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 One kind of electric motor that runs on direct current (DC) is called a DC 
(Direct Current) motor.  This motor uses the interaction of electric current and 
magnetic fields to transform electrical energy into mechanical energy, or 
motion.  Applications requiring exact speed and torque control frequently use 

DC motors.  By minimizing errors (differences between setpoints and actual 
values), proportional-integral-derivative (PID) control is a control technique 
used to govern dynamic systems to reach desired conditions (setpoints).  PID 
creates an ideal control signal by combining three elements. The Modified 
Tornado optimizer-based Coriolis force (TOC) method for DC motor control 
is presented in this article.   The paradigm for the TOC approach is the 
Tornado Optimizer-Based Coriolis Force Algorithm, a metaheuristic that 
leverages tornado dynamics and the effect of the Coriolis force to address 

difficult optimization problems.   According to this study, the TOC method 
can be improved by implementing the Levy Flight methodology.   According 
to the results of tests employing optimal functions, the LTOC technique may 
broaden exploration and exploitation.   Meanwhile, when the LTOC technique 
is applied as a DC motor controller, the optimal overshoot response value is 
achieved. The LTOC approach outperforms the TOC method by 0.014% and 
0.037%, respectively, in terms of ITSE and ITAE values. 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION 

Electrical energy efficiency is the ability of a device, system, or process to use electrical energy optimally 

while minimizing waste [1]-[3]. Energy efficiency means getting the maximum result (output) from the 

electrical energy used (input). The higher the energy efficiency, the less energy is wasted in heat or other forms. 

By implementing the principles of electrical energy efficiency, we save money and contribute to environmental 

preservation and future energy sustainability [4]-[6]. DC motors are one type of electric motor that is very 

important in various applications because of their ability to be controlled precisely. Despite some 

disadvantages, such as higher maintenance requirements and costs, DC motors remain the primary choice in 

many industrial, household, and transportation applications [7]-[9]. With the advancement of technology, DC 

motors continue to evolve. DC motors are used in various applications because of their flexibility and 

controllability [10]-[13]. Some examples of DC motor applications are: Use in automated devices such as 
automatic garage doors, Production machinery that requires precise speed and torque control, Electric vehicles 

such as golf carts, electric bicycles, and electric trains, and used in robots to drive robotic arms or wheels [14]-

[17]. 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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PID controllers are very popular because of their ability to provide fast, accurate, and stable responses to 

changing system conditions [18] [19]. This control is widely used in various fields, including industry, robotics, 

automotive, and electronics. PID control is a potent and flexible tool for managing dynamic systems [20]-[22]. 

PID controllers can provide fast, accurate, and stable responses by combining proportional, integral, and 

derivative components. Despite some limitations, PID remains the primary choice in many modern industrial 

and technological applications [23] [24]. 
The development of AI has changed the world in unprecedented ways [25]-[28]. From simple applications 

like chatbots to advanced technologies like autonomous vehicles and generative AI, AI continues to advance 

incredibly [29]-[32]. However, to ensure AI is used responsibly, we must address the challenges of ethics, 

privacy, and social impact [33]-[36]. With the continued development of supporting technologies such as big 

data, cloud computing, and quantum computing, AI will continue to open new opportunities and shape a more 

innovative, more efficient, and more inclusive future. 

The development of Proportional-integral-derived (PID) control with the integration of artificial 

intelligence (AI) has become an essential trend in modern control systems. This combination significantly 

improves performance, flexibility, and adaptability to complex dynamic conditions. The integration of 

Artificial Intelligence (AI) into PID Control has opened new opportunities to improve the performance, 

flexibility, and adaptability of control systems. This technology allows systems to handle complex dynamics, 

uncertainties, and real-time changes in operating conditions. Despite some challenges in implementation, this 
development shows excellent potential for revolution in various fields such as industry, robotics, renewable 

energy, and automotive. Several studies have been presented on the integration of PID with AI, such as 

reinforcement learning [37], GEO algorithm [38], beetle optimization algorithm [39], cooperation search 

algorithm [40], Symbiotic Organisms Search Algorithm [41], hybrid butterfly particle swarm optimization 

[42], gazelle optimizer [43], slap swarm algorithm [44], Fuzzy [45], and Archimedes Optimization Algorithm 

[46]. Although some researchers have developed PID approaches with AI. But PID parameter optimization 

with AI can still be explored further to get the best optimization value. 

This paper introduces a new optimization method, the Levy Tornado optimizer with Coriolis force 

(LTOC), which is used for PID parameter estimation in the context of DC motor control. The basic concept 

and principle of LTOC is from the Tornado optimizer with Coriolis force (TOC), inspired by nature, based on 

the observation of the tornado cycle process and how thunderstorms and hurricanes evolve into tornadoes using 
the Coriolis force [47]. The Coriolis force is applied to the windstorm which directly evolves to form a tornado. 

