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This study explores the findings obtained through these research objectives,
which will pave new agendas towards the medium-range economy
renaissance, resilient digital ecosystems, and human-centered integrated
intelligence. More in-depth exploration of the goal-specific research
objectives awaits the research report. The main research gap and questions —
and concomitant research approach, paradigm, and methodologies — framing
the subsequent sections of the paper are substantiated by these objectives'
delineation from the research questions. Practical implications and directions
for prospective areas of techno-social innovation studies, building upon the
findings, are outlined to conclude the paper. The aims, once accomplished,
offer a symbiotic relationship with the research questions that catalyze

Quality interest in a domain that has hitherto been neglected mainly in Industry 4.0
literature. These aims become the guiding lights surmounting the destination
of AloT as a subversive innovation in developing and deploying discrete,
reconfigurable, and near-continuous Industry 4.0 auxiliary open smart
manufacturing.

Environmental Sustainability
Production Efficiency

This is an open access article under the CC BY-SA license.

[oXolel
1. INTRODUCTION

Manufacturing has entered a new technological age of intensified research into Al and its integration
with IoT devices and has seen monumental transformations at various scales. On a microcosmic level, IoT
utilization has witnessed a flood of creativity that grows and advances each year. At a macro level, Al and
IoT integration respond to the industry's accelerating demand for production efficiency, extreme quality
precision, and the fourth pillar of contemporary technology, "Resource/Product Lifecycle Efficiency." See
Figure 1.

The Al/loT integration and applied shift belies a sense of history, as old paradigms were upended in
favor of new ones. Vast revisions in automotive assembly lines majorly reduced "the time and energy it took
to assemble one car." Continuous linear motion lines took countless components and fastened them into a
"logical whole at increasing speeds." Still, such changes' social and operating implications were minor
compared to the Al/IoT integration currently underway [1]. The systems were not only altering how a
product was manufactured, but the products themselves ideologically reflect the understanding of
Gesamtkonzept. Meanwhile, the AI/IoT era is being driven by the marker of technological universal
utilitarianism, the smart device, and the fusions expected of Al shortly, as America remains the front runner
in this technological arms race [2][3]. Outfitting so-called "dark factories" with such technologies has the
potential for immediate, albeit highly disruptive, benefits. A producer immediately upgrades its workforce to
a population of tireless, highly energized, detail-oriented workers. They do whatever they are told and never
call in sick [4]. Long-term data analysis of the AI/IoT systems enhances the fine-tuned process by "analyzing
all of the collected IoT data in near real-time to identify patterns, correlations, and underlying key issues."”
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The Al technology can also predict when an error may occur and does so well in advance of any visible signs

at that level of detail, as layers of manufacturing systems are revealed in the closed-loop Al-based

sensor/actuator system Al and [oT are revolutionizing manufacturing by enhancing production efficiency,

quality precision, and environmental sustainability. Here are specific examples in each area:

1. Production Efficiency

- Predictive Maintenance (Siemens MindSphere): Al-powered IoT platforms analyze sensor data from
machines to predict failures before they occur, reducing downtime and maintenance costs [5].

- Automated Production Lines (Tesla’s Gigafactories): Al-driven robots optimize workflows, increasing
output while reducing errors and waste.

- Digital Twins (General Electric - GE): Virtual replicas of manufacturing processes use Al and IoT data
to optimize production in real-time, improving efficiency and reducing bottlenecks [6][7].

2. Quality Precision

- Al-Based Defect Detection (Foxconn & Apple): Computer vision systems inspect components at high
speed, more accurately detecting defects than human inspectors [8].

- Real-Time Process Optimization (Bosch Rexroth): Al adjusts parameters such as temperature, pressure,
and speed to maintain precision in machining and assembly.

- Al-Powered Additive Manufacturing (3D Printing by HP & Stratasys): Al ensures precise layering and
material usage, reducing defects and improving product consistency.

3. Environmental Sustainability

- Smart Energy Management (Schneider Electric’s EcoStruxure): Al monitors and optimizes energy
consumption, reducing factory carbon footprints [9][10].

- Waste Reduction in Production (Unilever’s AI-Driven Optimization): Al analyzes production waste
patterns and adjusts processes to minimize material loss.
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Figure 1.Smart Factory Technologies [4]

The ALl/IoT integration and applied shift belies a sense of history, as old paradigms were upended in
favor of new ones. Vast revisions in automotive assembly lines majorly reduced "the time and energy it took
to assemble one car." Continuous linear motion lines took countless components and fastened them into a
"logical whole at increasing speeds." Still, such changes' social and operating implications were minor
compared to the AI/IoT integration currently underway [1]. Meanwhile, the Al/IoT era is being driven by the
marker of technological universal utilitarianism, the smart device, and the fusions expected of Al shortly, as
America remains the front runner in this technological arms race. Outfitting so-called "dark factories" with
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such technologies has the potential for immediate, albeit highly disruptive, benefits. A producer immediately
upgrades its workforce to a population of tireless, highly energized, detail-oriented workers. They do
whatever they are told and never call in sick [4]. Long-term data analysis of the Al/IoT systems enhances the
fine-tuned process by "analyzing all of the collected IoT data in near real-time to identify patterns,
correlations, and underlying key issues." Al technology can also predict when an error may occur and does so
well before any visible signs at that level of detail, as the closed-loop Al-based sensor/actuator system
reveals layers of manufacturing systems.

