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Phasor Measurement Units (PMUs) are crucial for improving the control,
monitoring, and observability of modern power systems. This research
presents an optimal PMU placement strategy for the Shiroro 330 kV grid
network using the Binary Grey Wolf Optimization (BGWO) algorithm. The
objective is to minimize the number of PMUs required while ensuring full
system observability under both normal and contingency conditions. The
BGWO algorithm, inspired by the hunting behavior of grey wolves, is a
powerful metaheuristic for solving binary optimization problems. Applied to
the Shiroro grid, this method demonstrates enhanced observability and system
reliability. Compared to other optimization techniques, BGWO achieves
higher accuracy and reduced computational time. The simulation results
validate the effectiveness of the proposed approach in achieving cost-effective
and reliable PMU deployment for the 330 kV network.
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1. INTRODUCTION

Modern electrical power systems are increasingly complex. This complexity highlights the urgent need
for advanced monitoring and control systems to ensure operational efficiency, security, and reliability [1]. The
incorporation of advanced measuring techniques is crucial for ensuring system stability and enabling timely
reactions to disruptions, as real-time situational awareness is crucial [2]. In this regard, phasor measurement
units (PMUs), which provide fast, synchronized measurements of voltage and current phasors throughout the
power grid, have become essential elements [3]. Phasor Measurement Units (PMUs) have several advantages
over the remote field of conventional Supervisory Control and Data Acquisition (SCADA) systems, which
typically consist of Remote Terminal Units (RTUs), Programmable Logic Controllers (PLCs), or Intelligent
Electronic Devices (IEDs). The synchronization of PMU measurements in real-time can be ensured by using
the Global Positioning System (GPS), thereby obtaining very high-precision data at the source, which allows
for real-time, wide-area monitoring and control [4]. By enhancing overall grid observability, these advantages
enable operators to make informed decisions that support system resilience and performance [5]. However,
financial and technological constraints frequently prevent PMUs from being deployed effectively, necessitating
plans on where to position them within the power network [6]. The goal of optimal PMU placement is to
minimize the number of PMUs required while maximizing grid observability by utilizing binary grey wolf
optimization to achieve the minimum number of PMUs needed. This minimizes implementation costs and
ensures effective resource usage [7]. This optimization problem is particularly relevant in developing nations,
where the widespread deployment of expensive monitoring equipment is often hindered by financial constraints
[8]. Strong monitoring systems are urgently needed in Nigeria, one of Africa's largest economies, as the
electricity grid faces numerous challenges, including frequent disruptions and unstable systems [9]. An
essential part of Nigeria's power infrastructure, the Shiroro 330 kV grid network is crucial to the production
and distribution of electricity [10]. To improve the stability and dependability of this network, which are critical
for the socioeconomic development of the area, full observability is required [11]. The optimal PMU placement
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problem (OPP) is a combinatorial optimization challenge that has attracted significant research attention [12].
Several optimization techniques, such as integer linear programming (ILP), particle swarm optimization (PSO),
and genetic algorithms (GA), have been applied to solve this problem [13]. Despite their effectiveness, these
methods sometimes face issues with convergence speed, solution accuracy, and scalability when applied to
large grid networks [14].

The Metaheuristic algorithms are more suitable than conventional methods for optimal PMU placement
on the Shiroro 330kV grid because they efficiently handle large, complex, and constrained optimization
problems, offer better global search capability, and adapt well to real-world grid topologies. The Grey Wolf
Optimization (GWO) algorithm is one such algorithm that imitates the natural hunting patterns of grey wolves.
A version of the original GWO algorithm, the Binary Grey Wolf Optimization (BGWO) algorithm is especially
well-suited for handling binary decision-making situations such as the OPP [15].

This research proposes an approach that utilizes the BGWO algorithm to deploy PMUs on the Shiroro
330 kV grid network in the most optimal manner. A vital component of Nigeria's transmission system, the
Shiroro network requires consistent monitoring to ensure uninterrupted electricity delivery and meet the
increasing demand. To reduce the number of PMUs and maintain full system observability in both regular and
emergency scenarios, the BGWO algorithm is employed. To improve system robustness, additional restrictions
are added to the optimization model, such as zero injection buses and single PMU failures [16].