The contributions of this study are:  

a) Improvement of the TOC method by modifying it to combine it with the Levy flight method  

b) Application of the LTOC method to DC motors.  

c) Validation of the performance of LTOC with TOC using benchmark functions and DC motor 

performance. 

The second section of this paper discusses the DC motor and LTOC approach. Results and discussion make up 

the third section. Conclusions are drawn in the final section. 

 
2. METHOD 

2.1. Tornado optimizer-based Coriolis force 

The tornado optimizer with Coriolis force (TOC) posits the existence of numerous windstorms, certain 

thunderstorms, and precipitation events, wherein windstorms and thunderstorms produce tornadoes, and 

thunderstorms arise from windstorms. The subsequent section presents the comprehensive mathematical 

models of the suggested TOC optimizer. The proposed TOC optimizer is a population-based algorithm; thus, 

the initial stage in the optimization process involves the random generation of a preliminary population of 

design variables (i.e., windstorms and thunderstorms) between specified upper (u) and lower (l) bounds.  

The optimal individuals (i.e., windstorms and thunderstorms), evaluated based on a minimal cost function 

or, in certain instances, maximal fitness, are chosen to constitute tornadoes, or a singular tornado if only one 

exists. A selection of effective individuals (i.e., cost function values around the optimal solution) is designated 
as thunderstorms. In contrast, all other individuals are referred to as windstorms, which ultimately transform 

into thunderstorms and tornadoes. The initial stage in initiating TOC as an optimization algorithm involves the 

creation of a population matrix of n persons (i.e., population size) within a d-dimensional search space (i.e., 

problem dimension). In this context, the location of each windstorm, thunderstorm, and tornado signifies a 

potential solution to the optimization problem. Equation 21 delineates the method for generating the initial 

population of windstorms, thunderstorms, and tornadoes inside the search domain using a uniform random 

initialization process. 

𝑋𝑖,𝑗 = 𝐼𝑗 + 𝑟𝑎𝑛𝑑 × (𝑢𝑗 − 𝐼𝑗)  (1) 
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𝑛𝑡𝑜 = 𝑛𝑡 + 𝑛𝑜  (2) 

𝑛𝑤 = 𝑛 − 𝑛𝑡𝑜  (3) 

𝑦 = [𝑦𝑤 , 𝑦𝑡 , 𝑦𝑜]𝑛𝑥𝑑 = [

𝑦1,1 𝑦1,𝑑 𝑦1,𝑚
𝑦𝑖,1 𝑦𝑖,𝑑 𝑦𝑖,𝑚
𝑦𝑁,1 𝑦𝑁,𝑑 𝑦𝑁,𝑚

]

𝑁.𝑑

  (4) 

𝑦𝑤 = [𝑦𝑤1, 𝑦𝑤2, … . . 𝑦𝑤𝑖 , …𝑦𝑤𝑛]  (5) 

𝑦𝑡 = [𝑦𝑡1, 𝑦𝑡2,… . . 𝑦𝑡𝑖 , …𝑦𝑡𝑛]  (6) 

𝑦𝑜 = [𝑦𝑜1, 𝑦𝑜2, … . . 𝑦𝑜𝑖 , …𝑦𝑜𝑛]  (7) 

Where 𝑋𝑖,𝑗 represents the starting value of the ith individual in the jth dimension. 𝑟𝑎𝑛𝑑 is a randomly generated 

number, and  𝐼𝑖,𝑗  is another randomly generated number. 𝑛𝑡 denotes the quantity of thunderstorms, whereas 𝑛𝑜 

signifies the number of tornadoes, which is established as one in this study. 𝑛𝑤 represents the quantity of 

windstorms, whereas 𝑛 it signifies the overall population size.  𝑦𝑖,𝑗  represents the ith candidate individual at 

dimension 𝑗, which may be a windstorm, a thunderstorm, or a tornado. d represents the quantity of design 

variables (i.e., problem dimension), while the components 𝑦𝑤 , 𝑦𝑡, and 𝑦𝑜 signify the populations of tornadoes, 

thunderstorms, and windstorms, respectively. 𝑦𝑤1 denotes the ith windstorm, 𝑦𝑡1 signifies the 𝑖th thunderstorm, 

and𝑦𝑜1 the ith tornado. 