1.1. Background

Historically, manufacturing has transformed from being done by hand in small shops, by numerous
factory machine operators, to processes run by integrated and self-managed machinery and robotics systems
[11]. The capabilities of today’s machinery, including computerized processing, machine learning, and
autonomous decision-making, have made the latest transformation of manufacturing through artificial
intelligence and the Internet of Things technologies possible. These changes greatly paved the way for new
technologies, including computer-aided and numerical control systems, automated machinery, and just-in-
time manufacturing systems. Subsequently, the fourth and ongoing industrial revolution, known as Industry
4.0, enforced even more pervasive changes, calling for integrating machinery and robotics resources into
various locations and operating collaboratively and in an environmentally friendly manner. With the
increasing pervasiveness of Al and IoT in all aspects of life, interest in using these technologies to
revolutionize manufacturing is increasing [12].

Technology has extended the boundaries of the traditional manufacturing system to adapt to the
market's evolution. As customers become more sophisticated, they demand many products in small quantities
with high variety and short lead times due to time-to-market constraints. Production line changes are
becoming more frequent, usually to satisfy new customer orders, although the range of product quantities is
also changing [13]. The high degree of reconfiguration of production lines involves a significant commitment
in terms of time and resources. This type of requirement is extremely complex and cannot easily be managed
by traditional or dedicated production systems. As a result, most businesses in this sector face several
challenges due to the developments discussed in the manufacturing field. The search for new innovative
solutions for these issues thus arises as a necessity [14].

1.2. Research Objectives

This research aims to critically examine Al and IoT's potential strong fusion in redefining the future of
manufacturing processes. The research seeks to target manufacturers to provide a structured set of enabling
capabilities that the intersection of artificial intelligence and the Internet of Things technologies offers [15].
Here are some actionable solutions to address challenges like data security in Al and IoT applications within
manufacturing while maintaining production efficiency, quality precision, and environmental sustainability:
1. Data Security Solutions
Challenge: Al and IoT systems generate vast amounts of sensitive industrial data, making them vulnerable to
cyber threats.
Solutions: Edge Computing with AI Encryption (e.g., Cisco Edge Intelligence) — Processes data closer to the
source to reduce exposure to cyber risks. Al-Driven Anomaly Detection (e.g., Darktrace, IBM Security) —
Uses Al to detect unusual network activities and prevent real-time cyberattacks. Zero Trust Security Model —
Requires strict authentication and continuous monitoring for all IoT devices accessing the network.
Blockchain for Secure Data Transactions (e.g., IBM Blockchain) — Ensures tamper-proof data logging and
authentication in smart factories. Regular Cybersecurity Audits — Periodic penetration testing and compliance
reviews to mitigate vulnerabilities [16]-[18].

2. Production Efficiency Solutions

Challenge: Al and IoT adoption may lead to system integration complexities and high implementation costs.
Solutions: Modular IoT Platforms (e.g., Siemens MindSphere, GE Predix) — Enable scalable integration with
existing manufacturing systems. Al-Powered Predictive Analytics — Helps manufacturers allocate resources
effectively and optimize production scheduling. Human-AI Collaboration (e.g., Al-assisted robotics in Tesla
factories) — Enhances workforce productivity by automating repetitive tasks [19]-[21].

3. Quality Precision Solutions

Challenge: AI models require large, high-quality datasets for training, and real-time IoT analytics need
reliable connectivity.
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To guide manufacturers along the path of configurable operational decision-making by augmenting the
existing legacy systems with Al and IoT capabilities, the operators must understand the implications of a
simultaneous application of Al and IoT technologies on influences and spillovers associated with at least
three distinct aspects [22]. First, how would the interventions of Al-enhanced manufacturing and IoT's
dynamic systems improve discrete manufacturing, reconfigurable production planning, and scheduling
approaches toward the near-continuous production environment in the instances of Industry 3.0 and Industry
4.0 adoptions? Secondly, what are the implications of these trade-offs for production efficiency, quality
precision, trust in operations, and environmental sustainability? Third, what are the implications for the
development process towards engineering, adoption feasibility of AloT solutions, and the critical nodes or
spillovers accompanying a successful deployment [23]. Also, the darker sides, such as data-driven
inequalities contaminating intelligent agents' behaviors without representativeness, bias, fairness shortfalls,
privacy, and customer resistance due to concealed social and environmental costs, will be identified to
underline manufacturing practitioners' challenges and limitations. Federated Learning for Al Models —
Allows Al systems to improve accuracy without sharing sensitive data across networks.

