

Vokasi Unesa Bulletin of Engineering, Technology and Applied Science (VUBETA) https://journal.unesa.ac.id/index.php/vubeta

Vol. 2, No. 2, 2025, pp. 342~355 DOI: 10.26740/vubeta.v2i2.38200 ISSN: 3064-0768

Exploring the Role of AI and IoT in Production Efficiency, Quality, and Sustainability in Manufacturing

Mustafa M. Mansour^{1*}, Alaa M. lafta², Azhar Mansoor Salman³, Haider Sami Salman⁴

- ^{1, 2} Department of Mechanical engineering, College of engineering, University of Thi-Qar, Thi-Qar, 64001, Iraq
- ³ Department of Electrical & Electronics, College of engineering, University of Thi-Qar, Thi-Qar, 64001, Iraq
- ⁴ Department of Petroleum and Gas Engineering, College of Engineering, University of Thi-Qar, Thi-Qar 64001, Iraq

Article Info

Article history:

Received January 11, 2025 Revised March 24, 2025 Accepted May 22, 2025

Keywords:

Artificial Intelligence IoT Quality Environmental Sustainability Production Efficiency

ABSTRACT

This study explores the findings obtained through these research objectives, which will pave new agendas towards the medium-range economy renaissance, resilient digital ecosystems, and human-centered integrated intelligence. More in-depth exploration of the goal-specific research objectives awaits the research report. The main research gap and questions and concomitant research approach, paradigm, and methodologies - framing the subsequent sections of the paper are substantiated by these objectives' delineation from the research questions. Practical implications and directions for prospective areas of techno-social innovation studies, building upon the findings, are outlined to conclude the paper. The aims, once accomplished, offer a symbiotic relationship with the research questions that catalyze interest in a domain that has hitherto been neglected mainly in Industry 4.0 literature. These aims become the guiding lights surmounting the destination of AIoT as a subversive innovation in developing and deploying discrete, reconfigurable, and near-continuous Industry 4.0 auxiliary open smart manufacturing.

This is an open access article under the <u>CC BY-SA</u> license.

1. INTRODUCTION

Manufacturing has entered a new technological age of intensified research into AI and its integration with IoT devices and has seen monumental transformations at various scales. On a microcosmic level, IoT utilization has witnessed a flood of creativity that grows and advances each year. At a macro level, AI and IoT integration respond to the industry's accelerating demand for production efficiency, extreme quality precision, and the fourth pillar of contemporary technology, "Resource/Product Lifecycle Efficiency." See Figure 1.

The AI/IoT integration and applied shift belies a sense of history, as old paradigms were upended in favor of new ones. Vast revisions in automotive assembly lines majorly reduced "the time and energy it took to assemble one car." Continuous linear motion lines took countless components and fastened them into a "logical whole at increasing speeds." Still, such changes' social and operating implications were minor compared to the AI/IoT integration currently underway [1]. The systems were not only altering how a product was manufactured, but the products themselves ideologically reflect the understanding of Gesamtkonzept. Meanwhile, the AI/IoT era is being driven by the marker of technological universal utilitarianism, the smart device, and the fusions expected of AI shortly, as America remains the front runner in this technological arms race [2][3]. Outfitting so-called "dark factories" with such technologies has the potential for immediate, albeit highly disruptive, benefits. A producer immediately upgrades its workforce to a population of tireless, highly energized, detail-oriented workers. They do whatever they are told and never call in sick [4]. Long-term data analysis of the AI/IoT systems enhances the fine-tuned process by "analyzing all of the collected IoT data in near real-time to identify patterns, correlations, and underlying key issues."