This study demonstrates the effectiveness of the Binary Grey Wolf Optimization (BGWO) algorithm in
minimizing the number of PMUs required for full observability of the Shiroro 330 kV grid network, achieving
optimal sensor placement while considering real-world constraints. This approach offers a robust and scalable
solution for modern power system monitoring.
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2. REVIEW OF RELATED LITERATURE

The literature on optimal PMU placement emphasizes the critical role of strategically deploying PMUs
across power networks to enhance system observability, stability, and real-time monitoring capabilities that
are increasingly vital in managing the variability and uncertainty introduced by renewable energy integration
and dynamic grid loads, particularly in large-scale transmission systems such as the Shiroro 330 kV network.
[17]. Studies have shown that PMUs play a crucial role in real-time monitoring and control, which is essential
for resolving issues brought on by the growing integration of renewable energy sources and the requirement
for improved grid dependability [18] Binary Grey Wolf Optimization (BGWO) is particularly effective in
handling non-linear constraints because of its adaptive hunting behavior and flexible solution encoding, which
allow it to efficiently navigate complex, high-dimensional search spaces without relying on gradient
information. Unlike traditional optimization methods or even some other metaheuristics, BGWO mimics the
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social hierarchy and cooperative hunting strategies of grey wolves, enabling a balance between exploration and
exploitation. This makes it highly suitable for solving the PMU placement problem, which involves discrete
variables, non-linear observability constraints, and practical limitations such as budget and measurement
redundancy. Consequently, BGWO emerges as a powerful tool in modern grid management, where the
integration of renewable energy and changing load dynamics necessitates robust, constraint-aware, and
scalable optimization techniques. These techniques have demonstrated promise in successfully addressing the
non-linear limitations related to power system observability and reducing deployment costs [19].

Additionally Recent studies demonstrate significant progress in hybrid optimization techniques, which
combine the strengths of multiple algorithms such as integrating BGWO with local search or machine learning
methods to improve convergence rates and enhance solution accuracy that utilize BGWO in conjunction with
other metaheuristic algorithms to increase convergence rate and accuracy of solutions in intricate situations
with changeable grid conditions and multi-dimensional constraints. To assure complete system observability
while reducing redundancy and installation costs, for example, researchers have investigated combining
BGWO with techniques like Differential Evolution (DE) and Modified Genetic Algorithms (MGA) [20].

Additional research has confirmed that BGWO is a reliable and effective tool for PMU placement in
complex power networks, with case studies demonstrating its superiority in minimizing the number of PMUs
while ensuring complete system observability. For example, comparative simulations on IEEE 14-, 30-, and
118-bus systems show that BGWO achieves faster convergence, higher observability indices, and reduced
computational overhead compared to algorithms like Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) [21].

Furthermore, the use of BGWO has been broadened to take into account dynamic operating conditions,
enabling adaptive PMU placement techniques that react to changes in load patterns and grid topology in real-
time [21][22].

Furthermore, significant levels of renewable energy integration and growing grid complexity characterize
current power systems BGWO is particularly well-suited for handling dynamic grid environments due to
several key features: its adaptive social hierarchy-based search mechanism allows for dynamic adjustment
between exploration and exploitation phases, which is essential for responding to changes in grid topology,
load variations, or renewable energy fluctuations. Additionally, its binary encoding enables efficient modeling
of on/off decisions, such as PMU installation. At the same time, its ability to incorporate real-time data streams
through fitness function updates makes it highly responsive to evolving grid conditions. [23]. As a result, in
current PMU placement research, BGWO has emerged as a top optimization technique that provides a
dependable and effective means of improving power system monitoring and control in expansive, dynamic
grid environments [21][24].

Modern power systems are characterized by variable demand and generation conditions, and maintaining
observability in the face of these conditions requires this adaptability [25].