5G and Private Networks (e.g., Nokia’s private LTE for factories) — Enhances real-time communication
between IoT devices and Al systems. Al-Based Root Cause Analysis — Identifies defects and suggests
process improvements to maintain quality consistency.

2. METHODOLOGY

Artificial intelligence (Al) is a methodology that enables an intelligent computer system to accomplish
manual and mental functions, reducing dependence on human intervention [24]-[26]. The main technologies
required for Al include machine learning (ML), deep learning (DL), neural networks (NN), and data
analytics. Al focuses on creating systems that can operate intelligently and independently. The Internet of
Things (IoT) relates to the manufacturing environment as a technological infrastructure that connects all
physical equipment and systems to a universal communication platform, allowing bidirectional data
exchange and horizontal/integrative communication [27][28]. The concept of connected devices, generating
and exchanging data, concludes that manufacturing devices are vital for analyzing time, errors, support,
location, and real-time signal acquisition [29]. In this dynamic production environment, where devices are
involved in processes and share information instantaneously, employing human interaction and intelligence
to oversee every task is very challenging. In these cases, Al systems can be employed to make intelligent
decisions. Al and ML, enabled by the Industrial Internet of Things (IIoT), can power unique business models
and processes to bring innovative changes to the manufacturing industry with several advantages. The
manufacturing industry is constantly looking at small variations that help manufacturers better understand
what is happening in their factories. Al and IloT are effective solutions for managing these variances.
Manufacturers can employ the IoT to gather, take action, and transfer knowledge from large measurements,
thus commanding a more potent assessment of in-house processes during manufacturing. These analyses and
observations can then be employed to construct intelligent, dual-value alternative workflows and guarantees
for future generations in manufacturing firms [30]. These interconnections introduce the idea of smart
manufacturing. See Figure 2.

2.1. Artificial Intelligence Technologies

Artificial Intelligence (Al) is not a single technology, but a constellation that includes technologies such
as explicit human cognitive functions, interacting with the environment, and intelligence understood in the
adaptation problem in the face of complexity, information, and uncertainty [31]. Different companies,
countries, researchers, and media have various classifications for Al technologies in general and slightly
different sets of priorities for Al applicability. The following are some of the Al technologies that are already
or soon will be available for manufacturing systems [32]: Machine Learning (ML), Natural Language
Processing (NLP), Distributed Databases and Computing, Robotics, and Digital Twins. Technologies such as
ML are likely to be the most commonly adopted Al for smart manufacturing systems in the future.
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Figure 2. Fundamentals of Industry 4.0 [32]

The most diffuse Al technology in the manufacturing sector is Machine Learning (ML); all the leading
predictive maintenance companies rely on ML as much as traditional predictive technologies have their
limits, fostering the development of the IIoT trend. Although ML is currently the most deployed Al
technology in smart manufacturing systems, and not yet in its full-scale adoption, vendors or other
stakeholders provided insights on difficulties, preferred approaches, implemented functions, and expected
advantages and implications about smart manufacturing phenomena [33]. ML is deployed to predict
maintenance and optimize adaptive control. Requisite maintenance predicts or avoids the brief breakdown of
important industrial machinery elements. Process optimization identifies variations to shape or shift a product
or service to improve speed, response, and performance. A better control system can exploit all the variability
of your inputs to optimize the performance of a system. BDA-based control systems self-generate internal
feedback to improve performance. BDA-aided decisions can optimize the aggregation and visualization of
big data values with the simultaneous use of Al and human decision-making [34].

3. APPLICATIONS OF AI AND IOT IN MANUFACTURING

Challenge: Al and IoT devices consume significant energy and may generate electronic waste.
Solutions: AI-Optimized Smart Grids (e.g., Schneider Electric’s EcoStruxure) — Dynamically adjust energy
consumption to reduce carbon footprints. loT-Based Predictive Waste Reduction — Uses machine learning to
optimize raw material usage and minimize scrap. Recyclable and Energy-Efficient IoT Devices — Adoption
of low-power chips and recyclable components in industrial IoT sensors.

Roadmap for Future Research: Impact of Al and IoT on Production Efficiency, Quality Precision, and
Environmental Sustainability in Manufacturing. This roadmap outlines key research directions, challenges,
and potential breakthroughs in Al and IoT applications for manufacturing efficiency, precision, and
sustainability.

