
Vokasi Unesa Bulletin of Engineering, Technology and Applied Science (VUBETA) 

https://journal.unesa.ac.id/index.php/vubeta  

Vol. 1, No. 1, 2025, pp. 306~318 DOI: 10.26740/vubeta.v2i2.38275 

ISSN: 3064-0768 

 

 

 

*Corresponding Author 

Email: sadiqnguraa@gmail.com 

 

The Use of Genetic Algorithm Optimization Approach In 

Comparison With Lambda Iteration Technique to Solve 

Economic Load Dispatch Problem 
 

Sabo Aliyu 1, Sadiq N. Buba1,2*, Olutosin Ogunleye1, Kabir Mohammed 1, Samuel Ephraim Kalau1, Daramdla 

P. Olaniyi1 
1Department of Electrical and Electronics Engineering, Faculty of Engineering, Post graduate school, Nigerian Defense Academy, 

Nigeria. 
2Kaduna Electricity Distribution Company, Kaduna State, Nigeria 

Article Info  ABSTRACT  

Article history: 

Received January 14, 2025 

Revised March 19, 2025 

Accepted March 28, 2025 

 

 The increasing demand for efficient and reliable power generation systems 

has amplified the importance of solving the Economic Load Dispatch (ELD) 

problems. This study compares the performance of two optimization 
techniques—Genetic Algorithm (GA), a robust metaheuristic approach, and 

Lambda Iteration, a traditional iterative method—on the IEEE 39-bus 10-

generator test system. The analysis focuses on fuel cost minimization and 

computational efficiency. GA achieves a significant reduction in total fuel 
cost to $1390.29, outperforming Lambda Iteration's $2324.22. However, 

Lambda Iteration demonstrates faster convergence at 0.2 seconds compared 

to GA's 1.2 seconds. The results underscore the trade-offs between cost 

efficiency and computational speed, providing valuable insights into the 

suitability of advanced optimization methods like GA for complex ELD 

problems and the practicality of Lambda Iteration for simpler systems. 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION  

Electrical power is a crucial energy source that plays a significant role in the growth and development of 

nations, both developed and developing, across the globe [1]. Its vital role in daily activities has driven a sharp 

rise in power demand, leading to a corresponding expansion in the size of power systems [2]-[4]. The electrical 

power as an energy source must be generated, transmitted, and distributed via a medium known as the electrical 

network or grid for utilization. This energy generation on a larger scale is faced with different challenges, one 

of which is the cost of generation [2][5][6]. Many power companies are trying to find new ways to optimize 

the cost of generation while maintaining all other operational constraints. This need for optimal power 

generation at minimal cost led to the study of the economic load dispatch problem (ELD) [1][4][5]. Economic 

Load Dispatch (ELD) is one of the most crucial optimization problems in power system operation, aimed at 

minimizing the total fuel cost while satisfying the power demand and operational constraints [6][2][4]. 

Economic Load Dispatch (ELD) is used in power systems to identify the most cost-effective generation 

schedule for a group of power plants, ensuring that the load demand is met [6]. The primary goal of ELD is to 

minimize the total fuel cost of power generation while adhering to various constraints, such as generator 

capacity limits and transmission line capabilities [3][7]. In solving the ELD problems different optimization 

techniques have been used for other system sizes ranging from Traditional methods like Lambda Iteration and 

Newton-Raphson up-to the modern optimization techniques like Genetic Algorithms (GA), Particle swarm 

optimization (PSO), Artificial Bee Colony (ABC) etc [4][7]-[9].  From the related literatures we reviewed we 

found that researchers used both traditional and meta-heuristic technique to solve the ELD problems of 

different system sizes both small, medium and large systems [1][3][9]. For example, a vectorized lambda-

iteration method is proposed to solve a three-generator test system, which serves as an advanced Lambda 

iteration technique. This technique can scale the computational challenges for large-scale systems, and the 
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result obtained shows that this technique achieves faster convergence and reduced computational time, but the 

algorithm is complex [10]. 