 

Fitness evaluation 

The fitnes value cost (i.e., cos) is calculated for each windstorm and thunderstorm by assessing the cost value 

as demonstrated below: 

𝑓𝑖𝑡𝑖 = 𝑓𝑖𝑡(𝑦𝑖 , 1, 𝑦𝑖 , 2, 𝑦𝑖 , 3,⋯ , 𝑦𝑖 , 𝑑)  (8) 

𝑓𝑖𝑡⃗⃗⃗⃗  ⃗ =

[
 
 
 
 
𝑓𝑖𝑡𝑖
⋮

𝑓𝑖𝑡𝑖
⋮

𝑓𝑖𝑡𝑖]
 
 
 
 

𝑛×1

=

[
 
 
 
 
𝑓𝑖𝑡(𝑦𝑖)

⋮
𝑓𝑖𝑡(𝑦𝑖)

⋮
𝑓𝑖𝑡(𝑦𝑛)]

 
 
 
 

𝑛×1

  (9) 

where 𝑓𝑖𝑡𝑖  denotes the cost value of the i-th individual. where 𝑓𝑖𝑡⃗⃗ ⃗⃗  ⃗  is a vector of the obtained fitness functions, 

and  𝑓𝑖𝑡𝑖   denotes the value of obtaining the fitness function based on the i-th individual. The fitness function 

value measures the quality of candidate solutions in meta-heuristic algorithms such as TOC. The population 

member that produces the best evaluation value for the fitness function is called the best population member. 

This population member is updated in each round of the proposed optimizer iteration as the candidate solutions 

are updated. In the proposed optimizer simulation, individuals remain at their locations if they are better than 

the new location. 

Evolution of windstorms 

Windstorms typically progress towards tornadoes and thunderstorms, influenced by their volume and intensity 
of development.  This indicates that windstorms develop into tornadoes more frequently than thunderstorms. 

𝑦𝑤 = [𝑦𝑤1
 𝑦𝑤2 ⋯ 𝑦𝑤𝑖

⋯ 𝑦𝑤𝑛𝑤
] = [

𝑦𝑤1,1
𝑦𝑤1,2 ⋯ 𝑦𝑤1,𝑑  

𝑦𝑤2,1
𝑦𝑤2,2 ⋯ 𝑦𝑤2,𝑑  

⋮    ⋮        ⋮      ⋮
𝑦𝑤𝑛𝑤,1

𝑦𝑤𝑛𝑤,2 ⋯ 𝑦𝑤𝑛𝑤,𝑑  

]

𝑛𝑤×𝑑

  (9) 

𝑓𝑘 = 𝑓𝑖𝑡𝑘 − 𝑓𝑖𝑡𝑛𝑡𝑜
+ 1  (10) 

𝑛𝑤𝑘
= ⌊{|

𝑓𝑘

∑ 𝑓𝑘
𝑛𝑡𝑜
𝑘=1

| × 𝑛𝑤}⌉⌉⌉  (11) 

Where k = 1, 2, 3, … ,𝑛𝑡𝑜, and 𝑓𝑘  denotes the cost value of the kth thunderstorm associated with a tornado. 

𝑛𝑤𝑘
is the number of tornadoes that evolved or were assigned to a particular thunderstorm or tornado. 
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Windstorm velocity influenced by the Coriolis effect 

Along with extensive atmospheric turbulence, which does not necessitate tornadoes to travel along a linear 

path, a triadic equilibrium exists between the Coriolis force, the centrifugal force, and the pressure gradient 

force. The tornado velocity gradient responsible for the formation of thunderstorms and tornadoes can be 

recognized. 

𝑣𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {

𝜂 (𝜇𝑣𝑖
𝑡⃗⃗  ⃗ − 𝑐

(𝑓×𝑅𝑙

2
+ √𝐶𝐹𝑙)   𝑟𝑎𝑛𝑑 ≥ 0.5

𝜂 (𝜇𝑣𝑖
𝑡⃗⃗  ⃗ − 𝑐

(𝑓×𝑅𝑙

2
+ √𝐶𝐹𝑙)   𝑟𝑎𝑛𝑑 ≤ 0.5

  (12) 

Where i= 1, 2, 3, . . . ,𝑛𝑤, is the tornado index for a population of size 𝑛𝑤, 𝑣𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   states the new velocity vector 

of the tornado to-i, 𝑣𝑖
𝑡⃗⃗  ⃗ defines the current velocity vector of the tornado to-i, rand refers to random numbers 

generated with a uniform distribution in the scope [0, 1], 𝜂 refers to random numbers generated with a uniform 

distribution in the scope 

𝜂 =
2

|2−𝑥−√𝑥2−4𝑥|
  (13) 

Where χ identify the tornado acceleration rate 

𝜇 = 0.5 +
𝑟𝑎𝑛𝑑

2
  (14) 

𝜇 = 0.5 +
𝑟𝑎𝑛𝑑

2
  (15) 

𝑅𝑙 =
2

1+𝑒
(−𝑡+

𝑇
2
)/2

  (16) 

𝑅𝑙 =
−2

1+𝑒
(−𝑡+

𝑇
2
)/2

  (17) 

Where rand represents random numbers generated with a uniform distribution over the range [0, 1]. Where t 

and T are the current iteration index and the maximum number of iterations. 