Phase 1: Foundational Research (02 Years)

Objective: Establish a strong theoretical and technological foundation for Al and IoT in manufacturing.
Al-Driven Predictive Analytics: Develop advanced Al models for real-time anomaly detection and predictive
maintenance. Research federated learning for industrial Al to ensure data security. IoT Sensor
Advancements. Improve sensor accuracy, durability, and energy efficiency. Investigate the role of edge
computing in reducing latency and bandwidth usage. Cybersecurity in Al & IoT: Develop blockchain-based
secure data transactions. Create Al-powered cyber-defense mechanisms for industrial networks.

Phase 2: Applied Research & Early Adoption (2—5 Years). Objective: Test and implement Al and IoT
solutions in real-world industrial settings. Smart Factories & Digital Twins: Conduct pilot projects on digital
twins to optimize production lines. Develop Al-enhanced real-time process optimization for precision
manufacturing. Al & IoT for Sustainable Manufacturing. Explore Al-driven smart grids for energy-efficient
factory operations. Develop IoT-enabled waste reduction models for raw material optimization. Scalable Al
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Integration. Standardize Al models to integrate seamlessly with existing manufacturing ecosystems. Research
Al-powered human-machine collaboration for hybrid automation.

Phase 3: Widespread Implementation & Optimization (5-10 Years)

Objective: Full-scale deployment of Al and IoT technologies with continuous improvements.

Autonomous Manufacturing Systems: Develop self-learning Al models that optimize production
autonomously. Integrate IoT-driven robotics for real-time adaptive manufacturing. Next-Gen Sustainable
Manufacturing. Implement Al-optimized circular economy models to reduce waste. Research biodegradable
IoT sensors for minimal environmental impact.

Policy & Ethical Al Adoption: Establish global manufacturing Al and [oT security standards.
Address ethical concerns regarding workforce impact and Al decision-making in factories.

Al and IoT technologies, combined, have already demonstrated their potential to impact almost every
link of manufacturing processes and decisions significantly. Currently making the most headlines are the
innovations that can optimize processes for which manufacturers historically lack precise performance data—
processes such as paint curing, composite laying, and complex welding. Why? Because when a process such
as this fails, the cost is typically huge. Optimizing them even just a little can lead to lower operational costs
on the shop floor and, more importantly, to orders of magnitude reduction in defective components [35].

While most of the attention today is on how an AloT like this might save a manufacturer from costly
downtime or excess paint waste, the production efficiency aspect of our research extends well beyond these
specific areas to streamline production. Modern manufacturing depends on complex, autonomous systems
moving and interacting in a sophisticated manner. Cognitive Al systems can streamline complex workflows
by aggregating data from IoT devices in real-time to make effective decisions between multiple autonomous
systems, resulting in more efficient intelligent interactions. A production process that features tight
workflows operated by autonomous systems moving nearby relies on those systems' predictability [36]. A
good example is the intricate and fast terminal handling at today’s logistics ports, where autonomous
vehicles, Al systems, and cranes work in close harmony and with precision to enable continuous operation.
In contrast, when cargo shuffling operations produce uncertainty, the knock-on effect can mean delay, slow
turnaround times, and additional energy and resource usage. Similarly, reduced production variability and
improved predictability can help manufacturers balance outputs to minimize energy usage sustainably. For
example, a flexible glass manufacturer uses Al and IoT to autonomously monitor and analyze inputs from
every stage of production, saving energy and decreasing variation across their process. This Al system
correlates this data to highlight even the smallest deviations and trends over time. Then it uses this
information to make real-time adjustments to production inputs like heat, chemicals, and gas [37]. This
capability allows them to produce large quantities of consistent product even in their small and unsustainable
pilot line. See Figure 3.
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Figure 3. IoT connected with various devices [37].

3.1. Production Efficiency
Production efficiency, especially minimizing delays or bottlenecks, is obviously the first element Al and
10T can contribute to. Due to them, the factory operates smarter, output is increased, and the cost is reduced
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radically. Modern manufacturing adopts these concepts to its processes in a few main ways. Technologies
and various solutions are offered, and an experienced supplier focused on washing machines, finishing, and
waste heat recovery is involved. A provider of adhesive systems can increase its capacity to serve cars,
thanks to the knowledge of the status of a filling machine, and subsequently optimize the cycle and material
supply [38]. Based on this data, it can also split the line, so each car has a vast range of color and decoration
variants.

