs.

The following steps are used to run the simulation:

Step 1: Selection of components: Power system components like transformers, distribution lines, buses, and
loads are selected from the ETAP library.

Step 2: Development of the Network: A single-line diagram was created using various elements from the
ETAP library.

Step 3: Mode of analysis: The Newton-Raphson Technique was employed for network modeling and
simulation due to its remarkable convergence properties.

Step 4: Simulation Output: The power flow was carried out, and the results were obtained.

2. Simulation with Static Var compensator (SVCs):

Using the same procedures outlined in the preceding section, a simulation with SVCs is conducted. The
SVCs are applied to weak buses identified in the network. The chosen network is then subjected to a computer
simulation to obtain results based on the data used as inputs [40][41].

4. RESULTS AND DISCUSSIONS

This section presents the results obtained from the simulation in tables and figures, which demonstrate
the impact of incorporating a Static Var Compensator (SVC) controller device into Town One's power network
in Kaduna. The simulations were carried out using the ETAP software environment.

Table 1. Bus Loading and Voltage Profile of Town One Network Before SVC Placement

Bus Voltage (pu) | Angle (Degree) Load Substation Injected kVAr
No. kW kVAr kW kVAr
1 1.0000 0.0000 0 0 116294 80248 0
2 0.9537 -4.35 35155.9 19078.7 0 0 0
3 0.939 -4.91 39176.2 24972.6 0 0 0
4 0.9546 -3.96 32067.1 19020.4 0 0 0
5 0.9888 -1.15 9624 4986 0 0 0
6 0.8662 -2.52 19669.8 10520.2 0 0 0
7 0.8292 -6.72 8210.5 3700.9 0 0 0
8 0.8175 -8.41 11285.6 4561.6 0 0 0
9 0.949 432 4490.2 2964.1 0 0 0
10 0.9499 -4.42 8558.5 51833 0 0 0
11 0.9187 -5.96 4427 2743.6 0 0 0
12 0.908 -7.37 4496.8 2423.9 0 0 0
13 0.9129 -7 3973.3 2141.1 0 0 0
14 0.9330 -4.89 6860.7 41003 0 0 0
15 0.9344 -4.89 7367.3 4723.7 0 0 0
16 0.9013 -7.86 68232 3612.5 0 0 0
17 0.8956 -7.54 3928.7 2426.2 0 0 0
18 0.9051 717 3358.4 1810.3 0 0 0
19 0.9325 -4.88 12122.1 7705.6 0 0 0
20 0.9105 -6.62 4147.1 2547.8 0 0 0
21 0.8932 -8.29 7889.9 4297 0 0 0
22 0.9345 -4.89 12588.7 8320 0 0 0
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Bus Voltage (pu) | Angle (Degree) Load Substation Injected kVAr
No. kW kVAr kW kVAr
23 0.9019 -7.44 6027.3 3717 0 0 0
24 0.8827 -9.58 6463.6 34435 0 0 0
25 0.9389 -3.89 14412.7 8822.5 0 0 0
26 0.904 -6.76 7464.6 4310.8 0 0 0
27 0.9083 -6.86 6857.1 3486.1 0 0 0
28 0.9404 -3.9 14398.6 8682.6 0 0 0
29 0.8993 -7.76 8960.5 44633 0 0 0
30 0.9152 -6.21 5348.1 3093.2 0 0 0
31 0.9489 -3.98 2764.4 1260.5 0 0 0
32 0.9794 -1.15 2355.6 1219.3 0 0 0
33 0.9887 -1.15 1000.4 513.9 0 0 0
34 0.9639 2.67 2349.4 1137.8 0 0 0
35 0.972 -2.49 995.1 482 0 0 0
36 0.9888 -1.15 881.6 449.7 0 0 0
37 0.9741 2.33 877.4 425 0 0 0
38 0.9782 -1.15 5305.5 2761.3 0 0 0
39 0.9623 2.7 2387.9 1156.5 0 0 0
40 0.9657 228 812.3 346 0 0 0
41 0.9338 -1.08 1999.1 1103.8 0 0 0
42 0.8971 -4.14 19745 956.3 0 0 0
43 0.8054 -6.67 4909.2 2377.6 0 0 0
44 0.8182 -6.79 31162 1231.6 0 0 0
45 0.793 -8.6 4263.3 1547.4 0 0 0
46 0.7929 -8.51 6693.4 2851.4 0 0 0
47 0.9782 -4.14 2800.5 1735.6 0 0 0
48 0.8938 -7.34 4424.8 2388.3 0 0 0
49 0.8954 -6.96 3895.9 2102.8 0 0 0
50 0.8869 -7.87 44803 2169.9 0 0 0
51 0.9001 -7.85 2267.6 1405.3 0 0 0
