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achieved. The LTOC approach outperforms the TOC method by 0.014% and
0.037%, respectively, in terms of ITSE and ITAE values.
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1. INTRODUCTION

Electrical energy efficiency is the ability of a device, system, or process to use electrical energy optimally
while minimizing waste [1]-[3]. Energy efficiency means getting the maximum result (output) from the
electrical energy used (input). The higher the energy efficiency, the less energy is wasted in heat or other forms.
By implementing the principles of electrical energy efficiency, we save money and contribute to environmental
preservation and future energy sustainability [4]-[6]. DC motors are one type of electric motor that is very
important in various applications because of their ability to be controlled precisely. Despite some
disadvantages, such as higher maintenance requirements and costs, DC motors remain the primary choice in
many industrial, household, and transportation applications [7]-[9]. With the advancement of technology, DC
motors continue to evolve. DC motors are used in various applications because of their flexibility and
controllability [10]-[13]. Some examples of DC motor applications are: Use in automated devices such as
automatic garage doors, Production machinery that requires precise speed and torque control, Electric vehicles
such as golf carts, electric bicycles, and electric trains, and used in robots to drive robotic arms or wheels [ 14]-
[17].
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PID controllers are very popular because of their ability to provide fast, accurate, and stable responses to
changing system conditions [ 18] [19]. This control is widely used in various fields, including industry, robotics,
automotive, and electronics. PID control is a potent and flexible tool for managing dynamic systems [20]-[22].
PID controllers can provide fast, accurate, and stable responses by combining proportional, integral, and
derivative components. Despite some limitations, PID remains the primary choice in many modern industrial
and technological applications [23] [24].

The development of Al has changed the world in unprecedented ways [25]-[28]. From simple applications
like chatbots to advanced technologies like autonomous vehicles and generative Al, Al continues to advance
incredibly [29]-[32]. However, to ensure Al is used responsibly, we must address the challenges of ethics,
privacy, and social impact [33]-[36]. With the continued development of supporting technologies such as big
data, cloud computing, and quantum computing, Al will continue to open new opportunities and shape a more
innovative, more efficient, and more inclusive future.

The development of Proportional-integral-derived (PID) control with the integration of artificial
intelligence (AI) has become an essential trend in modern control systems. This combination significantly
improves performance, flexibility, and adaptability to complex dynamic conditions. The integration of
Artificial Intelligence (Al) into PID Control has opened new opportunities to improve the performance,
flexibility, and adaptability of control systems. This technology allows systems to handle complex dynamics,
uncertainties, and real-time changes in operating conditions. Despite some challenges in implementation, this
development shows excellent potential for revolution in various fields such as industry, robotics, renewable
energy, and automotive. Several studies have been presented on the integration of PID with Al, such as
reinforcement learning [37], GEO algorithm [38], beetle optimization algorithm [39], cooperation search
algorithm [40], Symbiotic Organisms Search Algorithm [41], hybrid butterfly particle swarm optimization
[42], gazelle optimizer [43], slap swarm algorithm [44], Fuzzy [45], and Archimedes Optimization Algorithm
[46]. Although some researchers have developed PID approaches with Al. But PID parameter optimization
with Al can still be explored further to get the best optimization value.

This paper introduces a new optimization method, the Levy Tornado optimizer with Coriolis force
(LTOC), which is used for PID parameter estimation in the context of DC motor control. The basic concept
and principle of LTOC is from the Tornado optimizer with Coriolis force (TOC), inspired by nature, based on
the observation of the tornado cycle process and how thunderstorms and hurricanes evolve into tornadoes using
the Coriolis force [47]. The Coriolis force is applied to the windstorm which directly evolves to form a tornado.
The contributions of this study are:

a) Improvement of the TOC method by modifying it to combine it with the Levy flight method

b) Application of the LTOC method to DC motors.

¢) Validation of the performance of LTOC with TOC using benchmark functions and DC motor
performance.

The second section of this paper discusses the DC motor and LTOC approach. Results and discussion make up
the third section. Conclusions are drawn in the final section.