Another trend in the increase in production efficiency is predictive maintenance, i.e., monitoring and
evaluating production equipment and systems in real time. It uses Al to predict when production or logistics
systems might fail, reducing downtime and improving productivity. One example could be a robotics
company. Finally, more and more tasks in the production environment are solved by robots with the addition
of Al such as artificial intelligence and machine learning [39]. It is not only a bridge between robotics and
humans, but it also ensures productivity, quality, and process control. For instance, a system tracks the hand
of the worker in real time, recommends the action taken, and records the movement of a package. Not only
are Al and IoT systems implemented in a factory, but they must also exercise continuous monitoring and
improvements, such as developing self-learning Al models that optimize production autonomously, integrate
IoT-driven robotics for real-time adaptive manufacturing, next-gen sustainable manufacturing implement Al-
optimized circular economy models to reduce waste, research biodegradable IoT sensors for minimal
environmental impact, policy & ethical Al adoption (a 24/7 service).

3.2. Quality Precision

High-quality standards can be expensive — reworking or scrapping defective products can be a
significant economic burden. Al and IoT technologies make it possible to detect errors long before defects
are even visible. Therefore, such systems may be particularly interesting for industries that classify product
quality as their main competitive advantage. The methodologies available to support discovering anomalies
range from fault detection to qualitative and attribute control charting to threshold checkpoints in model
prediction. It is possible to act early, adjust the production process, and invest minimal effort and expense in
solving the problem without losing critical production time [40]. This can range from process parameters that
need adjustment, the production process that requires investigation, or machinery intervention that can lead to
additional maintenance sooner than planned. Moreover, relying on specific intelligent systems, one can also
employ specific Al models to identify and classify certain aspects of defects by using a suitable data model,
such as a classification model or a deep neural network. The integrated system makes it possible to provide a
more streamlined strategy for avoiding defects. Hence, industrial experiments have proven that the integrated
system of Al algorithms blended with IoT sensors can provide the necessary feedback for the production and
maintenance teams to act before irregular trends in the process, improving the quality performance of the
innovative plant. Anomalies can be detected through advanced monitoring. Potential defective products can
be identified earlier, just as they come off the production line [41]. IoT sensors ensure the continuous
tracking of every process line, at every phase. As a result, production teams receive immediate feedback.
Product characteristics remain consistent from start to completion, thereby avoiding production losses. The
latest monitoring data are then analyzed in real time. Al algorithms take care of the quality assurance system.
Designing the system to replace the old traditional one immediately revealed various advantages, not only
from a production point of view but also with regard to the enhanced product. The Al solution has also led to
the product’s enhanced design; thanks to data traceability, it is possible to make a product and its process
clearly transparent to the market and consumers, avoiding claims altogether [42]. The integrated system (for
example, address ethical concerns regarding workforce impact and Al decision-making in factories) also
ensures the product will always be consumer-friendly without worrying about any hidden defects caused by
unreliable or out-of-spec equipment. The system allows greater product quality precision, providing the
necessary accuracy to meet the market demands of an innovative and sustainable smart city.

4. CASE STUDIES
4.1. Case Study A: Material and Manufacturing Planning Application Implementation

Case Study A presents the effect of a Material and Manufacturing Planning Application at a contract
manufacturing organization. The application addressed the problem of sequence impact and capacity ceilings,
prioritizing work orders in the schedule, as well as CNC programs [43]. The sequencing was based on the
complexity of the product and the available production time. The solution’s math engine is fully integrated
with a SQL database, making it very simple for the end user to operate the solution. The scenario details are
fully described, and the effect of the solution on the organization is assessed as part of the case study [44].
Figure 4 illustrates a reduction in changeover time, increased sales by reducing lead time, decreased stock
levels across the company, and decreased in-process products.
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Figure 4. Production planning and control in the textile industry: a case study [44]

4.2. Case Study B: Manufacturing Execution System Implementation

Case Study B presents the effect of implementing a Manufacturing Execution System at a
manufacturing site. The MES was implemented to solve seven key business process areas for traffic
management, signaling, and communication systems manufacturing sites. The solution was implemented in
two phases — the first covering the shop floor and the changeover of a site as a “beacon” site, before
eventually being rolled out across the second, larger site [45]. The scenario details are fully described, and
the effect of the solution on the organization is assessed as part of the case study. Parameters include
reduction in transportation between sites, reduction in inventory, reduction in inventory days, and increased
quality and service to customers. See Figure 5.
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Figure 5. MES Architecture [45]

4.3. Industry Examples

The two most proliferated sectors implementing the integration of Al with IoT in the manufacturing
process are the automotive and aerospace sectors, as well as the consumer goods segment. These two
industries could not be more different. Applied Research & Early Adoption (2-5 Years). Objective: Test and
implement Al and IoT solutions in real-world industrial settings. Smart Factories & Digital Twins: Conduct
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pilot projects on digital twins to optimize production lines. Develop Al-enhanced real-time process
optimization for precision manufacturing. Al & IoT for Sustainable Manufacturing. Explore Al-driven smart
grids for energy-efficient factory operations. Develop IoT-enabled waste reduction models for raw material
optimization. Scalable Al Integration. Standardize Al models to integrate seamlessly with existing
manufacturing ecosystems. Research Al-powered human-machine collaboration for hybrid automation. The
automotive industry is focused on the cost-effective mass production of semi-homogeneous parts and
components that can be assembled modularly into many different vehicle models. Aerospace industries seek
to manufacture complex, large, bespoke parts that must meet the most rigorous safety standards.