A meta-heuristic method, particle swarm optimization, is applied to solve a system of six generating units. 

It was able to solve the problem at a fast convergence time but the algorithm is faced with an issue of stuck at 

local optima [4][11]. To solve the ELD problem of two sets of three and six generating units, ant lion 

optimization algorithm (ALOA) and bat algorithm (BA) techniques were used as advanced techniques. The 

result was optimal, although equivalent and unequal specifications must be addressed [9]. The multiple of 

hybrid lambda-iteration method and bee colony optimization (MHLBCO) was also used to solve the ELD 

problem with a smooth cost function [12].  This study proposes Genetic Algorithms (GA) and the Lambda 

Iteration method to solve the ELD problem, using the IEEE 39-bus test system as a benchmark for comparison. 

These techniques were evaluated based on their efficiency and suitability for optimization in power systems 

[13]. Traditional techniques like Lambda Iteration provide fast results for simple, convex systems, whereas 

meta-heuristic methods like Genetic Algorithms (GA) are more suitable for complex, non-linear problems. 

This paper compares GA and LI for solving the ELD problem in the IEEE 39-bus system, emphasizing cost 

efficiency and convergence time. 

The primary objective of this study is to investigate the cost-effectiveness and computational performance 

of the GA and LI methods. With its population-based heuristic approach, GA is expected to yield lower costs 

due to its ability to avoid local minima. In contrast, LI's deterministic nature offers faster convergence for 

simpler problem structures. To provide a broader perspective, section two provides a detailed step-by-step 

explanation of how these methods work. In contrast, section three presents us with the results in tables and 

charts that clearly show the effectiveness of each technique. Section 4 describes and summarizes the results 

obtained, demonstrating the superiority of one method over the other in terms of cost-effectiveness and 

convergence time. This paper showed the strength and reliability of GA over the Lambda iteration technique 

when applied to large-scale systems. 

 

2. METHOD  

The economic load dispatch (ELD) problem aims to minimize the generation cost while satisfying 

operational constraints, and traditional methods such as the lambda-iteration method (LIM) have been widely 

used due to their simplicity and computational efficiency in small systems [1][13][14]. However, LIM struggles 

to address non-convex cost functions, non-linear constraints, and large-scale systems [13][15]. Conversely, 

meta-heuristic techniques like genetic algorithms (Gas) have proven effective in handling the complexities of 

non-linearities and non-convexity, offering better convergence and accuracy [5][16][17]. Studies have 

demonstrated the potential of hybrid approaches, where the computational speed and efficiency of LIM are 

combined with the global search capabilities of GAs to achieve superior performance in large-scale, non-linear 

ELD problems [13][8][14]. Further research also emphasizes the application of GAs for multi-objective 

optimization, such as integrating renewable energy sources or addressing environmental constraints [5][15]. 

By leveraging the strengths of both methods, GAs effectively solve the limitations of LIM, ensuring scalability, 

adaptability, and robustness in solving complex ELD problems [18]-[20]. This integration highlights that GAs 

critical role in achieving optimal solutions for real-world, large-scale power system operation is crucial and 

makes it stand out compared to other techniques [1]. 

Out of all the methods used in solving the ELD problems, we chose to use the Genetic Algorithm approach 

compared with the lambda-iteration technique to solve the ELD problem of the IEEE 39-bus 10-generator test 

system. In this section we explains the two methods used in solving the ELD problem and the software 

environment used for the simulation (Matlab), and we also provide a systematic way of using the two methods 

to solve the ELD problem, including their respective mathematical problem formulation and flow charts. 

 

2.1   Simulation Environment and Implementation: 

 The simulations were performed using MATLAB R2023a, leveraging built-in functions and custom 

scripts for both GA and Lambda Iteration methods. For the GA, the `ga ()` function from MATLAB's Global 

Optimization Toolbox was utilized, with the parameters set as shown below. For the lambda-iteration, custom 

MATLAB scripts were developed to adjust the lambda value based on system constraints iteratively. 