𝑐 = 𝑏𝑟 × 𝛿1 × 𝑤𝑟   (18) 

𝛿1 = 𝑓𝑑[2 × 𝑟𝑎𝑛𝑑  (19) 

𝑤𝑟 =
2×𝑟𝑎𝑛𝑑−(𝑟𝑎𝑛𝑑+𝑟𝑎𝑛𝑑)

𝑤𝑚𝑖𝑛+𝑟𝑎𝑛𝑑×(𝑤𝑚𝑎𝑘𝑠−𝑤𝑚𝑖𝑛)
  (20) 

𝑓 = 2. Ω × sin(−1 + 2 ∙ 𝑟𝑎𝑛𝑑)  (21) 

𝐶𝐹𝑙 =
(𝑓2×𝑅𝑙

2)

4
− 𝑅𝑙 ×  𝜙𝑖

𝑡  (22) 

𝐶𝐹𝑙 =
(𝑓2×𝑅𝑟

2)

4
− 𝑅𝑟 ×  𝜙𝑖

𝑡  (23) 

 𝜙𝑖
𝑡 =  𝑦𝑜𝜁

𝑡 −  𝑦𝑤𝑖
𝑡   (24) 

re 𝑏𝑟 is a constant equal to 100000. 𝑓𝑑  represents the value function 1, and -1 represents a change of sign. rand 

is an abbreviation for random values generated in a range [0, 1]. 𝑤𝑚𝑖𝑛  dan 𝑤𝑚𝑎𝑘𝑠  is a fixed value of each 1,0 

and 4,0. Ω is an abbreviation for the angular rate of rotation equal to,7292115E-04 radian 𝑠−1 rand is a random 

number generated with a uniform distribution in the range [0, 1].  𝜙𝑖
𝑡  is a component of the pressure gradient 

force (PGF) which is normal to the current direction of the i-th tornado at the t-th iteration 

ζ = ⌈𝑛𝑜 × 𝑟𝑎𝑛𝑑(1, 𝑛𝑜)⌉  (25) 
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 𝜙𝑖
𝑡 = {

−𝜙𝑖
𝑡  𝑠𝑔𝑛(𝑅𝑖) ≥ 0 , 𝑠𝑖𝑔𝑛(−𝜙𝑖

𝑡 ) ≥ 0

−𝜙𝑖
𝑡 𝑠𝑔𝑛(𝑅𝑟) ≤ 0 , 𝑠𝑖𝑔𝑛(−𝜙𝑖

𝑡 ) ≤ 0

𝜙𝑖
𝑡  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (26) 

 𝐶𝐹𝑖
𝑡 = {

− 𝐶𝐹𝑖
𝑡 𝑠𝑔𝑛( 𝐶𝐹𝑖

𝑡) < 0. 𝑟𝑛𝑎𝑑 ≥ 0.5

 𝐶𝐹𝑖
𝑡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (27) 

 𝐶𝐹𝑟
𝑡 = {

− 𝐶𝐹𝑟
𝑡 𝑠𝑔𝑛( 𝐶𝐹𝑟

𝑡) < 0. 𝑟𝑛𝑎𝑑 ≥ 0.5

 𝐶𝐹𝑟
𝑡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (28) 

Where 𝑟𝑎𝑛𝑑(1, 𝑛𝑜) implements a uniformly generated random value vector with a uni-form distribution in the 

interval [0, 1].  

𝑦𝑤𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑦𝑤𝑖

𝑡⃗⃗ ⃗⃗  ⃗ + 2 × 𝛼 × (𝑦𝑜𝑖
𝑡⃗⃗⃗⃗  ⃗ − 𝑟𝑎𝑛𝑑𝑤) + 𝑣𝑖

𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (29) 

𝑟𝑎𝑛𝑑𝑤 = 𝑦𝑤𝑖
⃗⃗ ⃗⃗  ⃗(⌊𝑛𝑤 × 𝑟𝑎𝑛𝑑(1, 𝑛𝑤)⌋ + 1)  (30) 

𝛼 = |2𝑎𝑦 ∙ 𝑟𝑎𝑛𝑑 − 𝑟𝑎𝑛𝑑|  (31) 

𝑎𝑦 =
(𝑇−(𝑡𝑎0/𝑇))

𝑇
  (32) 

Where 𝑦𝑤𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  dan 𝑦𝑤𝑖

𝑡⃗⃗ ⃗⃗  ⃗ defines the next and current position vectors of the i-th tornado at the i-th iteration (t+ 1) 

dan t, each, 𝑦𝑜𝑖
𝑡⃗⃗⃗⃗  ⃗ defines the current position vector of the i-th tornado at iteration t, (𝑦𝑜𝑖

𝑡⃗⃗⃗⃗  ⃗ − 𝑟𝑎𝑛𝑑𝑤) shows the 

difference between the evolution of a tornado into a tornado and the random formation of wind, 𝑟𝑎𝑛𝑑𝑤 dan 𝛼 

is a random value. 𝑟𝑎𝑛𝑑𝑤 is the index vector for a randomly selected tornado. 𝑎𝑦 represents the exponential 

parameter. 𝑎0 shows constant value 2,0 and found after extensive analysis. 