The 'industry examples' section presents industry cases to stimulate manufacturers' interests and spur
them to think about operational problems in similar ways in their factories. In the subsection, collaboration
with technical partners and system integrators is discussed as an enabler for innovation based on the
Industrial Internet of Things and Al Discussions and sharing between the OEM partner and the system
integrator partner allowed the development and implementation of the approach. This kind of application
demonstrates the meaningfulness of working with data and combining this and other data sources before
using Al and machine learning-type algorithms to make new predictions. The examples draw on the new
wave of [oT and Al in manufacturing, and they clearly illustrate how it is changing the foundations of quality
and sustainability and making processes more efficient [46].

Al with the Internet of Things is being implemented to get better predictive maintenance on equipment
that is produced in-house and at customer facilities for product-service systems in the aerospace industry.
Additionally, IoT with Al is part of top research outputs that aim to simplify efficiency and visibility in the
aerospace billing process and improve the predictability of jobs and processes in general manufacturing, all
tangibly improving production efficiency. In the automotive industry, in-house innovation in Al and IoT has
involved a different approach. Some was part of a recent novel manufacturing process and materials
development. The examples do not focus on how IoT and Al can be used. Many other research areas show
how IoT and Al can be used across manufacturing to detect issues in equipment and processes using in-house
or public datasets differently. Instead, the focus here is on the results [47]. How have the processes improved
in tangible, quantifiable ways? The intended 'so what' question here is as follows for manufacturers: 'If this
approach has been used in two very different industries, then what is the relevance of their results to us?
What possibly neglected issues are they solving well?" The results from the aerospace and automotive
industries should be relevant to both large and small manufacturers across sectors. The results sections
provide a detailed look at the methods or technologies used now. Information is predominantly derived from
professionals; the results are detailed in the relevant sections.

5. CHALLENGES AND OPPORTUNITIES

Indeed, significant barriers face the effective adoption of intelligent manufacturing technologies. One
crucial issue is data security. Being connected to the internet, or even just an internal network, creates new
entryways for hackers who can potentially bring entire systems to a standstill. The interoperability of systems
also remains an issue. Al and IoT systems generate vast amounts of sensitive industrial data, making them
vulnerable to cyber threats. Edge Computing with Al Encryption (e.g., Cisco Edge Intelligence) — Processes
data closer to the source to reduce exposure to cyber risks. Al-Driven Anomaly Detection (e.g., Darktrace,
IBM Security) — Uses Al to detect unusual network activities and prevent real-time cyberattacks. Zero Trust
Security Model — Requires strict authentication and continuous monitoring for all IoT devices accessing the
network. Blockchain for Secure Data Transactions (e.g., IBM Blockchain) — Ensures tamper-proof data
logging and authentication in smart factories—regular Cybersecurity Audits — Periodic penetration testing
and compliance reviews to mitigate vulnerabilities. Systems will have to be developed with the capability of
integrating with those from a range of technology providers to meet the demands of manufacturers. Once
produced, these technologies will also require training workers to operate them, which may depend highly on
the skills available within a particular labor market. There is also the very real and considerable potential for
job displacement. If machines are shown to be equal or capable of producing better outputs than human
workers, it is obvious that firms will begin to prefer machines over human workers. There will also be a
necessary and unavoidable shift in the skill set of the available workforce. This shift in jobs and possibly the
loss of jobs will likely have significant social implications. Yet for all of its associated complexities, this is
also a highly exciting time for the manufacturing industry. Time and money spent on product development
are slashed when time-consuming tasks are allocated to machines. High levels of efficiency will allow
manufacturers of all sizes new spaces for innovation, customization, and unique designs, which can set them
apart from international competition in a uniquely global and open market. What will be crucial is a well-
defined and effectively implemented strategy for addressing the challenges and opportunities of creating
intelligent manufacturers. Governments, to support this aim, will also need to take action to assist and
encourage manufacturers in creating systems that have the potential to benefit society as a whole
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significantly and not just a select few individuals or firms. This could be achieved through regulation, which
would lead manufacturers towards the most sustainable practice, or incentive-based policies, which would, if
successful, bring them considerably higher profits in return. Ultimately, there is much to gain from bringing
manufacturers and policymakers together to create ethical manufacturers that fit the future economy.