Communication delays and data transmission reliability significantly impact PMU placement decisions
because timely and accurate phasor data are essential for real-time monitoring, fault detection, and state
estimation. If PMUs are placed without considering communication constraints, delays, or data losses can
compromise observability and reduce the effectiveness of control actions. Therefore, incorporating factors such
as latency, bandwidth availability, and network reliability into optimization models ensures that selected PMU
locations not only provide electrical coverage but also maintain dependable data delivery [26]. By ensuring
that the PMU locations are selected to maximize observability and enable dependable data transfer, these
integrations seek to improve the overall performance of innovative grid systems [27][28]. In PMU placement
research, the synergy between BGWO and communication reliability considerations provides a promising area
that will help create more durable and resilient power networks [29].

Furthermore, chances for further placement strategy optimization exist due to the ongoing development
of PMU technology, which includes improvements in sensor capabilities and communication protocols
[30][31]. This enables the realization of more intelligent and responsive power systems.

2.1. Optimal Power Flow Problem

An Optimal Power Flow (OPF) problem is formulated as a constrained optimization problem, where the
objective is to minimize or maximize a specific function (e.g., generation cost, transmission losses) while
satisfying power system constraints (e.g., power balance, voltage limits, and line flow limits). The general
mathematical statement of the OPF problem is given below:

2.1.1. Objective Function
The primary objective in OPF is to minimize the total generation cost. The total price is typically
represented as a quadratic function of the generator power output.



Kabiru Tureta Abubakar et al. /VUBETA Vol 2 No 3 (2025) pp. 444~459 447
Minimize C = XN, (aiP% + biPGi + ci) (1)
Pg; is the real power output of generator i

a;, bi, and c; are the cost coefficients for the quadratic cost curve of generator i, which are obtained from
generator cost data.
G is the set of all generators in the system.

2.1.1.1. Power Balance Constraints (Equality Constraints)
The total power generated must equal the total demand plus system losses.
The active and reactive power balance equations represent this.

Active power Y, P; =), P, + PL (2)
Reactive power =, Q; =, Qp + QL (3)

2.1.1.2. Generator Capacity Constraints (Inequality Constraints)
The real and reactive power outputs of each generator must be within their respective limits.

l)Gmin < PG < PGmax (4)

QGmin < QG < QGmax (5)

2.1.1.3. Voltage Magnitude Limits (Inequality Constraints)
The voltage at each bus must be within specified operational limits.

Vmin < Vi < Vmax (6)

2.1.1.4. Transmission Line Flow Limits (Inequality Constraints)
The power flow through each transmission line must not exceed its thermal capacity.

Active Power Flow Limit |P;; |< Pi’}-‘ax 7)

Reactive Power Flow Limit| Q;; |< Q' ®)
2.1.1.5. System Observability Constraint Subsubsection 1

All system buses must either have a PMU placed on them or be adjacent to a bus with a PMU to
ensure full observability.

All of the system's buses must have a PMU placed on them or be adjacent to one in order for full
observability to be guaranteed [70]. This restriction is known as:

X+ Xjen; % =1V, €B 9)

N; is the set of neighboring buses connected to bus i.
B is the set of all buses in the power system.

With the use of a PMU on the bus or its nearby buses, this constraint guarantees that each bus i is
either directly or indirectly observable.
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2.1.1.6. Redundancy Constraint (Optional)

Ensures that each bus is observable from at least two PMUs to enhance system reliability in the event
of a failure. To enhance system reliability and ensure observability in the event of PMU failure, a redundancy
constraint can be implemented. This constraint ensures that each bus is observable from at least two PMUs:

xi+ZjENL.xj ZZVIEB (10)

By guaranteeing that observability is maintained even in the event of a PMU failure, this optional
constraint is used to increase robustness and reliability.

2.1.1.7. Zero-Injection Bus Constraint

Because of Kirchhoff's Current Law, zero-injection buses—those in which no power is injected or
withdrawn—can require fewer PMUs. (KCL) [70]. The following is the formulation of the zero-injection bus
constraint:

Yjen; % = 1V, € ZIB (11)

2.1.1.8. ZIB represents the set of zero-injection buses
Without the usage of a PMU, this constraint guarantees that zero-injection buses are visible to at least
two nearby buses.