𝛾𝜖(0, 𝜌 × 𝑥), 𝜌 > 0.5 (33) 

𝑦𝑤
𝑗+∑ 𝑘

𝑛𝑤
1

𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑦𝑤
𝑗+∑ 𝑘

𝑛𝑤
1

𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 2 × 𝑟𝑎𝑛𝑑 × (𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ − 𝑦𝑤

𝑗+∑ 𝑘
𝑛𝑤
1

𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) + 2 × 𝑟𝑎𝑛𝑑 × (𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ − 𝑦𝑤

𝑗+∑ 𝑘
𝑛𝑤
1

𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (34) 

 

Where x is the current distance between the tornado and the thunderstorm, 0.5 < 𝜌 < 2 where 2 is probably 

the optimal value of 𝜌, and 𝛾 according to random numbers between 0 and 𝜌 × 𝑥 which is uniformly distributed 

or selected from a reasonable distribution.  𝑦𝑤
𝑗+∑ 𝑘

𝑛𝑤
1

𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  dan 𝑦𝑤
𝑗+∑ 𝑘

𝑛𝑤
1

𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents the next and current position 

vectors of a tornado developing into a thunderstorm at iteration (t+ 1) and t, respectively, 𝑦𝑡𝑖
𝑡⃗⃗⃗⃗  represents the 

current position vector of the i-th thunderstorm at the t-th iteration, and 𝑟𝑎𝑛𝑑 is a random number generated 

between 0 and 1 with uniform distribution. 

 

Evolution of a thunderstorm into a tornado 

During the research and exploitation phase of the planned optimizer, the new location of the Thunderstorm 

evolving into a tornado. 

𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ = 𝑦𝑡𝑖

𝑡⃗⃗⃗⃗ + 2 × 𝛼 × (𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ − 𝑦𝑜𝜁

𝑡⃗⃗ ⃗⃗  ⃗) + 2 × 𝛼 × (𝑦𝑡𝑝⃗⃗ 
𝑡⃗⃗⃗⃗  ⃗ − 𝑦𝑡𝑖

𝑡⃗⃗⃗⃗ )  (35) 

𝑝 = ⌊𝑛𝑡 ∙ 𝑟𝑎𝑛𝑑(1, 𝑛𝑡) + 1⌋  (36) 

Where 𝑦𝑡𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   dan 𝑦𝑡𝑖

𝑡⃗⃗⃗⃗  represents the next and current position vectors of the development of a thunderstorm into 

a tornado at an iteration (t+ 1) and t, respectively, 𝑦𝑜𝜁
𝑡⃗⃗ ⃗⃗  ⃗ identify position vectors for tornadoes at random indices 

ζ, dan 𝑦𝑡𝑝⃗⃗ 
𝑡⃗⃗⃗⃗  ⃗ identify position vectors for thunderstorms.  

 

Random formation of tornadoes 

To enhance its exploration capabilities, the suggested TOC-based optimization defines a stochastic tornado 

formation mechanism.  More specifically, TOC is able to avoid immature convergence and local solutions due 
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to the random tornado creation.  In essence, tornadoes develop at random places as they transform into 

thunderstorms or into tornadoes, producing mature tornadoes at various locations.  In order for this process to 

take place, tornadoes and thunderstorms must be inspected to determine whether they are sufficiently close to 

the tornado. 

𝑦𝑤𝑖
𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑦𝑤𝑖

𝑡⃗⃗ ⃗⃗  ⃗ − (2 × 𝑎𝑦 × (𝑟𝑎𝑛𝑑 × (𝑙 − 𝑢) − 𝑙)) × 𝛿2 

‖𝑦𝑤𝑖
𝑡⃗⃗ ⃗⃗  ⃗ − 𝑦𝑜𝑖

𝑡⃗⃗⃗⃗  ⃗‖ < 𝑣 (37) 

𝛿2 = 𝑓𝑑⌊2 × 𝑟𝑎𝑛𝑑 + 1⌋ (38) 

𝑣 = (0.1𝑒(−0.1(𝑡/𝑇)0.1))
16

 (39) 