5.1. Ethical Considerations

Manufacturers and the developers of Al systems have an ethical duty to consider how the deployment
of their Al systems affects members of the workforce. This also extends to the workers’ right to consent to
apply technologies to monitor performance. It is worth noting that new tools can identify mood based on the
tone and language used, and these have the potential to be used to monitor employee well-being. Questions
arise about consent to use such technology, data privacy, and the steps to inform all relevant parties before
their introduction. The impact of automation on jobs is a genuine concern for the workforce; new technology
has introduced more skill-defining jobs than the lower-skilled jobs it has displaced. This enables the
workforce to advance and benefit from technological advancements. However, there must be careful
retrospection on Al and IoT implementation in parallel with a strategic approach that addresses low-skilled
jobs for the system to separate and differentiate successfully.

The primary moral considerations are if and at what level we allow Al decision support systems to
act and make decisions. Blurring lines between ethical and moral responsibilities and solid legal principles
means these must be considered. Losing the traceability of responsibility, whereby humans cannot retrace the
decision process by the Al systems they have designed, is a genuine concern. Furthermore, a potentially
automated decision-making process may sense human ethics, particularly in fallible organizations, and
develop systems that do not fully represent the same values. With a view to adverse outcomes, the ability to
determine who is responsible allows organizations, consumers, and government bodies to move forward with
the deployment of AI and IoT systems. This should include methods of accountability and transparency of
the application to the user. Changes due to the digital age imply that the methods of accountability and
openness discussed require rethinking. Manufacturers and decision-makers in Al production and
implementation can only establish best practices and programs for the ethical development and deployment
of responsible Al through the practical application of these guidelines. However, developing and applying
detailed ethical practices can be challenging due to the change in, and scope of, a rapidly evolving digital and
technological landscape and the associated socioeconomic impact [48].

Proactive initiatives are also required, and considerations should be given to corporate social
responsibilities and the implications for socioeconomics, including accessibility, digital inclusion, and the
ability for programs to foster a fair and inclusive digital economy on a global scale. Following our discussion
about ethics and moral obligation, we consider our precise responsibilities as Al innovators, designers, and
manufacturers. Ethical engagement should lead to moral motivation and empowerment, cementing a
foundation to create a responsible system and enforce ethical design and deployment. A moral orientation or
principled trajectory for one’s organization should lead to practical and regulatory implications. This may
include creating novel structures or institutions to assess and monitor firms based on their proof of having
ethical standards and responsible technology. Furthermore, such a check should only be entrusted to
companies that prove they are embracing digital inclusion and underpinning corporate social responsibility,
thus leading to an ecosystem where artificial intelligence can be marketed as responsible and reliable.

6. Conclusion and Future Outlook

The transformative potential of these technologies was fundamentally redefining production efficiency,
enhancing quality precision, and fostering environmental sustainability. Despite the considerable energy
consumption and global contribution to greenhouse gas emissions that Al presents, case studies have shown
how the advent of Industry 4.0 is set to unlock vast efficiency gains that will see manufacturing components
being consumed with power to the order of a search. This implication, alongside recent discussions of
“technological unemployment,” paints a vivid picture of the future of production, suggesting that we may
already be entering into an era where one of the principal purposes of a manufacturing system can be
described as one of providing social competence for managing the conversion applications of technology into
the built environment as a production system.

Industry 5.0: In less than a decade, the shift from digital manufacturing to green manufacturing may be
a new target Roadmap for Future Research: Impact of Al and IoT on Production Efficiency, Quality
Precision, and Environmental Sustainability in Manufacturing This roadmap outlines key research directions,
challenges, and potential breakthroughs in Al and IoT applications for manufacturing efficiency, precision,
and sustainability. In 2029, about 800-1000 large manufacturing companies worldwide will start
experimenting with conserving the environment. In this decade, we expect a shift in the market dynamics
where most companies will need to seek half of their revenues outside of their traditional manufacturing
space. Innovations happen so fast that shifts in the marketplace create an immediate shakeup among the top
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companies in manufacturing. The seven companies that dominate the market now are disappearing; instead,
they are being replaced by other companies that have emerged in the last couple of years. Software
companies play an increasingly important role in electronics and mechatronics—a sub-vertical family within
manufacturing.

Today’s approach to discovering new business models must be twofold. First, find out which use cases
your organization can perform better by improving with advanced technology before anybody else. This
involves deploying technology to avoid competitive disadvantages or even creating cost advantages.
Secondly, asking your customers is the fastest way to identify potential business models using new
technology, as the customer will not usually rely on you failing to disrupt any industry. Furthermore, we will
see more and more development in and around computerized tracking and interactive interfaces. People will
have the capability to select features and determine characteristics of products, packaging, and distribution,
as well as the ability to communicate directly, interact, and track the delivery of products. Points of possible
use include personalization and customization of the interface, offering user control, and a digital solution.
This new digital interface is a feasible concept for future factory design.