2.2. PMU Placement Formulation

The optimal placement of phasor measurement units (PMUSs) is formulated as a minimization problem
aimed at determining the minimum number of PMUs required to achieve complete system observability while
satisfying redundancy and monitoring constraints [69]. A PMU is a smart device in the smart grid that provides
real-time synchronized voltage and current measurements. Thus, the entire power network can be observed by
the strategic placement of PMU devices. The main objective of the OPP problem is to find the minimum PMUs
to achieve full observability of the power system [32] . The objective function (F (x)) for the optimal placement
problem is formulated to reduce the number of PMUs as well as to maximize the measurement redundancy and
can be represented as follows:

F(x) =minX¥, x; +w;(M - A’ X)T(M - A’ X) + w, X Nyps (12)
Subject to: A’ X>b

Where N is the total number of bus locations in a network, M is the desired value of measurement
redundancy, and Nobs is the number of observable buses. In this study, the weights w1l and w2 were selected
through a trial-and-error process, based on the relative importance of each objective in the optimization
problem. w1 represents the weight assigned to minimizing the number of PMUSs, while w2 corresponds to the
weight for ensuring system observability. These weights were fine-tuned to balance the trade-off between
reducing PMU count and maintaining full observability, with their values chosen to optimize overall system
performance based on simulation results and the specific requirements of the Shiroro 330 kV Parameters A’
The binary connectivity matrix, denoted as A’ is a matrix that represents the connectivity between buses in the
power network, where each element Aij indicates whether there is a direct transmission line between bus i and
bus j. This matrix is crucial for determining the observability and interactions between different parts of the
grid. And is the binary connectivity matrix, and can be defined as follows:
Ay = { 1,if i =joriisconnected t?j (13)

0, otherwise

The decision variable vector X consists of binary values x_i, where each x_i represents the placement
decision for the PMU at bus i. If x_i=I, it indicates that a PMU is installed at bus i, while x_i= 0 means no
PMU is installed at that bus.

Xi= {1 ,if the PMU is installed at bus i
Lo, otherwise

(14

The optimal PMU placement (OPP) problem is defined as determining the minimum number of PMUs
and their optimal placement locations to make the power system network completely observable. The power
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system observability is divided into two approaches: the topological observability and the numerical
observability. In the topological observability approach, the process is grounded in graph theory. It relies on
decoupled modeling, where the power system is represented as a graph with buses as nodes and transmission
lines as edges, allowing observability analysis to be conducted using connectivity rather than electrical
measurements. An observable network is determined from the existence of a full ranked measurement tree
based on the observability rules [32]. The numerical observability approach is based upon the numerical
factorization of the Jacobian gain matrix. This approach to determining observability is not suitable for large
systems due to the massive matrix manipulation and complexity. In this paper, topological observability is used
to analyse the observability of the electrical network.

PMU Placement Formulation

35%
30%
25%
20%
15%
10%
N
0%
Full System Redundancy Cost Efficiency Reliability Optimal
Observability Placement

Methodologies

Figure 2. PMU Placement Formulation

2.3. PMU Placement Problem with Binary Grey Wolf Optimization (BGWO)

Phasor Measurement Units (PMUs) measure electrical signals synchronously in real-time, thereby
enhancing power grid stability, reliability, and monitoring capabilities. Optimizing the placement of PMUs
within a power grid, such as Nigeria's Shiroro 330kV Grid Network, is a complex binary optimization issue.
The Binary Grey Wolf Optimization (BGWO) method offers a practical solution by efficiently minimizing the
number of PMUs needed while ensuring full grid observability, outperforming traditional methods through
better handling of non-linear constraints and faster convergence to optimal solutions. This explanation explores
the BGWO method, the PMU placement problem, and the related mathematical formulations. This is a binary
optimization problem where each bus in the grid either has a PMU (1) or does not (0). The Binary Grey Wolf
Optimization (BGWO) algorithm provides an efficient approach to solving this problem by mimicking the
hunting behaviors of grey wolves, adapted for binary decision-making.