𝑦𝑤
𝑗+∑ 𝑘

𝑛𝑤
𝑖=1

𝑡+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑦𝑤
𝑗+∑ 𝑘

𝑛𝑤
𝑖=1

𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   − (2 × 𝑎𝑦 × (𝑟𝑎𝑛𝑑 × (𝑙 − 𝑢) − 𝑙)) × 𝛿2

 (40)

‖𝑦𝑤𝑖
𝑡⃗⃗ ⃗⃗  ⃗ − 𝑦𝑡𝑖

𝑡⃗⃗⃗⃗ ‖ < 𝑣 

Where l and u refer to the lower and upper bounds of the search area, respectively. rand is a random number 

that is systematically inserted into the range [0, 1]. 𝛿2 is the change in sign defined as given in Eq. 38 ‖∙‖ refers 

to the norm operator, and is an exponential function defined as shown in Eq.. 39, capable of producing small 

numbers. 𝑓𝑑  is a function of the values 1 and -1 to represent a change in sign. t represents the current iteration 

index. T represents the maximum iteration index.  

 

2.2. Lévy Flight Optimization 

The step length in Levy Flight is determined by a heavy-tailed probability distribution, like the Levy or 

Pareto distributions.  In other words, there is a slight chance of taking a really long stride, but most steps are 

short.  In addition to numerous other uses, this model is frequently used to simulate mathematical optimization, 

animal behavior, and natural events. 

𝐿(𝑋𝑗) ≈ |𝑋𝑗|
1−𝛼

     (41) 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
1

𝜋
∫ 𝑒𝑥𝑝(−𝛾𝑞𝛼) cos  (𝑞𝑥)

∞

0
 𝑑𝑞       (42) 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
𝛾Γ(1+𝛼) sin(

𝛼𝜋

2
)

𝜋𝑋(1+𝛼)  , 𝑥 → ∞   (43) 

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑥

|𝑦|1/𝛼   (44) 

𝑥 = 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑥
2)   (45) 

𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝑥
2)   (46) 

𝜎𝑥   = [
Γ(1+𝛼) sin(

𝛼𝜋

2
)

Γ(
(1+𝛼)

2
)𝛼 2

(𝛼−1)
2

] 1/𝛼 𝑎𝑛𝑑 𝜎𝑥  = 1 dan 𝛼 = 1.5    (47) 

Where Γ is Gamma function. Mantegna presented a precise and quick algorithm to produce stable Lévy flight 

processes for the index distribution's absolute values (𝛼) [0.3 and 1.99]. 𝑥 and 𝑦 are two normally distributed 

variables with standard deviations 𝜎𝑥 and 𝜎𝑦. α is the distribution index and controls the scale properties of the 

process while 𝛾 selects the scale units.   

 

2.3. DC Motor 

The DC motor has two control modes and all the characteristics of a single control system.  The field 

current in the first mode, the armature control mode, is constant.  However, it is known as a field control model 
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and has a fixed armature current.  The features of a DC motor, such as resistance, inductance, and reverse 

electromotive force voltage, are depicted in Figure 1. Armature resistance and inductance are represented by 

𝑅𝑎 and 𝐿𝑎, respectively. The electromotive force in reverse is 𝑒𝑏. 

𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑎 . 𝑠). 𝐼𝑎(𝑠) + 𝑒𝑏(𝑠) (48) 

𝑒𝑏(𝑠) = 𝐾𝑏𝜔(𝑠) (49) 

 

 

Figure 1. Illustration DC motor circuit 

 

Table 1. DC motor parameters 

Parameter Value 

𝐾𝑏 0.05 V.s 

𝐿𝑎 2  H 

𝑅𝑎  0.4 Ω 

𝐽 0.0004 kg.m2 

𝐵 0.0022 N ⋅ m ⋅ s∕rad 

𝐾𝑀  0.015 N ⋅ m∕A 
 

2.4. Proposed Levy Tornado Optimizer with Coriolis Force (LTOC) 

The stability of the exploration and exploitation regions. Finding a new equilibrium between improved 

exploration and exploitation is the aim of this work.Tthis study suggests enhancements to the TOC method by 

incorporating the Levy Flight approach. Eq. 44 is put into Eq. 35 to become Eq. 50. The proposed method of 

algorithm can be seen in algorithm 1 

 

𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ = 𝑦𝑡𝑖

𝑡⃗⃗⃗⃗ + 2 × 𝛼 × (𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ − 𝑦𝑜𝜁

𝑡⃗⃗ ⃗⃗  ⃗) + 𝐿𝑒𝑣𝑦(𝛼)  (50) 