*Corresponding Author

Email: mustafa.muhammedali@utq.edu.iq

The AI technology can also predict when an error may occur and does so well in advance of any visible signs at that level of detail, as layers of manufacturing systems are revealed in the closed-loop AI-based sensor/actuator system AI and IoT are revolutionizing manufacturing by enhancing production efficiency, quality precision, and environmental sustainability. Here are specific examples in each area:

- 1. Production Efficiency
- Predictive Maintenance (Siemens MindSphere): AI-powered IoT platforms analyze sensor data from machines to predict failures before they occur, reducing downtime and maintenance costs [5].
- Automated Production Lines (Tesla's Gigafactories): AI-driven robots optimize workflows, increasing output while reducing errors and waste.
- Digital Twins (General Electric GE): Virtual replicas of manufacturing processes use AI and IoT data to optimize production in real-time, improving efficiency and reducing bottlenecks [6][7].
- 2. Quality Precision
- AI-Based Defect Detection (Foxconn & Apple): Computer vision systems inspect components at high speed, more accurately detecting defects than human inspectors [8].
- Real-Time Process Optimization (Bosch Rexroth): AI adjusts parameters such as temperature, pressure, and speed to maintain precision in machining and assembly.
- AI-Powered Additive Manufacturing (3D Printing by HP & Stratasys): AI ensures precise layering and material usage, reducing defects and improving product consistency.
- 3. Environmental Sustainability
- Smart Energy Management (Schneider Electric's EcoStruxure): AI monitors and optimizes energy consumption, reducing factory carbon footprints [9][10].
- Waste Reduction in Production (Unilever's AI-Driven Optimization): AI analyzes production waste patterns and adjusts processes to minimize material loss.

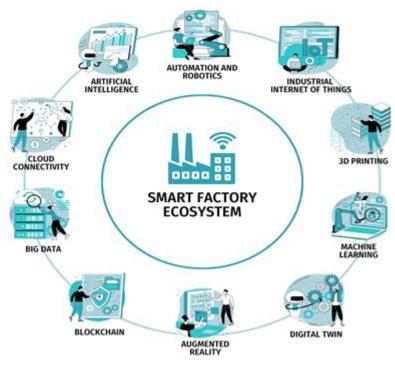


Figure 1.Smart Factory Technologies [4]

The AI/IoT integration and applied shift belies a sense of history, as old paradigms were upended in favor of new ones. Vast revisions in automotive assembly lines majorly reduced "the time and energy it took to assemble one car." Continuous linear motion lines took countless components and fastened them into a "logical whole at increasing speeds." Still, such changes' social and operating implications were minor compared to the AI/IoT integration currently underway [1]. Meanwhile, the AI/IoT era is being driven by the marker of technological universal utilitarianism, the smart device, and the fusions expected of AI shortly, as America remains the front runner in this technological arms race. Outfitting so-called "dark factories" with

such technologies has the potential for immediate, albeit highly disruptive, benefits. A producer immediately upgrades its workforce to a population of tireless, highly energized, detail-oriented workers. They do whatever they are told and never call in sick [4]. Long-term data analysis of the AI/IoT systems enhances the fine-tuned process by "analyzing all of the collected IoT data in near real-time to identify patterns, correlations, and underlying key issues." AI technology can also predict when an error may occur and does so well before any visible signs at that level of detail, as the closed-loop AI-based sensor/actuator system reveals layers of manufacturing systems.

1.1. Background

Historically, manufacturing has transformed from being done by hand in small shops, by numerous factory machine operators, to processes run by integrated and self-managed machinery and robotics systems [11]. The capabilities of today's machinery, including computerized processing, machine learning, and autonomous decision-making, have made the latest transformation of manufacturing through artificial intelligence and the Internet of Things technologies possible. These changes greatly paved the way for new technologies, including computer-aided and numerical control systems, automated machinery, and just-intime manufacturing systems. Subsequently, the fourth and ongoing industrial revolution, known as Industry 4.0, enforced even more pervasive changes, calling for integrating machinery and robotics resources into various locations and operating collaboratively and in an environmentally friendly manner. With the increasing pervasiveness of AI and IoT in all aspects of life, interest in using these technologies to revolutionize manufacturing is increasing [12].

Technology has extended the boundaries of the traditional manufacturing system to adapt to the market's evolution. As customers become more sophisticated, they demand many products in small quantities with high variety and short lead times due to time-to-market constraints. Production line changes are becoming more frequent, usually to satisfy new customer orders, although the range of product quantities is also changing [13]. The high degree of reconfiguration of production lines involves a significant commitment in terms of time and resources. This type of requirement is extremely complex and cannot easily be managed by traditional or dedicated production systems. As a result, most businesses in this sector face several challenges due to the developments discussed in the manufacturing field. The search for new innovative solutions for these issues thus arises as a necessity [14].