2.3.1. Grey Wolf Optimization (GWO)
2.3.1.1 Definition

Binary Grey Wolf Optimization (BGWO) is employed in PMU placement due to its robust search capabilities
and adaptability to complex, discrete optimization problems commonly encountered in power system
observability. Key reasons for using BGWO in PMU optimization include Wolf Optimization (GWO). A
nature-inspired metaheuristic algorithm that mimics the social hierarchy and hunting behaviour of grey wolves.
2.3.1.2 Key Components

The leadership hierarchy in GWO mimics the natural social structure of grey wolves, which is divided into
four distinct ranks: alpha (a), beta (B), delta (8), and omega (®).
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® Leader
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» (vemee Lbe gmoup

® Serves as spies, walchmen, elders, hunters, and guands m the group
» Subami 1o 2lpha and beta wolves
Caretakers of sick and mpared wohies

3. Dela

Figure 3. GWO leadership [28]

Hunting mechanism is closely related to the optimization process and serves as a metaphor for how candidate
solutions evolve toward the global optimum

* Searching fqr prey +Hunting
(exploration) *Encircling * Attacking the
the prey prey
Step1 Step 3 (exploitation)

Figure 4. Hunting process [28]

2.3.1.1. Objective Function

The primary objective of optimal PMU placement is to minimize the total number of PMUs installed
while guaranteeing complete topological observability of the power grid. This involves identifying the smallest
set of bus locations where PMUs can be placed so that the entire grid, either directly or indirectly through
observability rules, is effectively monitored.

min = YL, x; (15)

Each bus is either equipped with a PMU or connected to at least one bus with a PMU.

x€{0,1}v;=1.2,...N (16)
2.3.1.2. Fitness Function Subsubsection 1

In the optimal placement of PMUs, the fitness function is designed to evaluate each candidate solution

by considering two conflicting goals:
1. Minimizing the number of PMUs deployed, and

2. Maximizing the system's observability.
To balance these objectives, two weighting coefficients are introduced:
. a: The weight assigned to minimizing the number of PMUs (cost-efficiency).

. B: The weight assigned to maximizing observability (coverage quality).
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Fitness = a x X, x;) + B X Observability 17)
a and B are weighting factors balancing the importance of minimizing PMUs and maximizing observability,
respectively.

Observability

Ay =1 (18)

A’ y —tell how many of each bus’s neighbours (including itself) have PMUs.
A’ x>1 means every bus must be covered by at least 1 PMU directly or indirectly.

2.3.1.3. Observability Calculation
For a given PMU placement vector X, observability is determined as follows:

Number of Observable Buses
N

Observable =

x 100% (19)

Observable buses are those with a PMU or directly connected to a bus with a PMU.

2.3.1.3.1. Initialization

Population Setup. In the optimal PMU placement, each potential solution is represented as a binary
vector X =[xy, X2---» Xn], Where each element xi€{0,1} denotes the presence (1) or absence (0) of a PMU at
bus i. The initialization process involves generating a population of such candidate solutions randomly to start
the optimization. This diverse starting population enables broad exploration of the search space. Population
Size (P): Number of candidate solutions.

e Maximum Iterations (T): Termination condition.

e Control Coefficients: Parameters guiding the GWO behaviour.

2.3.1.3.2. Fitness Evaluation
Compute Observability
Fitness Evaluation Steps
For each wolf ® in the population (i.e., each candidate PMU placement solution represented by a
binary vector Xo):
Input the Placement Vector
Use the binary vector X® =[xy, X3---» Xn ], Where y; = 1 ifa PMU is placed at bus i, and zero otherwise.
Compute Observability Vector
Multiply the connectivity matrix A’ with the placement vector and add it to the vector itself: A’ y >1
This reflects which buses are observed either directly or through connected buses.
Check Observability Condition
Ensure that all elements of vector X are greater than 0, i.e.,
If Xi>0 for all i, then the system is fully observable.
If not, assign a high penalty (e.g., fitness = o).
Count PMUs
If the system is fully observable, compute the fitness as the total number of PMU, Fitness = X1~ ; x;. The
objective is to minimize this value. Return Fitness Value:
If the system is observable, — return the number of PMUs.
If not observable — return an enormous penalty value (e.g., ©).
Calculate Fitness: Use the fitness function to evaluate each wolf’s solution.

Fitness, = a x (X~,x;) — B X Observability, (20)

2.3.1.3.3. Identify Leaders
In the GWO algorithm, the process of hunting prey is metaphorically mapped to solving optimization
problems. Here's how:

. Alpha (a): Represents the best solution (lowest fitness value).
. Beta (B): Represents the second-best solution.
. Delta (8): Represents the third-best solution.