2. METHOD
2.1. Tornado optimizer-based Coriolis force

The tornado optimizer with Coriolis force (TOC) posits the existence of numerous windstorms, certain
thunderstorms, and precipitation events, wherein windstorms and thunderstorms produce tornadoes, and
thunderstorms arise from windstorms. The subsequent section presents the comprehensive mathematical
models of the suggested TOC optimizer. The proposed TOC optimizer is a population-based algorithm; thus,
the initial stage in the optimization process involves the random generation of a preliminary population of
design variables (i.e., windstorms and thunderstorms) between specified upper (u) and lower (1) bounds.

The optimal individuals (i.e., windstorms and thunderstorms), evaluated based on a minimal cost function
or, in certain instances, maximal fitness, are chosen to constitute tornadoes, or a singular tornado if only one
exists. A selection of effective individuals (i.e., cost function values around the optimal solution) is designated
as thunderstorms. In contrast, all other individuals are referred to as windstorms, which ultimately transform
into thunderstorms and tornadoes. The initial stage in initiating TOC as an optimization algorithm involves the
creation of a population matrix of n persons (i.e., population size) within a d-dimensional search space (i.e.,
problem dimension). In this context, the location of each windstorm, thunderstorm, and tornado signifies a
potential solution to the optimization problem. Equation 21 delineates the method for generating the initial
population of windstorms, thunderstorms, and tornadoes inside the search domain using a uniform random
initialization process.
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Where X; ; represents the starting value of the ith individual in the jth dimension. rand is a randomly generated
number, and I; j is another randomly generated number. n, denotes the quantity of thunderstorms, whereas n,
signifies the number of tornadoes, which is established as one in this study. n,, represents the quantity of
windstorms, whereas n it signifies the overall population size. y;; represents the ith candidate individual at
dimension j, which may be a windstorm, a thunderstorm, or a tornado. d represents the quantity of design
variables (i.e., problem dimension), while the components y,,, y;, and y, signify the populations of tornadoes,
thunderstorms, and windstorms, respectively. y,,,; denotes the ith windstorm, y,, signifies the ith thunderstorm,
andy,; the ith tornado.

Fitness evaluation
The fitnes value cost (i.e., cos) is calculated for each windstorm and thunderstorm by assessing the cost value
as demonstrated below:

fit; = fit(yu, L,y 2,53, yi, d) (8)
fit; fit(yi)
fit =|fit;|  =|fit) )

lried . il

where fit; denotes the cost value of the i-th individual. where ﬁ is a vector of the obtained fitness functions,
and fit; denotes the value of obtaining the fitness function based on the i-th individual. The fitness function
value measures the quality of candidate solutions in meta-heuristic algorithms such as TOC. The population
member that produces the best evaluation value for the fitness function is called the best population member.
This population member is updated in each round of the proposed optimizer iteration as the candidate solutions
are updated. In the proposed optimizer simulation, individuals remain at their locations if they are better than
the new location.

Evolution of windstorms
Windstorms typically progress towards tornadoes and thunderstorms, influenced by their volume and intensity
of development. This indicates that windstorms develop into tornadoes more frequently than thunderstorms.
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Where k=1, 2, 3, ... ,n;,, and f;, denotes the cost value of the kth thunderstorm associated with a tornado.

n,,, is the number of tornadoes that evolved or were assigned to a particular thunderstorm or tornado.
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Windstorm velocity influenced by the Coriolis effect

Along with extensive atmospheric turbulence, which does not necessitate tornadoes to travel along a linear
path, a triadic equilibrium exists between the Coriolis force, the centrifugal force, and the pressure gradient
force. The tornado velocity gradient responsible for the formation of thunderstorms and tornadoes can be
recognized.

] (;wf — LRy CFl) rand = 0.5
pt+l = 2 (12)
t ( 1 _ xR <
n\wf —c—+ CF,) rand < 0.5

Where i= 1,2, 3, . .. ,n,, is the tornado index for a population of size n,,, vf*! states the new velocity vector

of the tornado to-i, vf defines the current velocity vector of the tornado to-i, rand refers to random numbers
generated with a uniform distribution in the scope [0, 1], n refers to random numbers generated with a uniform
distribution in the scope

_ 2
n= |2—x—\/x2—4x| (13)

Where y identify the tornado acceleration rate

rand

u=05+ - (14)

p=05+24 (15)
) 2

R =— (16)
146D/

R, = 2 17)

T.
1+e(—t+5)/2

Where rand represents random numbers generated with a uniform distribution over the range [0, 1]. Where t
and T are the current iteration index and the maximum number of iterations.