1.2. Research Objectives

This research aims to critically examine AI and IoT's potential strong fusion in redefining the future of manufacturing processes. The research seeks to target manufacturers to provide a structured set of enabling capabilities that the intersection of artificial intelligence and the Internet of Things technologies offers [15]. Here are some actionable solutions to address challenges like data security in AI and IoT applications within manufacturing while maintaining production efficiency, quality precision, and environmental sustainability:

1. Data Security Solutions

Challenge: AI and IoT systems generate vast amounts of sensitive industrial data, making them vulnerable to cyber threats.

Solutions: Edge Computing with AI Encryption (e.g., Cisco Edge Intelligence) – Processes data closer to the source to reduce exposure to cyber risks. AI-Driven Anomaly Detection (e.g., Darktrace, IBM Security) – Uses AI to detect unusual network activities and prevent real-time cyberattacks. Zero Trust Security Model – Requires strict authentication and continuous monitoring for all IoT devices accessing the network. Blockchain for Secure Data Transactions (e.g., IBM Blockchain) – Ensures tamper-proof data logging and authentication in smart factories. Regular Cybersecurity Audits – Periodic penetration testing and compliance reviews to mitigate vulnerabilities [16]-[18].

2. Production Efficiency Solutions

Challenge: AI and IoT adoption may lead to system integration complexities and high implementation costs. Solutions: Modular IoT Platforms (e.g., Siemens MindSphere, GE Predix) – Enable scalable integration with existing manufacturing systems. AI-Powered Predictive Analytics – Helps manufacturers allocate resources effectively and optimize production scheduling. Human-AI Collaboration (e.g., AI-assisted robotics in Tesla factories) – Enhances workforce productivity by automating repetitive tasks [19]-[21].

3. Quality Precision Solutions

Challenge: AI models require large, high-quality datasets for training, and real-time IoT analytics need reliable connectivity.

To guide manufacturers along the path of configurable operational decision-making by augmenting the existing legacy systems with AI and IoT capabilities, the operators must understand the implications of a simultaneous application of AI and IoT technologies on influences and spillovers associated with at least three distinct aspects [22]. First, how would the interventions of AI-enhanced manufacturing and IoT's dynamic systems improve discrete manufacturing, reconfigurable production planning, and scheduling approaches toward the near-continuous production environment in the instances of Industry 3.0 and Industry 4.0 adoptions? Secondly, what are the implications of these trade-offs for production efficiency, quality precision, trust in operations, and environmental sustainability? Third, what are the implications for the development process towards engineering, adoption feasibility of AIoT solutions, and the critical nodes or spillovers accompanying a successful deployment [23]. Also, the darker sides, such as data-driven inequalities contaminating intelligent agents' behaviors without representativeness, bias, fairness shortfalls, privacy, and customer resistance due to concealed social and environmental costs, will be identified to underline manufacturing practitioners' challenges and limitations. Federated Learning for AI Models – Allows AI systems to improve accuracy without sharing sensitive data across networks.

5G and Private Networks (e.g., Nokia's private LTE for factories) – Enhances real-time communication between IoT devices and AI systems. AI-Based Root Cause Analysis – Identifies defects and suggests process improvements to maintain quality consistency.