. The rest of the wolves are omega (®) and update their positions based on the guidance of o, B, and 8.
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2.3.1.3.4. Encircling process

X(t+ 1)=Xy(t) + AD (21)
D =|CX, (t) - X(t) | (22)
A=2ar—a,C=2r (23)
2.3.1.3.5. Position Update

Encircling Prey Equations: Update each wolf’s position based on the positions of a, B, and 6 wolves.
D,=[C; XX, —Xy] (24)
Dg=[Cy X Xg—X,] (25)
Ds=[Cs X X5 —X,,] (26)
X, =[X, X A, — D] (27)
X, =[Xg x A, — D] (28)
X3 =[Xs X A3 — Ds] (29)
Kyew= 2% (30)

3

2.3.2. Binary grey wolf optimization algorithm

Binary Grey Wolf Optimization (BGWO) is an adaptation of the standard Grey Wolf Optimization
(GWO) algorithm, specifically designed for binary optimization problems, such as the optimal placement of
Phasor Measurement Units (PMUs), where decisions are represented as Os and 1s (e.g., placing a PMU or not).
In the Binary Grey Wolf Optimization (BGWO) algorithm, the position of each grey wolf is represented as a
binary vector, where each element is either 0 or 1. This binary encoding is crucial for solving discrete
optimization problems, such as determining whether to install a PMU at a specific bus in a power grid.

To adapt the continuous position updates from the standard GWO to binary space, BGWO uses a transfer
function, typically the sigmoid function (SF), to map real-valued positions to probabilities.

Therefore, Eq. (3.18) can now be updated as Eq. (3.28) as follows. To convert continuous position values
into binary decisions in the Binary Grey Wolf Optimization (BGWO) algorithm, the sigmoid transfer function
is applied:

1ifSF =2 ny

X(t+ 1= {0, otherwise

3D

The sigmoid function is a key mechanism that facilitates the binary conversion in BGWO. Mapping
continuous position values to a range of 0 to 1 enables the algorithm to make decisions about PMU placement
in a smooth and controlled manner, thereby enhancing the accuracy and efficiency of the optimization process.
The introduction of randomness through thresholding (using the random value rrr) adds diversity to the search,
enabling the algorithm to explore the search space effectively.

1
1+e XNew

SF = (32)

Where 13 is a random number between [0, 1] and SF is the sigmoid function.
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Read the bus data, line data and obtain the connectivity
matrix A’

v

Initialize population size (pop) randomly, maximum no of
iteration (max_iter) and vector parameters (a, Aand C)

v

Evaluate objective function (J(z))

B

A 4

Set iteration (ite) = 1

v

Update the first three best searching agent Xx, X, Xd and
vector parameters (a, A and C)

v

Compute X1, X2 and X3 using the equations (17), (18) &(19)

v

Update the positions of each grey wolf using equation

v

Evaluate the best objective function value for all the grey
wolves

Isiter<
max_iter

Determine the Xa as the optimal solution and show the no of
PMUs along with their location

Figure 5. Optimization process [33]

3. RESULTS AND DISCUSSION

BGWO’s key achievements are minimizing PMUs while ensuring full observability from the foundation
of its effectiveness. Additional benefits, such as handling non-linear constraints and adaptability to dynamic
grid environments, make it an ideal solution for PMU placement optimization in complex power networks.
The result for the Optimal PMU Placement on Buses in the Shiroro 330KV Grid Network of Nigeria using the
Binary Grey Wolf Optimization (BGWO) Algorithm is the determination of the least number of PMUs needed
to guarantee complete system observability by strategically placing them on key buses, optimizing grid-wide
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monitoring for enhanced fault detection, stability, and power quality assessment, while minimizing installation,
maintenance, and operational costs, accelerating the optimization process through BGWO's computational
efficiency, and contributing to improved grid security, adaptability to future upgrades, and better.