• Software: MATLAB R2023a 

• Population Size (GA): 100 

• Crossover Rate: 0.8 

• Mutation Rate: 0.05 

• Convergence Criteria: 100 generations or negligible improvement 

• Processor: Intel Core i7, 16 GB RAM 

• Operating System: Windows 10 Pro 
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2.2 Genetic Algorithm:  

The genetic algorithm (GA) is a robust meta-heuristic optimization technique inspired by the principles 

of natural selection and genetics [1][16]. It maintains a set of candidate solutions called a population and 

repeatedly modifies them to a new population derived from the older ones [4]. It is particularly effective for 

solving non-linear and non-differentiable problems like ELD. The arising question will be How does GA solve 

the ELD problem? Yes, GA solves the ELD problem by encoding generator power outputs into chromosomes 

and iteratively improving them using selection, crossover, and mutation to minimize the objective function. It 

handles constraints using penalty functions or repair mechanisms. Below is a mathematical formulation for 

solving the ELD using GA. 

 

2.2.1 Objective function: 

The objective function is to minimize the total cost of generation at the optimal power output:  

  

C(P) = ∑ [ai * Pi^2 + bi * Pi + ci], for i = 1 to N                                                                                           (1) 

where: 

  - C(P): Total generation cost ($/h) 

  - ai, bi, ci: Cost coefficients of generator i 

  - Pi: Power generated by generator i 

  - N: Number of generators 

2.2.2 Constraints: 

• Power Balance Constraint: 

 

∑ Pi = PD + PL                                                                                                                                                (2) 

 

 where  

-PD is the total load demand  

-PL is the power loss 

-∑ Pi is the total power generation. 

 

• Generator Limits constraints: 

 

Pmin,i ≤ Pi ≤ Pmax,i                                                                                                                                 (3) 
 

where: Pmin,i and Pmax,i are the minimum and maximum power outputs of generator i, respectively. 

 

2.2.3 Key Terms Used in the Genetic Algorithm: 

Below is a simple table outlining the key terms, also known as the element of genetic algorithm method 

which will be related to the parameters of the objective function of the economic load dispatch. We try to 

describe these two to give a better understanding of how the heuristic method is used to solve ELD problems. 

 

Table 1. Key Terms of Genetic Algorithm to ELD 

s/n Terms used in 

GA 

Meaning of each term specified How these terms are related to ELD objective 

function. 

1 Population A group of candidate solutions (chromosomes) Representing power generation levels. 

 

2 Chromosome A single candidate solution Encoded as a vector of power outputs. 

3 Fitness Function A measure of how well a candidate solution meets 

the objective 

This represent the Generation cost 

4 Selection The process of choosing parent solutions for 

reproduction based on fitness. 

The process of choosing better solution based 

on the generation cost obtain  

5 Crossover  A genetic operation where two parent solutions are 

combined to produce offspring. 

Process of combining two output generation 

to form a better one  

6 Mutation A genetic operation that introduces random changes 

to maintain diversity in the population. 

Randomly changing parameters to maintain 

the power generation. 

7 Generations Iterations of the GA process Number of iteration  
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Figure 1. Flow chart of GA when applied to solve ELD 

1. Initialization: 

Randomly generate an initial population of chromosomes (potential solutions), each representing a 

candidate power dispatch configuration. 

2. Fitness-evaluation: 

Calculate the fitness of each chromosome by evaluating the ELD objective function. This function 

typically includes generation cost, system constraints, and power balance. 

3. Selection: 

Choose parent chromosomes based on their fitness values using methods like: 

• Roulette Wheel Selection: Higher fitness increases the likelihood of selection. 

• Tournament Selection: A subset of chromosomes competes, and the fittest is selected. 

4. Crossover (Recombination): 

Combine selected parents to produce offspring. Common techniques: 

• Single-point crossover: Swap segments of chromosomes after a selected point. 