52 0.8807 -7.45 3859.6 2392 0 0 0
53 0.8909 -7.14 3304.8 1783.7 0 0 0
54 0.8734 6.4 3968.2 24593 0 0 0
55 0.8188 -7.83 2890 1791.1 0 0 0
56 0.8189 -6.57 42622 2300.5 0 0 0
57 0.8943 -7.39 3079.5 1908.5 0 0 0
58 0.8669 -7.23 2800.5 1735.6 0 0 0
59 0.7469 927 54532 29433 0 0 0
60 0.8868 -6.66 4548 5 2818.9 0 0 0
61 0.8952 -6.75 2794.7 1431.8 0 0 0
62 0.9002 -6.82 1543.8 790.9 0 0 0
63 0.8181 -6.61 47632 24403 0 0 0
64 0.8747 777 43743 2118.6 0 0 0
65 0.868 -7.73 4306.6 2206.4 0 0 0
66 0.8786 -5.99 3700.8 22935 0 0 0
67 0.9119 -6.21 1478.5 716 0 0 0
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Table 2. Bus Loading and Voltage Profile of Town One Network After Svc Placement
Bus Voltage (pu) | Angle (Degree) Load Substation Injected kVAr
No. kW kVAr kW KVAr
1 1.000 0.000 0 0 111539 232830 0
2 0.9988 -4.2 34398.6 9937.4 0 0 0
3 0.9881 -5.0 40621.1 15806 0 0 0
4 0.9786 4.0 33325.4 10117.1 0 0 0
5 0.9943 -1.2 9729.3 2390.6 0 0 0
6 0.9803 -4.6 20721.4 4518.1 0 0 0
7 0.9705 -8.0 8576.5 3862.1 0 0 0
8 0.998 9.5 12011.8 5809.7 0 0 0
9 0.9952 4.2 45433 3004 0 0 0
10 0.9928 4.2 8682.2 5212.1 0 0 0
11 0.9711 -5.9 4517.6 2799.7 0 0 0
12 0.9557 -7.0 4560.2 2459.2 0 0 0
13 0.9603 -6.6 4039.8 2177.2 0 0 0
14 0.9823 -5.0 7025.6 4161.1 0 0 0
15 0.9836 -5.0 7613.5 4852.6 0 0 0
16 0.9754 -1.7 6990.2 3701.9 0 0 0
17 0.993 7.4 4057.3 2509 0 0 0
18 1.0026 -7.1 3479.3 1875.8 0 0 0
19 0.9823 -5.0 11809.7 6713.8 0 0 0
20 0.9851 -6.6 4220.4 2600.2 0 0 0
21 0.9518 -7.9 7522.2 3436.3 0 0 0
22 0.9848 5.1 13970.3 6030.8 0 0 0
23 0.977 -1.5 6184.4 3816.3 0 0 0
24 1.0469 -10.2 7639.9 7112.2 0 0 0
25 0.967 -4.5 15558.5 6637.7 0 0 0
26 0.9551 1.2 7416 4045 0 0 0
27 1.0101 -7.9 8033.8 8245.1 0 0 0
28 0.9647 -4.0 14539.6 8723.8 0 0 0
29 0.9248 1.7 8976.7 4471.7 0 0 0
30 0.9866 -6.2 5476.8 3169.4 0 0 0
31 0.973 -1.2 2790.6 1272.4 0 0 0
32 0.9849 -1.2 2360.7 1221.2 0 0 0
33 0.9942 2.7 1002.6 5147 0 0 0
34 0.9694 2.5 2354.5 1140.3 0 0 0
35 0.9776 -1.2 997.3 483 0 0 0
36 0.9943 2.3 883.5 450.4 0 0 0
37 0.9797 -1.4 879.4 425.9 0 0 0
38 0.9857 2.9 5413 1611 0 0 0
39 0.9699 -2.5 2395 1159.9 0 0 0
40 0.9732 -3.9 814.7 347.1 0 0 0
41 0.963 1.4 2079.2 1502.1 0 0 0
42 0.9944 -8.1 2050.1 2669.9 0 0 5.75
43 0.9586 -8.1 5194.7 2515.9 0 0 0
44 0.9606 9.6 3285.3 1298.4 0 0 0
45 0.9767 -10.4 4562.7 1656 0 0 0
46 0.9905 -5.9 7202.8 8953.2 0 0 5.75
47 0.9586 -4.5 2800.5 1735.6 0 0 0
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Bus Voltage (pu) | Angle (Degree) Load Substation Injected kVAr
No. kW KVAr kW kVAr
48 0.9462 -6.6 4513.8 2436.3 0 0 0
49 0.9434 -7.7 3967.5 2141.5 0 0 0
50 0.9686 1.1 4622.1 2238.6 0 0 0
51 0.9743 7.4 2333.1 1445.9 0 0 0
52 0.9828 -71 4013.4 24873 0 0 0
53 0.9893 -6.4 34323 1852.6 0 0 0
54 0.9578 -8.2 4097.1 2539.1 0 0 0
55 0.9232 -7.9 2926.2 961.8 0 0 0
56 0.9414 74 4458.9 2406.7 0 0 0
57 0.9698 213 3169.8 1964.5 0 0 0
58 0.9439 =203 2882.7 1786.5 0 0 0
59 0.9964 -7.1 5973.6 11161.3 0 0 5.75
60 0.9183 272 4602.5 2852.4 0 0 0
61 0.9272 -7.9 2701.5 1137.2 0 0 0
62 1.0025 -16.0 1606.3 822.9 0 0 0
63 0.9878 -7.7 5075.8 11466.2 0 0 5.75
64 0.9092 -7.6 4430.8 2146 0 0 0
65 0.9027 -6.0 4362.4 22349 0 0 0
66 0.9518 -6.2 3804.8 2358 0 0 0
67 0.9834 -5.3 1519.9 736.1 0 0 0
80
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Table 3. Comparison of results before and after SVC placement