3.1. BGWO Optimization Result
PS C:\Users\DELL> & "C:/Program Files/Python313/python.exe" c:/Users/DELL/Desktop/SHIRORO.py
Optimal PMU Placement:
PMU Locations (1 indicates PMU placement): [0 1 0 1 0]
Number of PMUs used: 2
PS C:\Users\DELL>

i
i
|

in

Figure 6. Optimallyated for PMU 1

3.1.1. Optimal PMU Placement

The optimization results demonstrate the success of the Binary Grey Wolf Optimization (BGWO)
algorithm in identifying the optimal placement of Phasor Measurement Units (PMUs) within the Shiroro 330
kV grid network. The algorithm has effectively computed the best locations for installing PMUs, minimizing
the number of units required while ensuring full observability of the entire power system. This optimization
process not only reduces installation costs but also guarantees that all critical system buses are monitored,
ensuring efficient grid monitoring and control. In the following sections, we will delve into the technical details
of the placement results and the key factors contributing to the algorithm's effectiveness.

Table 1. OPP Result Obtained from Proposed BGWO

Shiroro 330kv Grid Network Location of PMU Optimal no of PMUs
5-bus 2,4 2
. This array represents different buses in the power system.
. A value of 1 means a PMU is placed at that bus.
. A value of 0 means no PMU is placed at that bus.
. In this case, PMUs are placed at buses 2 and 4 (indexing starts from 0 in Python).

Number of PMUs used: 2"
. This indicates that 2 PMUs are required for complete observability of the power system.

3.2. PMU Placement on strategic Buses in MATLAB/Simulink on Shiroro 330kV
3.2.1. PMU Placement on strategic Buses in MATLAB/Simulink with and without fault

Once the PMUs were installed, fault analysis was conducted within the MATLAB/Simulink environment
to assess the robustness of the PMU configuration under fault conditions. The simulation considered various
fault scenarios, including short circuits, line-to-ground faults, and other disturbances commonly found in power
systems.
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Once the PMUs were installed, fault analysis was conducted within the MATLAB/Simulink environment
to assess the robustness of the PMU configuration under fault conditions. The simulation considered various

fault scenarios, including short circuits, line-to-ground faults, and other disturbances commonly found in power
systems.

Figure 7. PMU placement with fault

3.2.1.1. Voltage Magnitude Response (Top Plot)

. Initially, the voltage is stable at 1 per unit (p.u.), indicating normal operation.

. At t = 5s, there is a sudden dip, suggesting a fault event (e.g., short circuit, line outage).

. PMUs measure the voltage phasor at a bus as

V(©) = [V([Ole"(-j0(1) (33)
where

[V(t)| is the voltage magnitude (in per unit p.u)
jO(t)= is the voltage phase angle (in radians or degrees)
Fault impact on voltage

At t =5 seconds, a voltage dip occurs in the system, representing a disturbance such as a fault or sudden
load change. This voltage dip impacts the voltage magnitude, phase angle, and frequency of the buses in the
following ways:

. Voltage Magnitude:

The disturbance causes a temporary drop in the voltage level at the affected buses. This is typically observed
as a sudden decrease in RMS voltage values from nominal (e.g., from 1.0 p.u. to around 0.7-0.8 p.u.),
depending on the fault severity.

. Phase Angle:

A fault or disturbance introduces a rapid shift in the voltage phase angle, indicating instability or mismatch in
the power flow. The phase angle deviation helps identify where and how the system's synchronism is affected,
and PMU s are crucial in capturing this data in real time.

. Frequency:

Frequency is sensitive to power imbalances. During the disturbance, local frequency deviation occurs as the
system attempts to stabilize. A dip or surge in frequency is a critical signal of generation-load mismatch, with
PMUs detecting even small deviations from the nominal 50 Hz standard.

Viault = |V|prc fault = AV (34)
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3.2.1.2. Phase Angle Response (Middle Plot)

. The phase angle remains relatively stable before the fault.

. At t = 5s, a sudden shift occurs, meaning there is a disturbance in power flow.

. Oscillations after the fault indicate the system is trying to re-establish synchronization.

. If oscillations are significant or sustained, it could mean generator instability or poorly damped power
swings.

The phase angle difference is the angular separation between the voltage phasors of buses i and j.. Phasor
Measurement Units (PMUs) provide synchronized real-time measurements of voltage phase angles. By
measuring 0i and 0j directly, PMUs eliminate estimation errors, improving power system observability and
control.