• Uniform crossover: Mix parent characteristics randomly. 

5. Mutation: 

Introduce small random changes to offspring genes to maintain diversity and explore the solution space. 

This prevents premature convergence. 

6. Replacement: 

The next generation can be formed by replacing the current population with offspring, possibly retaining 

a few elite individuals (elitism) to ensure the best solutions are not lost. 

7. Convergence: 

Repeat steps 2–6 until a stopping criterion is met, such as the following; 

• A predefined number of generations. 

• A fitness threshold. 

• Insignificant improvements over successive generations 
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2.3  Lambda Iteration Method: 

The Lambda Iteration Technique is a conventional approach and is one of the most commonly used 

techniques in solving the ELD problem [4]. It is based on the principle of equal incremental cost, which ensures 

that the cost of generating additional power is the same for all participating generators. This method assumes 

a quadratic cost function and linear constraints, making it effective for simpler, convex ELD problems. 

 

2.3.1 Objective Function of Lambda Iteration: 

Minimize the total fuel cost using the mathematical relation below: 
 

F(Pgi) = Σ Fi(Pgi) = Σ (ai Pgi² + bi Pgi + ci)                                                                                                 (4) 
 

where: 

• F(Pgi): total fuel cost (in $/h or equivalent units) 

• Fi(Pgi): fuel cost of generator i 

• Pgi: power output of the generator  

• ai, bi, ci: cost coefficients of generator i 

• N: total number of generators 

 

2.3.2 Constraints: 

1. Power Balance Constraint 

The total power generated must equal the total power demand plus losses: 

 

Σ Pgi = PD + PL                                                                                                                                              (5) 

 

where:  

PD is the ttotal power demand and PL is the transmission line losses (can be approximated or neglected in 

simplified systems). 

 

2. Generator Operating Limits 

Each generator must operate within its specified limits: 

 

Pgi_min ≤ Pgi ≤ Pgi_max                                                                                                                                 (6) 

 

The lambda-iteration method iteratively adjusts the Lagrange multiplier (denoted as λ) to balance power 

generation and demand while minimizing cost. The condition for economic dispatch and the incremental cost 

function is given below: 

 

∂Fi(Pgi) / ∂Pgi = λ ∀ I                                                                                                                                      (7) 

∂Fi / ∂Pgi = 2ai Pgi + bi = λ                                                                                                                            (8) 

 

Table 2. Steps used in lambda iteration to solve ELD 

s/n Stages involved Corresponding action to be taking 

1 Input Data -Cost coefficients ai, bi, ci for each generator 

   - Power demand PD 

   - Generator limits Pgi_min, Pgi_max 

2 Initialization    - Initialize λ (Lagrange multiplier) 

   - Set tolerance ε for convergence 

3 Calculate Power Outputs  - For each generator, calculate Pgi using: 

     Pgi = (λ - bi) / 2ai  

4 Check Operating Limits - If Pgi < Pgi_min, set Pgi = Pgi_min 

 - If Pgi > Pgi_max, set Pgi = Pgi_max 

5 Compute Total Power - Compute the total generated power: 

     P_total = ΣPgi 
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6 Check Power Balance - Calculate the mismatch: 

     ΔP = PD - P_total 

   - If |ΔP| ≤ ε, go to Step 8. 

7 Update Lambda -Adjust λ using a suitable updating rule, 

   e.g; λ_new = λ_old + kΔP 

8 Output Results - Print the power output Pgi for each generator 

- Print the total cost using: F_total = Σ Fi(Pgi) 

 

The flow chart below Figure 2 shows how the lambda-iteration technique adjusts the Lagrange multiplier 

iteratively to ensure that the total power output matches the demand while also minimizing the fuel cost. By 

iteratively recalculating the power outputs and updating λ, the method achieves an optimal and feasible 

economic dispatch solution. 