2. METHODOLOGY

Artificial intelligence (AI) is a methodology that enables an intelligent computer system to accomplish manual and mental functions, reducing dependence on human intervention [24]-[26]. The main technologies required for AI include machine learning (ML), deep learning (DL), neural networks (NN), and data analytics. AI focuses on creating systems that can operate intelligently and independently. The Internet of Things (IoT) relates to the manufacturing environment as a technological infrastructure that connects all physical equipment and systems to a universal communication platform, allowing bidirectional data exchange and horizontal/integrative communication [27][28]. The concept of connected devices, generating and exchanging data, concludes that manufacturing devices are vital for analyzing time, errors, support, location, and real-time signal acquisition [29]. In this dynamic production environment, where devices are involved in processes and share information instantaneously, employing human interaction and intelligence to oversee every task is very challenging. In these cases, AI systems can be employed to make intelligent decisions. AI and ML, enabled by the Industrial Internet of Things (IIoT), can power unique business models and processes to bring innovative changes to the manufacturing industry with several advantages. The manufacturing industry is constantly looking at small variations that help manufacturers better understand what is happening in their factories. AI and IIoT are effective solutions for managing these variances. Manufacturers can employ the IoT to gather, take action, and transfer knowledge from large measurements, thus commanding a more potent assessment of in-house processes during manufacturing. These analyses and observations can then be employed to construct intelligent, dual-value alternative workflows and guarantees for future generations in manufacturing firms [30]. These interconnections introduce the idea of smart manufacturing. See Figure 2.

2.1. Artificial Intelligence Technologies

Artificial Intelligence (AI) is not a single technology, but a constellation that includes technologies such as explicit human cognitive functions, interacting with the environment, and intelligence understood in the adaptation problem in the face of complexity, information, and uncertainty [31]. Different companies, countries, researchers, and media have various classifications for AI technologies in general and slightly different sets of priorities for AI applicability. The following are some of the AI technologies that are already or soon will be available for manufacturing systems [32]: Machine Learning (ML), Natural Language Processing (NLP), Distributed Databases and Computing, Robotics, and Digital Twins. Technologies such as ML are likely to be the most commonly adopted AI for smart manufacturing systems in the future.

Figure 2. Fundamentals of Industry 4.0 [32]

The most diffuse AI technology in the manufacturing sector is Machine Learning (ML); all the leading predictive maintenance companies rely on ML as much as traditional predictive technologies have their limits, fostering the development of the IIoT trend. Although ML is currently the most deployed AI technology in smart manufacturing systems, and not yet in its full-scale adoption, vendors or other stakeholders provided insights on difficulties, preferred approaches, implemented functions, and expected advantages and implications about smart manufacturing phenomena [33]. ML is deployed to predict maintenance and optimize adaptive control. Requisite maintenance predicts or avoids the brief breakdown of important industrial machinery elements. Process optimization identifies variations to shape or shift a product or service to improve speed, response, and performance. A better control system can exploit all the variability of your inputs to optimize the performance of a system. BDA-based control systems self-generate internal feedback to improve performance. BDA-aided decisions can optimize the aggregation and visualization of big data values with the simultaneous use of AI and human decision-making [34].

3. APPLICATIONS OF AI AND IOT IN MANUFACTURING

Challenge: AI and IoT devices consume significant energy and may generate electronic waste. Solutions: AI-Optimized Smart Grids (e.g., Schneider Electric's EcoStruxure) – Dynamically adjust energy consumption to reduce carbon footprints. IoT-Based Predictive Waste Reduction – Uses machine learning to optimize raw material usage and minimize scrap. Recyclable and Energy-Efficient IoT Devices – Adoption of low-power chips and recyclable components in industrial IoT sensors.

Roadmap for Future Research: Impact of AI and IoT on Production Efficiency, Quality Precision, and Environmental Sustainability in Manufacturing. This roadmap outlines key research directions, challenges, and potential breakthroughs in AI and IoT applications for manufacturing efficiency, precision, and sustainability.

Phase 1: Foundational Research (0–2 Years)

Objective: Establish a strong theoretical and technological foundation for AI and IoT in manufacturing.

AI-Driven Predictive Analytics: Develop advanced AI models for real-time anomaly detection and predictive maintenance. Research federated learning for industrial AI to ensure data security. IoT Sensor Advancements. Improve sensor accuracy, durability, and energy efficiency. Investigate the role of edge computing in reducing latency and bandwidth usage. Cybersecurity in AI & IoT: Develop blockchain-based secure data transactions. Create AI-powered cyber-defense mechanisms for industrial networks.