Algorithma 1. A pseudo code of  LTOC 

1. Definision and initialize the parameter setting of TOC 

2. 𝑡 ← Iteration counter 

3. 𝑇 ←  Maximum number of iterations 

4. 𝑛 ← Population size 

5. 𝑛𝑤 ← Number of windstorms 

6. 𝑛𝑡 ← Number of thunderstorms 

7. Create a random initial population using Eq. 18. 

8. Evaluate the position of the initial population using Eq. 26. 

9. While (𝑡 ≤ 𝑇)  do 

10.   Update the adaptive parameters using the resprective formulas 

11.   for i=1 to 𝑛𝑤  do 

12.   if (𝑟𝑎𝑛𝑑 ≥ 0.5) then 

13.   𝑣 𝑖
𝑡+1 = 𝜂 (𝜇𝑣 𝑖

𝑡 − 𝑐
(𝑓×𝑅1

2
+ √𝐶𝐹𝑙) 

14.   else 

15.   𝑣 𝑖
𝑡+1 = 𝜂 (𝜇𝑣 𝑖

𝑡 − 𝑐
(𝑓×𝑅1

2
+ √𝐶𝐹𝑟) 

16.   end if 

17.   end for 

18.   for i=1 to 𝑛𝑤  do 

19.   𝑦 𝑤𝑖
𝑡+1 = 𝑦 𝑤𝑖

𝑡 + 2 × 𝛼 × (𝑦 𝑤𝑖
𝑡 −  𝑟𝑎𝑛𝑑𝑤)𝑣 𝑖

𝑡+1 

20.   end for 

21.   Investigate and update the feasibility of windstroms’ positions 

22.   for i=1 to 𝑛𝑡  do 

23.   for j=1 to 𝑛𝑤𝑖
  do 

24.   𝑦 𝑤
𝑗+∑ 𝑘

𝑛𝑤
1

𝑡 = 𝑦 𝑤
𝑗+∑ 𝑘

𝑛𝑤
1

𝑡 + 2 × 𝑟𝑎𝑛𝑑 × (𝑦 𝑡𝑖
𝑡 − 𝑦 𝑤

𝑗+∑ 𝑘
𝑛𝑤
1

𝑡 ) + 2 × 𝑟𝑎𝑛𝑑 × (𝑦 𝑜𝑖
𝑡 − 𝑦 𝑤

𝑗+∑ 𝑘
𝑛𝑤
1

𝑡 )  

25.   end for 

26.   end for 

27.   Investigate and update the feasibility of windstroms’ positions 

28.   for i=1 to 𝑛𝑡  do 
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Algorithma 1. A pseudo code of  LTOC 

29.   𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ = 𝑦𝑡𝑖

𝑡⃗⃗⃗⃗ + 2 × 𝛼 × (𝑦𝑡𝑖
𝑡⃗⃗⃗⃗ − 𝑦𝑜𝜁

𝑡⃗⃗ ⃗⃗  ⃗) + 𝐿𝑒𝑣𝑦(𝛼)  eq. (50) 

30.   end for 

31.   Investigate and update the feasibility of windstroms’ positions 

32.   for i=1 to 𝑛𝑤  do 

33.   𝐢𝐟 ‖𝑦 𝑤𝑖
𝑡 − 𝑦 𝑜𝑖

𝑡 ‖ < 𝑣 𝐭𝐡𝐞𝐧  

34.   𝑦 𝑤𝑖
𝑡+1 = 𝑦 𝑤𝑖

𝑡 − (2 × 𝛼𝑦 × (𝑟𝑎𝑛𝑑 × (𝑙 − 𝑢) − 𝑙)) × 𝛿2  

35.   end if 

36.   end for 

37.   for i=1 to 𝑛𝑡  do 

38.   𝐢𝐟 ‖𝑦 𝑤𝑖
𝑡 − 𝑦 𝑡𝑖

𝑡 ‖ < 𝑣 𝐭𝐡𝐞𝐧  

39.   For j=1 to 𝑛𝑤𝑖
   do 

40.   𝑦 𝑤
𝑗+∑ 𝑘

𝑛𝑤
𝑖=1

𝑡+1 = 𝑦 𝑤
𝑗+∑ 𝑘

𝑛𝑤
𝑖=1

𝑡 − (2 × 𝛼𝑦 × (𝑟𝑎𝑛𝑑 × (𝑙 − 𝑢) − 𝑙)) × 𝛿2 

41.   end for 

42.   end if 

43.   end for 

44.   𝑡 = 𝑡 + 1  

45.   Retain thre beadt solutions 

46. end while 
 

3. RESULTS AND DISCUSSION 

3.1. Convergence Curve Profile 

The outcomes of the TOC strategy and the suggested LTOC methodology are contrasted. This study uses 

benchmark functions to evaluate the effectiveness of LTOC. The first step is to assess the 23 CEC2017 