 

 
Figure 2. Lambda iteration flow chart 

 

3. RESULTS AND DISCUSSION 

This section presents the experiment performed on the IEEE 39-bus system, using GA and the Lambda 

iteration technique. To perform this experiment, we used the MATLAB software environment, which is one 

of the best tools for power system analysis, and the result presented in this work is the simulation result obtained 

from the software. Both techniques were simulated, and the output results were compared based on the fuel 

cost of generation, power output generation, and the rate at which each method converges. After the 

experiment, we use tables and graphs to present the results and a detailed discussion for deep insight. 

 

3.1 System Overview: 

In this research work, we use the IEEE 39-bus system to test the performance of the two methods 

discussed earlier in section two: the GA and the lambda-iteration technique. The New England 39-bus system, 

the IEEE test system, is a widely used benchmark for power system analysis. It includes 39 buses, 10 generating 

units, and 46 transmission lines [21]. The system provides a test environment for evaluating economic load 

dispatch, power flow, and stability studies. The figure and table below provide us with the schematic Network 



312  Sabo Aliyu et al. /VUBETA Vol 2 No 2 (2025) pp. 306~318 

 

  

and generating unit information needed to perform the analysis, including cost coefficients for the quadratic 

fuel cost function and the minimum and maximum power output constraints. 

 

 

 
Figure 3.1. IEEE 10-generator 39-bus system network [21] 

 

Table 3.1. IEEE 10-generator 39 bus system  
Generator Bus a B c P_min, i (MW) P_max, i (MW) 

G1 30 0.00375 2.00 0.00 50 200 

G2 31 0.01750 1.75 0.00 20 100 

G3 32 0.06250 1.00 0.00 15 80 

G4 33 0.00834 3.25 0.00 10 60 

G5 34 0.02500 3.00 0.00 10 60 

G6 35 0.02500 3.00 0.00 12 60 

G7 36 0.02000 2.50 0.00 10 60 

G8 37 0.01000 2.00 0.00 20 80 

G9 38 0.03226 1.00 0.00 25 100 

G10 39 0.01000 1.00 0.00 30 120 

                    PD = 500 MW. 

 

3.2 Using the Lambda Iteration Method: 

In this section, we apply the lambda iteration technique to solve the economic load dispatch problem for 

the IEEE 39-bus system. The results include the power output of each generator, the total fuel cost, and the 

system’s convergence performance. 

 

Table 3.2. Lambda iteration result. 
S/N Generators committed Power output (MW) Fuel cost ($) 

1 G1 200.0000 550 

2 G2 88.4671 291.8 

3 G3 30.7708 89.95 

4 G4 60.0000 225 

5 G5 36.9270 144.9 

6 G6 36.9270 144.9 

7 G7 58.6587 215.5 

8 G8 80.0000 224 

9 G9 59.6148 174.3 
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10 G10 120.0000 264 

Total 10 generators 771.3654  MW 2324.22  $ 

 
Figure 3.2. Lambda iteration result bar chart 

 

The lambda-iteration method efficiently solves the economic load dispatch (ELD) problem by 

distributing the load among the ten generators in a cost-optimal manner. As shown in Table 3.2, the method 

allocates the highest output to G1 (200 MW) due to its low cost coefficients, while smaller generators such as 

G3 and G4 contribute less power to minimize the total cost. The total fuel cost achieved using this method is 

$2324.22, and the total power generation amounts to 771.3654 MW, which is higher than the 500 MW demand, 

likely accounting for losses. The corresponding bar chart (Figure 3.2) visually illustrates the power distribution, 

showing G1 as the dominant contributor, followed by G2 and G10. The lambda-iteration converged in just 0.2 

seconds, as indicated in the comparison table (Table 3.4), demonstrating its computational efficiency. This 

makes it a preferred method for systems with simpler constraints and convex cost functions. 

 

3.3 Using the Genetic Algorithm Method: 

This section presents the application of the genetic algorithm (GA) to the same IEEE 39-bus system. The 

GA results highlight the optimized power outputs, minimized fuel cost, and the computational time required 

for convergence. 