Phase 2: Applied Research & Early Adoption (2–5 Years). Objective: Test and implement AI and IoT solutions in real-world industrial settings. Smart Factories & Digital Twins: Conduct pilot projects on digital twins to optimize production lines. Develop AI-enhanced real-time process optimization for precision manufacturing. AI & IoT for Sustainable Manufacturing. Explore AI-driven smart grids for energy-efficient factory operations. Develop IoT-enabled waste reduction models for raw material optimization. Scalable AI

Integration. Standardize AI models to integrate seamlessly with existing manufacturing ecosystems. Research AI-powered human-machine collaboration for hybrid automation.

Phase 3: Widespread Implementation & Optimization (5–10 Years)

Objective: Full-scale deployment of AI and IoT technologies with continuous improvements.

Autonomous Manufacturing Systems: Develop self-learning AI models that optimize production autonomously. Integrate IoT-driven robotics for real-time adaptive manufacturing. Next-Gen Sustainable Manufacturing. Implement AI-optimized circular economy models to reduce waste. Research biodegradable IoT sensors for minimal environmental impact.

Policy & Ethical AI Adoption: Establish global manufacturing AI and IoT security standards. Address ethical concerns regarding workforce impact and AI decision-making in factories.

AI and IoT technologies, combined, have already demonstrated their potential to impact almost every link of manufacturing processes and decisions significantly. Currently making the most headlines are the innovations that can optimize processes for which manufacturers historically lack precise performance data—processes such as paint curing, composite laying, and complex welding. Why? Because when a process such as this fails, the cost is typically huge. Optimizing them even just a little can lead to lower operational costs on the shop floor and, more importantly, to orders of magnitude reduction in defective components [35].

While most of the attention today is on how an AIoT like this might save a manufacturer from costly downtime or excess paint waste, the production efficiency aspect of our research extends well beyond these specific areas to streamline production. Modern manufacturing depends on complex, autonomous systems moving and interacting in a sophisticated manner. Cognitive AI systems can streamline complex workflows by aggregating data from IoT devices in real-time to make effective decisions between multiple autonomous systems, resulting in more efficient intelligent interactions. A production process that features tight workflows operated by autonomous systems moving nearby relies on those systems' predictability [36]. A good example is the intricate and fast terminal handling at today's logistics ports, where autonomous vehicles, AI systems, and cranes work in close harmony and with precision to enable continuous operation. In contrast, when cargo shuffling operations produce uncertainty, the knock-on effect can mean delay, slow turnaround times, and additional energy and resource usage. Similarly, reduced production variability and improved predictability can help manufacturers balance outputs to minimize energy usage sustainably. For example, a flexible glass manufacturer uses AI and IoT to autonomously monitor and analyze inputs from every stage of production, saving energy and decreasing variation across their process. This AI system correlates this data to highlight even the smallest deviations and trends over time. Then it uses this information to make real-time adjustments to production inputs like heat, chemicals, and gas [37]. This capability allows them to produce large quantities of consistent product even in their small and unsustainable pilot line. See Figure 3.

Figure 3. IoT connected with various devices [37].

3.1. Production Efficiency

Production efficiency, especially minimizing delays or bottlenecks, is obviously the first element AI and IoT can contribute to. Due to them, the factory operates smarter, output is increased, and the cost is reduced

radically. Modern manufacturing adopts these concepts to its processes in a few main ways. Technologies and various solutions are offered, and an experienced supplier focused on washing machines, finishing, and waste heat recovery is involved. A provider of adhesive systems can increase its capacity to serve cars, thanks to the knowledge of the status of a filling machine, and subsequently optimize the cycle and material supply [38]. Based on this data, it can also split the line, so each car has a vast range of color and decoration variants.

Another trend in the increase in production efficiency is predictive maintenance, i.e., monitoring and evaluating production equipment and systems in real time. It uses AI to predict when production or logistics systems might fail, reducing downtime and improving productivity. One example could be a robotics company. Finally, more and more tasks in the production environment are solved by robots with the addition of AI, such as artificial intelligence and machine learning [39]. It is not only a bridge between robotics and humans, but it also ensures productivity, quality, and process control. For instance, a system tracks the hand of the worker in real time, recommends the action taken, and records the movement of a package. Not only are AI and IoT systems implemented in a factory, but they must also exercise continuous monitoring and improvements, such as developing self-learning AI models that optimize production autonomously, integrate IoT-driven robotics for real-time adaptive manufacturing, next-gen sustainable manufacturing implement AI-optimized circular economy models to reduce waste, research biodegradable IoT sensors for minimal environmental impact, policy & ethical AI adoption (a 24/7 service).