Before Reconfiguration with SVC

After Reconfiguration with SVC

Tie Switches 42,46, 59, 63
Power Loss (kW) 8527 6751
Power Loss Reduction (%) 26.30 20.82
Minimum Voltage (pu) 0.743 1.02

4.1 Discussion

The results of the simulations conducted for the Town one 67 — bus network with and without the SVCs
are shown in Figure 7, this result represents the voltage magnitude and phase angles of the buses as indicated
in Table I and II above. The total active power loss experienced by the network with and without the SVCs is
shown in Figure 8. Table III contains the comparison of the results for the two scenario, i.e. with and without

the SVCs placement.

4.1.1 Simulation without SVCs
The results of the simulations carried out for the 67 — bus town one network without the SVCs showed
that, some of the buses are operating outside the acceptable limit of 0.95 pu to 1.05 pu. The buses operating
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outside the acceptable limits are bus 7, bus 8, bus 9, and 46 others with the minimum load bus voltage of 0.743
pu. The real and reactive power loss of 8527 kW and 23535 kVAr was experienced by the network.

4.1.2 Simulation with SVCs

The simulations of the network with the SVCs showed a remarkable improvement of voltage profile, as
well as significant reduction of power loss as seen Figure 7, 8, and Table 2 and 3. After the placement, the
minimum load bus voltage improved from 0.743 pu — 1.02 pu and also the active power loss reduced from
8527 kW — 6751 kW. The weakest buses identified in network are bus 42, 46, 59, and 63. In order to understand
the impact of placement of the FACTs device fully, SVCs of 4 x 5.7SMVAR rating are placed on the weakest
buses in the network.