 

Table 3.3. Genetic Algorithm result 
S/N Generators committed Power output (MW) Fuel cost ($) 

1 G1 112.14 271.44 

2 G2 52.992 141.88 

3 G3 33.12 101.68 

4 G4 19.555 66.742 

5 G5 21.583 76.393 

6 G6 27.959 103.42 

7 G7 55.92 202.34 

8 G8 24.73 55.577 

9 G9 67.663 215.36 

10 G10 84.338 155.47 

Total 10 generators 500.00 MW 1390.29 $ 
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Figure 3.3. Genetic Algorithm result bar chart 

The genetic algorithm (GA) provides a more advanced solution by optimizing the fuel cost while 

maintaining the system demand of 500 MW, as reflected in Table 3.3. Unlike the lambda-iteration, GA adapts 

better to the nonlinearities and complexities of the system. The power outputs for each generator were more 

evenly distributed, with G1 contributing 112.14 MW and G9 contributing 67.66 MW, reflecting the algorithm's 

flexibility in minimizing costs. The total fuel cost using GA was significantly reduced to $1390.29, a clear 

improvement over the lambda-iteration results. The corresponding bar chart Figure 3.3 shows how the GA 

balances power outputs among generators while adhering to constraints. However, the method requires a longer 

convergence time of 1.2 s, as noted in Table 3.4, due to the iterative nature of the genetic operators (selection, 

crossover, and mutation) and their exploration of a larger solution space. This trade-off between computational 

time and cost efficiency highlights GA's suitability for complex ELD problems. 

3.4 Comparison of Results Obtained: 

Here, we compare the results obtained from the lambda iteration technique and the genetic algorithm. The 

comparison focuses on fuel costs, power output distributions, and convergence times, providing insights into 

the strengths and limitations of each method. 

 

Table 3.4. Comparison of Results Obtained from The Two Techniques. 
S/N Technique Total Cost ($) Generator Outputs (MW) Convergence time (sec) 

1 Lambda Iteration 2324.22 $ 771.3654 MW 0.4 (sec) 

2 Genetic Algorithm 1390.29 $ 500.00 MW 1.2 (sec) 
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Figure 3.4. Comparison Bar-Chart 

 
Figure 3.5. Comparison graph. 

 

The comparison reveals that GA significantly reduces fuel costs to $1390.29, whereas the Lambda 

Iteration generates a higher cost of $2324.22 (Table 3.4). This cost advantage is due to the GA’s ability to 

explore non-convex solution spaces and avoid local minima. However, the Lambda Iteration maintains an 

advantage in speed, converging in just 0.4 seconds compared to GA’s 1.2 seconds. The comparison bar chart 

(Figures 3.4 & 3.5) vividly illustrates these differences, with GA achieving lower costs across the board but at 

the expense of higher computational time. While lambda-iteration is straightforward and efficient for simpler 

problems, GA is more versatile and practical for systems like the IEEE 39-bus system, where cost minimization 

is critical. Building on these findings, a more detailed comparative analysis is provided below to evaluate the 

trade-offs between the two techniques. 

 

3.5 Comparative Analysis: 

This section compares the performance of the Genetic Algorithm (GA) and the Lambda Iteration method 

in solving the Economic Load Dispatch (ELD) problem for the IEEE 39-bus 10-generator test system. The 

analysis focuses on key metrics such as the total fuel cost, power output distribution, and computational 

efficiency. 

 

a.      Fuel Cost Optimization: 

The GA achieved a total fuel cost of $1390.29, significantly outperforming the Lambda Iteration method, 

which resulted in a higher cost of $2324.22. The ability of GA to explore a broader solution space and avoid 

local optima contributed to its superior cost minimization performance. GA is particularly effective for ELD 

problems with non-linear cost functions or complex constraints. In contrast, the lambda-iteration is more suited 

to convex optimization problems due to its reliance on a quadratic cost function and the principle of equal 

incremental cost. While it provides a feasible solution, its inability to handle non-linearities limits its 

effectiveness in minimizing costs for more complex systems. 