P..:
1 X

A Sin9,—6,) A 0 (35)
i
Fault Impact on Phase Angle. During a fault, the power flow equation is disturbed.

_ villv;

AP cos(6;—6,) A0 (36)

3.2.1.3. Frequency Response (Bottom Plot)

. The frequency starts at 60 Hz, which is the nominal operating frequency of the power grid.

. At t = 5s, there is a deviation in frequency, indicating a power imbalance due to the fault.

. A rapid frequency dip suggests a significant loss of generation or a sudden change in load.

. If the system does not restore frequency to 60 Hz, automatic load shedding or generation adjustments

may be required.
Frequency is related to the power systems' rotating machines and is governed by

do _
i 2nf 37)
The rate of change of frequency is given by

df _ Pm—Pe
dat  2H (%)

Fault impact on frequency
A fault introduces a power imbalance. P, # P.causing a frequency deviation.

Ffault = fnominal- Af (3 9)
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3.2.2. PMU Placement on strategic Buses in MATLAB/Simulink without fault
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Figure 8. PMU placement on strategic Buses

Voltage Stability Observation: Throughout the simulation period, the voltage magnitude at the
monitored bus remains nearly constant at approximately 1.0 per unit (p.u.), indicating that the system is
operating under stable conditions.

Normal Operating Benchmark: In power systems, a voltage magnitude of 1.0 p.u. is considered the
nominal or reference value, representing the ideal voltage level without any deviations or disturbances. No
visible disturbances, dips, or oscillations are present, indicating a stable voltage profile.

Mathematical Representation:

V(1) = [V(1)e?® (40)
where V(t) = 1.0p.U means no voltage sag or fault is occurring.
3.2.2.1. Phase Angle Response (Middle Graph)

The phase angle graph demonstrates the system’s dynamic response and highlights the critical
importance of phase angle stability in maintaining a balanced power flow:

. Initial Oscillation: At the onset of the simulation, the phase angle exhibits a slight transient oscillation,
which is typical after a system is subjected to a change, such as a minor disturbance or switching
event.

. Stabilization: Shortly after the disturbance, the phase angle settles around a steady-state value,

indicating that the system has effectively damped out the oscillations and returned to equilibrium.
PMU s precisely measure these angles in real-time, enabling operators to detect phase instability early and take
corrective actions, thereby reinforcing the value of optimal PMU placement. No significant deviation was
observed, indicating normal power flow without sudden disturbances.
Mathematical Representation:

p;= "1 Sin(e,—6,) (41)
J

Xi
Since 6;—06;) remains stable, power flow is maintained, meaning there is no fault.

3.2.2.2. Frequency Response (Bottom Graph)

The frequency response analysis reveals a critical relationship between frequency stability and the
balance between mechanical input power and electrical output power of the generators:
o Initial Oscillation: The slight initial frequency oscillation observed is a natural response to transient

imbalances between mechanical and electrical power during system disturbances or switching events.
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e Stabilization at 50 Hz: The quick return and sustained operation around the nominal 50 Hz frequency
indicate that the mechanical input from the turbines and the electrical power demand on the grid are closely
matched, reflecting an effective governor response and load balancing mechanism.

e Generator Stability: The absence of significant frequency deviations confirms that the generators are
operating within stable conditions, and the automatic control systems are successfully maintaining
equilibrium between input torque and electrical load.

Mathematical Representation:

& _ Pm=Pe
dat 2H (42)

. d . .
Since d—f = 0, mechanical and electrical power are balanced.

4. CONCLUSION AND LIMITATION

This study successfully applied the Binary Grey Wolf Optimization (BGWO) algorithm to determine the
optimal placement of PMUs on the Shiroro 330 kV grid. The result, which requires only two PMUs for
complete observability, demonstrates BGWO's effectiveness in reducing costs and enhancing system
reliability. The method supports improved monitoring, fault detection, and scalability for future upgrades,
offering a robust solution for grid development in emerging economies. Also significantly enhances system
resilience and real-time fault detection during high-voltage disturbances, by simulating the Shiroro grid with
and without PMUs using MATLAB/Simulink. The presence of optimally placed PMUs improved voltage
stability, phase angle tracking, and frequency response during faults.
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