benchmark functions. The definition of functions F1 through F7 is unimodal. Multimodality is indicated by 
functions F8 through F13. Fixed-dimensional multimodal functions represented by mathematical equations are 

denoted as F14–F23. MATLAB/Simulink software was used to run the simulations. The comparison of 

benchmark function outcomes using the LTOC approach is shown in Figure 2. Benchmarking in the context 

of metaheuristics refers to the process of evaluating and comparing the performance of metaheuristic 

algorithms using standardized test problems (benchmark problems) to assess their effectiveness, reliability, 

and efficiency. Its main benefits are Measuring metrics such as convergence speed, solution accuracy, stability, 

and the ability to avoid local optima. Benchmarking on metaheuristics is a critical tool to Ensure algorithms 

are reliable in a variety of scenarios, Encourage the development of new methods through systematic evaluation 

and provide a scientific basis for selecting algorithms according to practical needs. With benchmarking, 

researchers and practitioners can avoid subjective bias and focus on measurable improvements in solution 

quality. 

In Figure 2 (a)-(g), which is a unimodal function, the LTOC method has better capabilities than the TOC 
method. A unimodal function is a mathematical function that has one global optimum (minimum or maximum) 

and does not have other local optimums. In the context of optimization, unimodal functions are used to test the 

ability of an algorithm to find the best solution without getting stuck in a local optimum [48]-[51]. 

In Figure 2 (h)-(m) which is a multimodal function, LTOC has a better convergence curve than the TOC 

method. A multimodal function is a mathematical function that has many local optima (minimums or maxima) 

in addition to one or more global optima. This function challenges optimization algorithms because of the 

presence of local optimum "traps" that can hinder the search for the best solution. Multimodal functions are 

commonly used in metaheuristic benchmarking to test the algorithm's ability to navigate complex search spaces 

[52]-[55]. 

In Figure 2 (n)-(w) which is a Fixed-dimensional multimodal function, the curve of LTOC has the same 

convergence as the TOC method. Fixed-dimensional Multimodal Function is a multimodal optimization 
function (having many local optima and one or more global optima) defined in a fixed dimension (a constant 

number of variables/inputs, such as 2D, 5D, or 10D). Unlike the scalable multimodal function (which can be 

tested in different dimensions), this function is specifically designed for evaluating algorithms in a search space 

with a fixed complexity. This function is commonly used in metaheuristic benchmarking to test the ability of 

algorithms to navigate complex landscapes without being affected by changes in dimension [56]-[59]. 
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Figure 2. Convergence curve of benchmark function (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f) F6, (g) F7, (h) 

F8, (i) F9, (j) F10, (k) F11,  (l) F12, (m) F13, (n) F14, (o) F15 
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Figure 2. Convergence curve of benchmark function; (p) F16, (q) F17, (r) F18, (s) F19, (t) F20, (u) F21, 

(v) F22, (w) F23 (continue) 

 

3.2. Applied To DC Motor 

The DC motor's initial reference is 1 pu from the first to the fourth seconds. The DC motor reference 

value rises to 1.5 pu in the fourth second. This value is valid through the eighth second. The reference value 

then decreases to 0.5 pu at the eighth second. Figure 3 displays the controller's DC motor speed reaction output. 

Table 2 shows the controller's transient response analysis. The ITAE value of LTOC-PID for this method, 

which is 0.5380, is the lowest value among the other ways, according to the comparison of the overshoot values 

shown in Table 2. With an ITSE of 0.7161, the LTOC-PID approach has the lowest ITSE. 

 

 

Figure 3. Speed response from each algorithm 
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Table 2. Result of responcse DC Motor 

Controller Time 0-4 s Time 4-8 s Time 8-10 s ITSE ITAE 

Overshoot Risetime Overshoot Risetime Undershoot Risetime 

TOC-PID 0.1019 0.195 0.0645 4.195 0 8.19236 0.7162 0.5382 

LTOC-PID 0.0779 0.194 0.468 4.194 0 8.19231 0.7161 0.5380 

 

4. CONCLUSION  

This article presents DC motor control utilizing the Modified Tornado optimizer-based Coriolis force 

(TOC) approach.  The Tornado Optimizer-Based Coriolis Force Algorithm, a metaheuristic that uses tornado 

dynamics and the Coriolis force's effect to tackle challenging optimization issues, is the model for the TOC 

method.  This study suggests improving the TOC method by incorporating the Levy Flight approach.  The 
LTOC approach has the potential to expand exploration and exploitation based on the outcomes of experiments 

using optimal functions.  In the meantime, the best overshoot response value is obtained when the LTOC 

approach is used as a DC motor controller.  The LTOC approach outperforms the TOC method by 0.014% and 

0.037%, respectively, in terms of ITSE and ITAE values. 
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