c=b.X8 Xw, (18)
61 = fu[2 X rand (19)
_ 2xrand—(rand+rand)

Wr = Winin+trandxX(Wmaks=Wmin) (20)
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re b, is a constant equal to 100000. f,; represents the value function 1, and -1 represents a change of sign. rand
is an abbreviation for random values generated in a range [0, 1]. w,,;;, dan w,,, 4, 1s a fixed value of each 1,0
and 4,0. Q is an abbreviation for the angular rate of rotation equal to,7292115E-04 radian s~* rand is a random
number generated with a uniform distribution in the range [0, 1]. ¢{ is a component of the pressure gradient
force (PGF) which is normal to the current direction of the i-th tornado at the #-th iteration

{=[n, xrand(1,n,)] (25)
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Where rand (1, n,) implements a uniformly generated random value vector with a uni-form distribution in the
interval [0, 1].

Yot = yTtvl +2Xax (7& - randw) + pftt 29)

rand,, = ¥, (In,, X rand(1,n,,)] + 1) (30)

a= |2ay-rand—rand| 31
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Where yj+*dan y—‘},: defines the next and current position vectors of the i-th tornado at the i-th iteration (t+ 1)
dan ¢, each, yTEL defines the current position vector of the i-th tornado at iteration ¢, (37{1 - randw) shows the

difference between the evolution of a tornado into a tornado and the random formation of wind, rand,, dan a
is a random value. rand,, is the index vector for a randomly selected tornado. a,, represents the exponential
parameter. a, shows constant value 2,0 and found after extensive analysis.

ve(0,p X x),p > 0.5 (33)
t+1 — ot _ ot ot vt
yW1+z?Wk yW1+2'11Wk + 2 X rand X (ytl yW]+z’1‘Wk> + 2 X rand X (ytl yW,+g;1wk> (34)

Where x is the current distance between the tornado and the thunderstorm, 0.5 < p < 2 where 2 is probably
the optimal value of p, and y according to random numbers between 0 and p X x which is uniformly distributed

or selected from a reasonable distribution. y“t’ﬂz"Wk dan y, . represents the next and current position
437 457

vectors of a tornado developing into a thunderstorm at iteration (#+ 1) and ¢, respectively, yttl represents the

current position vector of the i-th thunderstorm at the #-th iteration, and rand is a random number generated
between 0 and 1 with uniform distribution.

Evolution of a thunderstorm into a tornado
During the research and exploitation phase of the planned optimizer, the new location of the Thunderstorm
evolving into a tornado.

p = In,-rand(1,n,) + 1] (36)
Where yttl+1 dan yttl represents the next and current position vectors of the development of a thunderstorm into

a tornado at an iteration (z+ 1) and ¢, respectively, yotZ identify position vectors for tornadoes at random indices

¢, dan yt% identify position vectors for thunderstorms.

Random formation of tornadoes
To enhance its exploration capabilities, the suggested TOC-based optimization defines a stochastic tornado
formation mechanism. More specifically, TOC is able to avoid immature convergence and local solutions due
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to the random tornado creation. In essence, tornadoes develop at random places as they transform into
thunderstorms or into tornadoes, producing mature tornadoes at various locations. In order for this process to
take place, tornadoes and thunderstorms must be inspected to determine whether they are sufficiently close to
the tornado.

y,},jl=y7,t—(2><ay><(randx(l—u)—l))xdz

||W - 705 <v (37)
0.11116
v = (0.1e(-01&/M*7)) (39)
t+1 — At — — —
yW1+z{‘:ng = yW1+z{'=ng (2 X a, X (rand X (I —u) l)) X 8,
(40)
||y\le - YttL” <v

Where / and u refer to the lower and upper bounds of the search area, respectively. rand is a random number
that is systematically inserted into the range [0, 1]. &, is the change in sign defined as given in Eq. 38 ||-|| refers
to the norm operator, and is an exponential function defined as shown in Eq.. 39, capable of producing small
numbers. f,; is a function of the values 1 and -1 to represent a change in sign. ¢ represents the current iteration
index. T represents the maximum iteration index.

2.2. Lévy Flight Optimization

The step length in Levy Flight is determined by a heavy-tailed probability distribution, like the Levy or
Pareto distributions. In other words, there is a slight chance of taking a really long stride, but most steps are
short. In addition to numerous other uses, this model is frequently used to simulate mathematical optimization,
animal behavior, and natural events.