 

b.     Computational Efficiency: 

Lambda Iteration demonstrated a significant advantage in computational efficiency, with a convergence 

time of 0.2 s compared to 1.2 seconds. This is due to its straightforward iterative process, which requires fewer 

computational resources and operates efficiently under simplified conditions, such as excluding transmission 

line losses and ramp rate constraints in this study. On the other hand, GA’s longer convergence time can be 

attributed to its reliance on population-based search mechanisms, including selection, crossover, and mutation, 

which explore and exploit the solution space. While computationally intensive, this approach enables the GA 

to find global optima, particularly for non-convex problems. 

 

c.      Power Distribution Patterns: 

GA's ability to distribute power more evenly across all generators highlights its adaptability in minimizing 

fuel costs while maintaining system constraints. Unlike the Lambda Iteration, which disproportionately 

allocates power to generators with lower cost coefficients, GA optimally adjusts power output across all units, 
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preventing excessive reliance on specific generators. This ensures better load balancing, reduces stress on 

individual units, and improves long-term operational stability, essential in a power system. 

d.     Applicability to System Complexity: 

Given the absence of transmission line losses and ramp rate constraints in this study, both methods 

performed well within their respective capacities. However, GA’s superior performance in cost minimization 

underscores its potential for more complex ELD problems, where such constraints are included. Lambda 

Iteration, while faster, is better suited for simpler systems where computational speed is a priority and the cost 

function is convex. 

 

e.      Key Trade-offs: 

The Genetic Algorithm (GA) requires 1.2 seconds to converge, while Lambda Iteration (LI) completes in 

just 0.4 seconds. This difference arises from their distinct optimization approaches. GA operates using a 

population-based search, meaning it iteratively evaluates multiple candidate solutions, applying selection, 

crossover, and mutation, which increases computational complexity. In contrast, Lambda Iteration directly 

adjusts the Lagrange multiplier. It uses a deterministic approach, allowing it to converge quickly in convex 

cost functions but limiting its flexibility in handling non-linear constraints. 

 

f.      Parameter Sensitivity: 

Varying crossover and mutation rates tested the performance stability. The comparative analysis indicates 

that GA significantly reduces the generation costs but requires more computational time. The sensitivity 

analysis revealed that GA's performance is more stable when the crossover rate is between 0.6 and 0.85. In 

contrast, LI showed consistent performance across different system conditions. 

 

g.      Practical Implications: 

These findings have significant implications for modern power systems. GA’s ability to optimize costs 

while maintaining flexibility makes it highly suitable for hybrid power systems integrating renewable energy 

sources such as wind and solar. Additionally, its effectiveness in handling complex, non-linear constraints 

positions it as a strong candidate for real-time economic load dispatch (ELD) applications in smart grids. On 

the other hand, Lambda Iteration remains a viable option for simpler grid configurations where rapid 

convergence is a priority. Potential applications include the following; 

• Optimization of generation schedules in hybrid power systems. 

• Cost reduction strategies for grids integrating renewable energy sources. 

• Real-time ELD in micro-grids with variable demand patterns. 

 

4. CONCLUSION AND LIMITATION  

This study demonstrates the application of the genetic algorithm and lambda-iteration techniques to solve 

the Economic Load Dispatch problem for the IEEE 39-bus 10-generator test system. The results underscore 

GA’s effectiveness in minimizing fuel costs, achieving a total cost reduction of $1390.29 compared to Lambda 

Iteration's $2324.22. However, the Lambda Iteration excels in computational efficiency, converging in 0.2 

seconds versus GA's 1.2 seconds. These findings emphasize the trade-offs between the advanced optimization 

capabilities and computational simplicity. GA is more suitable for systems with non-linearities and complex 

constraints, whereas Lambda Iteration is preferred for its rapid convergence in simpler, convex systems. Future 

work could explore hybrid approaches to leverage the strengths of both methods for enhanced ELD problem-

solving. 
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