5. CONCLUSION

The existing 67-bus, 132/33/11 kV, 115 MW Town One Power Network was successfully modeled and
analyzed using the ETAP software environment. Simulation results of the existing network indicated that
approximately 51 buses operated outside the acceptable voltage range of 0.95 — 1.05 pu. The minimum load
bus voltage was found to be 0.743 pu, with total active and reactive power losses of 8527 kW and 23535 kVAr,
respectively. To mitigate these losses and enhance network performance, a static VAR compensator (SVC)
rated at 4 x 5.75 MV Ar was implemented and optimally placed at four of the weakest buses. Load flow analysis
incorporating the SVCs demonstrated an improvement in the minimum voltage level from 0.743 pu to 1.02 pu,
and a reduction in active power loss from 8527 kW to 6751 kW, representing a 20.82% decrease. As SVC
performance is generally influenced by distance, future work may consider the integration of more advanced
FACTS devices such as STATCOM or UPFC to achieve improved voltage regulation and overall network
efficiency
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APPENDIX A
Table IV. Line Data of Town I Power Station Network Line No. | From Bus | To Bus | R (ohms) | X(ohms)
Line No. | From Bus | To Bus | R (ohms) X(ohms) 24 38 39 0.0696 0.1056
1 1 2 0.265 0.131 25 38 40 0.1432 0.2171
2 6 7 0.264 0.131 26 41 42 0.1323 0.2006
3 1 3 0.494 2.023 27 7 43 0.1178 0.1786
4 6 8 0.264 0.4127 28 7 44 0.1826 0.2769
5 1 4 0.264 1.247 29 8 45 0.0799 0.1211
6 9 47 3.159 0.317 30 8 46 0.1144 0.1734
7 1 5 0.265 0.0953 31 47 11 0.0582 0.0882
8 10 12 0.211 0.127 32 12 48 0.0716 0.1085
9 10 13 0.265 0.125 33 13 49 0.265 0.131
10 14 16 0.323 0.131 34 16 50 0.264 0.131
11 15 17 0.264 1.247 35 16 51 0.494 2.023
12 15 18 3.159 0.317 36 17 52 0.264 0.4127
13 19 20 0.265 0.0953 37 18 53 0.264 1.247
14 19 21 0.211 0.127 38 20 54 3.159 0.317
15 22 23 0.265 0.125 39 21 55 0.265 0.0953
16 22 24 0.323 0.131 40 21 56 0211 0.127
17 25 26 0.0639 | 0.0969 4l 3 57 0.265 0125
18 25 27 0.1361 | 02063 0 3 53 0323 0131
19 28 29 0.1335 | 02024 3 4 59 0.264 1247
20 28 30 0.0347 | 0.0527 44 26 60 3159 0317
21 32 34 0.0172 | 00261 45 26 61 0.0639 | 0.0969
22 33 2 0.1138 | 01724 46 27 62 0.1361 | 0.2063
23 36 37 0.1836 0.2782
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Line No. | From Bus | To Bus | R (ohms) | X(ohms) Bus No. P (kW) Q (kVAr)

18 3359 1810

47 27 63 0.1335 0.2024 o T CRER
48 29 64 0.0347 0.0527 20 4147 2548
49 29 65 0.0172 | 0.0261 21 7615 4325
22 6068 4126

50 30 66 0.1138 0.1724 23 3107 1922
51 30 67 0.1836 0.2782 24 6464 3443
25 7519 4860

52 4 25 0.0696 0.1056 2% 1642 2865

53 2 10 0.1432 0.2171 27 1558 797.5
28 14623 8799

54 2 9 0.1323 0.2006 39 2001 2163
55 5 36 0.265 0.131 30 5348 3093
31 2764 1260

56 3 22 0.264 0.131 5 235 570

57 5 38 0.494 2.023 33 1000 513.0
58 3 15 0.264 0.4127 34 2349 1138
35 995.1 482

59 2 6 0.264 1.247 36 881.6 4497
60 3 19 3.159 0317 37 887.4 425
38 5364 2791

61 5 32 0.265 0.0953 39 2388 1157
62 3 14 0.211 0.127 40 8123 346
41 1999 1104

63 5 33 0.265 0.0953 D) 1975 9563
64 4 28 0.211 0.127 43 5031 2437
44 3194 1262

65 4 31 0.265 0.125 15 570 BT
66 38 41 0.323 0.131 46 6861 2923
47 865.4 338

Table V. Bus Data of Town I Power Station Network jg ;‘gég ﬁgg
Bus No. P (kW) Q (kVAr) 50 4480 2170
1 115000 42539 51 2268 1405

5 2617 3876 52 3860 2392

3 037 3798 53 3305 1784

7 662 4436 54 3968 2459

s 3389 1641 55 2890 1791

6 11832 4751 36 4347 2346

7 4570 2832 57 3080 1909

g 2667 4678 58 2801 1736

5 458 1364 59 5453 2943

10 8628 2980 60 4548 2819

11 4435 2750 61 2795 1432

12 4498 2425 62 1544 790.9

13 3974 2142 63 4763 2440

14 6861 4100 64 4374 2119
15 3978 2718 65 4307 2206

16 6823 3613 66 3701 2294

17 3929 2426 67 1478 716
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