1-a
L) ~ I3, n
foGs @) == [ exp(—yq®) cos (4x) dq (42)
yI(1+a) sin(E5)
fL(x;d,V)=T+a)z,x - © (43)
Levy(a) = 0.05 x Iylyi/"‘ (44)
x = Normal (0,02) 45)
y = Normal (0,02) (46)
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)

Where I' is Gamma function. Mantegna presented a precise and quick algorithm to produce stable Lévy flight
processes for the index distribution's absolute values («) [0.3 and 1.99]. x and y are two normally distributed
variables with standard deviations g, and g,,. a is the distribution index and controls the scale properties of the

process while y selects the scale units.

2.3. DC Motor
The DC motor has two control modes and all the characteristics of a single control system. The field
current in the first mode, the armature control mode, is constant. However, it is known as a field control model
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and has a fixed armature current. The features of a DC motor, such as resistance, inductance, and reverse
electromotive force voltage, are depicted in Figure 1. Armature resistance and inductance are represented by
R, and L, respectively. The electromotive force in reverse is e;,.

V,(s) = (Ry + Lg.5).1,(s) + e, (s) (48)

ep(s) = Kyw(s) (49)

Table 1. DC motor parameters

Parameter Value
K, 0.05V.s
L, 2 H
R, 04Q
] 0.0004 kg.m2
B 0.0022 N - m - s/rad
Ky 0.015N - m/A

Figure 1. Illustration DC motor circuit

2.4. Proposed Levy Tornado Optimizer with Coriolis Force (LTOC)

The stability of the exploration and exploitation regions. Finding a new equilibrium between improved
exploration and exploitation is the aim of this work. Tthis study suggests enhancements to the TOC method by
incorporating the Levy Flight approach. Eq. 44 is put into Eq. 35 to become Eq. 50. The proposed method of
algorithm can be seen in algorithm 1

Vi =yt +2xax (v - i)+ Levy(@) (50)

Algorithma 1. A pseudo code of LTOC

Definision and initialize the parameter setting of TOC

t « Iteration counter

T « Maximum number of iterations

n « Population size

n,, < Number of windstorms

n; < Number of thunderstorms

Create a random initial population using Eq. 18.

Evaluate the position of the initial population using Eq. 26.
9. While (t<T) do

10. Update the adaptive parameters using the resprective formulas
11. for i=1ton, do

PN B D=

12. if (rand > 0.5) then

> > (fXR
13. it =n(/,w{—ch+,/CFl)
14. else

> > (fXR
15. it =n(/,w{—ch+,/CFr)
16. end if
17. end for
18. for i=1ton, do
19. Yo =y + 2 x a x (3, — rand,, )i
20. end for

21. Investigate and update the feasibility of windstroms’ positions
22. for i=1ton, do

23. for j=1ton,, do
St — 3t St ot St ot
24, ij+z’11Wk = ij+2’fWk + 2 X rand X (yti ij+z’1‘Wk) + 2 X rand X (yoi ywj+szk)
25. end for
26. end for
27. Investigate and update the feasibility of windstroms’ positions

28. for i=1ton, do
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Algorithma 1. A pseudo code of LTOC
29. Vi =Yi+2xax (yfl - y(fz) + Levy(a) eq. (50)
30. end for