Capitalizing on this new and emerging landscape of manufacturing requires meaningful moves at the
individual, organizational, and national levels: manufacturing companies need to reorganize to maximize the
potential of these new practices, academics should focus on advancing these technologies, and governments
should invest public money in preparing nations for the coming Fourth Industrial Revolution. In adopting
these innovations, several ethical and legal guidelines and challenges need to be addressed, including
integrating Al and robots into the workforce and ensuring their decisions are transparent enough to remain
comprehensible to humans. Based on the collected content, the following four lessons are offered for future
factory clients interested in using Al and IoT to realize a competitive advantage through Industry 4.0:

(1) A manufacturing system is most usefully conceived as an embedded subsystem of the external

environment, inheriting robotic competence that efficiently supports the given purpose of the
subsystem.

(i) (work practices today should be organized towards aggregating sufficient know-how to introduce
function generation with cyber-physical learning systems at the scale of the production environment;

(ii1) This will necessitate achieving greater transparency in the decision-making of robotic and Al-based
systems, and

(iv) While Al and IoT are changing manufacturing practices, it will fall to humans to ensure that system
design ensures net positive impacts with respect to utility creation for stakeholders. Taken together, this
review seeks to motivate a research agenda that seeks to understand Al and IoT in technical, social, and
environmental contexts in a way that brings the present concerns of manufacturers into mature
academic literature.

There are several avenues for future research in the area, the ripest of which being the development of
the mechanisms to integrate Al-based actively and IoT technologies across the wholly or partially automated
‘dotted lines’ of the traditional production silos. When this is achieved, we can rely on transfer learning and
function generation to disseminate knowledge and limit downtime. The further development of digital twins
affords the possibility of reducing the necessity for anecdotal and conventional data in creating accurate
decision-making, potentially revolutionizing quality control. An exciting further application of Al techniques
is to enhance the forward process and product analysis based on demand-side intelligence. Finally, operant
conditioning and DLO can potentially be used to integrate social and physical environmental concerns with
the adaptive operation of manufacturing systems.

7. Key Findings

This research identifies and discusses considerations regarding the transformative impact of Al and IoT
in manufacturing from a practical standpoint, i.e., in the context of an increased focus on the feasibility of
technology adoption today. Research findings suggest that a fusion of Al and IoT drives efficiency gains and
helps enhance quality management across various production processes. The hypothetical performance
enhancements of bringing Al and IoT together include the potential for predictive quality management, robot
application at lower batch sizes, and efficient and sustainable energy utilization. Creating value from
manufacturing data necessitates integrating digital technologies into decision support systems. The gathering,
cleaning, and rapid analysis of large amounts of data are being utilized to produce evidence-based decision-
making across various processes, such as production planning and control, operations management, materials
and inventory management, logistics, maintenance, quality management, and regulation and governance. In
the factory, manufacturing data from across the business is used to guide decisions at the operational level
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and in strategic planning. Al and IoT must work together, from the engineers' initial software and sensor
designs through to the many layers and nodes involved in data transmission, capture, cleansing, storage, and
interrogation, for the decision-making capability of the whole interconnected manufacturing ecosystem to be
realized. The edge and fog nodes of these data flows should be able to act on the real-time streaming data,
driven by Al, or act independently but within guidelines set by the Al. Case studies show a pressing need for
the Al and IoT combination: utilities companies regulating energy use in the factory, measuring temperatures
in reflows, automatically adjusting oven energy profiles, managing the water taint flows, maximizing
precision in thread examiners in harsh environmental conditions, producing while managing the operator and
the robot together in a safe and modular manner. Research also identifies concerns about the pace of
technology adoption, promoting a balanced approach that upholds ethical guidelines to encourage sustained
investment within manufacturing alongside equitable and ethical innovation that prioritizes care for people
and the planet. Industry insights and concluding discussion contribute to recommendations for technology
adoption for manufacturers. Even more advanced robotics: Robotics can democratize technology by
automating repetitive tasks anywhere. They are also evolving into more sophisticated robotic systems that
can work side by side with human co-workers; this enables a new way of collaborating with robots, i.e., no
need for a safety fence, thus automating unreachable tasks. Edge IoT Computing: We have seen the rise of
energy-efficient edge computing in industry, whereby data is processed locally on an edge device, without
sending data to the cloud. This allows for much faster system reaction times and is essential in areas that do
not have a good internet connection. Advanced Data Analytics: Current Industry 4.0 has been about data
communication, an [oT play. We are already witnessing a shift where data analytics at the edge becomes of
paramount importance. In this future factory, data analysis in IoT sensors will optimize machines, guide
decisions, and provide better insights into manufacturers. Other solutions that have been overlooked yet have
massive potential in the future include quantum computing and using innovative materials, like biohacking.
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