31. Investigate and update the feasibility of windstroms’ positions
32. for i=1ton,, do

33. if ||, — ¥&|| < v then

34. Yot =95 — @2 xa, x (rand x (I —u) = 1)) X &,
3s. end if

36. end for

37. for i=1ton, do

38. if ||37fvl - 37§L|| < v then

39. For j=1ton,, do

40. ﬁ@;:zmk = 5}"51'+2?="‘;k —C2xay,x@and x (I —u) — 1)) X &,
41. end for

42, end if

43. end for

44, t=t+1
45. Retain thre beadt solutions
46. end while

3.  RESULTS AND DISCUSSION
3.1. Convergence Curve Profile

The outcomes of the TOC strategy and the suggested LTOC methodology are contrasted. This study uses
benchmark functions to evaluate the effectiveness of LTOC. The first step is to assess the 23 CEC2017
benchmark functions. The definition of functions F1 through F7 is unimodal. Multimodality is indicated by
functions F8 through F13. Fixed-dimensional multimodal functions represented by mathematical equations are
denoted as F14-F23. MATLAB/Simulink software was used to run the simulations. The comparison of
benchmark function outcomes using the LTOC approach is shown in Figure 2. Benchmarking in the context
of metaheuristics refers to the process of evaluating and comparing the performance of metaheuristic
algorithms using standardized test problems (benchmark problems) to assess their effectiveness, reliability,
and efficiency. Its main benefits are Measuring metrics such as convergence speed, solution accuracy, stability,
and the ability to avoid local optima. Benchmarking on metaheuristics is a critical tool to Ensure algorithms
are reliable in a variety of scenarios, Encourage the development of new methods through systematic evaluation
and provide a scientific basis for selecting algorithms according to practical needs. With benchmarking,
researchers and practitioners can avoid subjective bias and focus on measurable improvements in solution
quality.

In Figure 2 (a)-(g), which is a unimodal function, the LTOC method has better capabilities than the TOC
method. A unimodal function is a mathematical function that has one global optimum (minimum or maximum)
and does not have other local optimums. In the context of optimization, unimodal functions are used to test the
ability of an algorithm to find the best solution without getting stuck in a local optimum [48]-[51].

In Figure 2 (h)-(m) which is a multimodal function, LTOC has a better convergence curve than the TOC
method. A multimodal function is a mathematical function that has many local optima (minimums or maxima)
in addition to one or more global optima. This function challenges optimization algorithms because of the
presence of local optimum "traps" that can hinder the search for the best solution. Multimodal functions are
commonly used in metaheuristic benchmarking to test the algorithm's ability to navigate complex search spaces
[52]-[55].

In Figure 2 (n)-(w) which is a Fixed-dimensional multimodal function, the curve of LTOC has the same
convergence as the TOC method. Fixed-dimensional Multimodal Function is a multimodal optimization
function (having many local optima and one or more global optima) defined in a fixed dimension (a constant
number of variables/inputs, such as 2D, 5D, or 10D). Unlike the scalable multimodal function (which can be
tested in different dimensions), this function is specifically designed for evaluating algorithms in a search space
with a fixed complexity. This function is commonly used in metaheuristic benchmarking to test the ability of
algorithms to navigate complex landscapes without being affected by changes in dimension [56]-[59].
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Figure 2. Convergence curve of benchmark function; (p) F16, (q) F17, (r) F18, (s) F19, (t) F20, (u) F21,
(v) F22, (w) F23 (continue)

3.2. Applied To DC Motor

The DC motor's initial reference is 1 pu from the first to the fourth seconds. The DC motor reference
value rises to 1.5 pu in the fourth second. This value is valid through the eighth second. The reference value
then decreases to 0.5 pu at the eighth second. Figure 3 displays the controller's DC motor speed reaction output.
Table 2 shows the controller's transient response analysis. The ITAE value of LTOC-PID for this method,
which is 0.5380, is the lowest value among the other ways, according to the comparison of the overshoot values
shown in Table 2. With an ITSE of 0.7161, the LTOC-PID approach has the lowest ITSE.
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Figure 3. Speed response from each algorithm



Diego Oliva et al. /VUBETA Vol 2 No 3 (2025) pp. 387~400 397
Table 2. Result of responcse DC Motor
Controller Time 0-4 s Time 4-8 s Time 8-10 s ITSE ITAE
Overshoot Risetime Overshoot Risetime Undershoot Risetime
TOC-PID 0.1019 0.195 0.0645 4.195 0 8.19236 0.7162 0.5382
LTOC-PID 0.0779 0.194 0.468 4.194 0 8.19231 0.7161 0.5380

4. CONCLUSION

This article presents DC motor control utilizing the Modified Tornado optimizer-based Coriolis force
(TOC) approach. The Tornado Optimizer-Based Coriolis Force Algorithm, a metaheuristic that uses tornado
dynamics and the Coriolis force's effect to tackle challenging optimization issues, is the model for the TOC
method. This study suggests improving the TOC method by incorporating the Levy Flight approach. The
LTOC approach has the potential to expand exploration and exploitation based on the outcomes of experiments
using optimal functions. In the meantime, the best overshoot response value is obtained when the LTOC
approach is used as a DC motor controller. The LTOC approach outperforms the TOC method by 0.014% and

0.037%, respectively, in terms of ITSE and ITAE values.
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