3.2. Quality Precision

High-quality standards can be expensive - reworking or scrapping defective products can be a significant economic burden. AI and IoT technologies make it possible to detect errors long before defects are even visible. Therefore, such systems may be particularly interesting for industries that classify product quality as their main competitive advantage. The methodologies available to support discovering anomalies range from fault detection to qualitative and attribute control charting to threshold checkpoints in model prediction. It is possible to act early, adjust the production process, and invest minimal effort and expense in solving the problem without losing critical production time [40]. This can range from process parameters that need adjustment, the production process that requires investigation, or machinery intervention that can lead to additional maintenance sooner than planned. Moreover, relying on specific intelligent systems, one can also employ specific AI models to identify and classify certain aspects of defects by using a suitable data model, such as a classification model or a deep neural network. The integrated system makes it possible to provide a more streamlined strategy for avoiding defects. Hence, industrial experiments have proven that the integrated system of AI algorithms blended with IoT sensors can provide the necessary feedback for the production and maintenance teams to act before irregular trends in the process, improving the quality performance of the innovative plant. Anomalies can be detected through advanced monitoring. Potential defective products can be identified earlier, just as they come off the production line [41]. IoT sensors ensure the continuous tracking of every process line, at every phase. As a result, production teams receive immediate feedback. Product characteristics remain consistent from start to completion, thereby avoiding production losses. The latest monitoring data are then analyzed in real time. AI algorithms take care of the quality assurance system. Designing the system to replace the old traditional one immediately revealed various advantages, not only from a production point of view but also with regard to the enhanced product. The AI solution has also led to the product's enhanced design; thanks to data traceability, it is possible to make a product and its process clearly transparent to the market and consumers, avoiding claims altogether [42]. The integrated system (for example, address ethical concerns regarding workforce impact and AI decision-making in factories) also ensures the product will always be consumer-friendly without worrying about any hidden defects caused by unreliable or out-of-spec equipment. The system allows greater product quality precision, providing the necessary accuracy to meet the market demands of an innovative and sustainable smart city.

4. CASE STUDIES

4.1. Case Study A: Material and Manufacturing Planning Application Implementation

Case Study A presents the effect of a Material and Manufacturing Planning Application at a contract manufacturing organization. The application addressed the problem of sequence impact and capacity ceilings, prioritizing work orders in the schedule, as well as CNC programs [43]. The sequencing was based on the complexity of the product and the available production time. The solution's math engine is fully integrated with a SQL database, making it very simple for the end user to operate the solution. The scenario details are fully described, and the effect of the solution on the organization is assessed as part of the case study [44]. Figure 4 illustrates a reduction in changeover time, increased sales by reducing lead time, decreased stock levels across the company, and decreased in-process products.

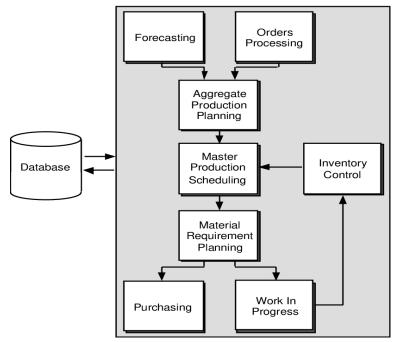


Figure 4. Production planning and control in the textile industry: a case study [44]

4.2. Case Study B: Manufacturing Execution System Implementation

Case Study B presents the effect of implementing a Manufacturing Execution System at a manufacturing site. The MES was implemented to solve seven key business process areas for traffic management, signaling, and communication systems manufacturing sites. The solution was implemented in two phases – the first covering the shop floor and the changeover of a site as a "beacon" site, before eventually being rolled out across the second, larger site [45]. The scenario details are fully described, and the effect of the solution on the organization is assessed as part of the case study. Parameters include reduction in transportation between sites, reduction in inventory, reduction in inventory days, and increased quality and service to customers. See Figure 5.

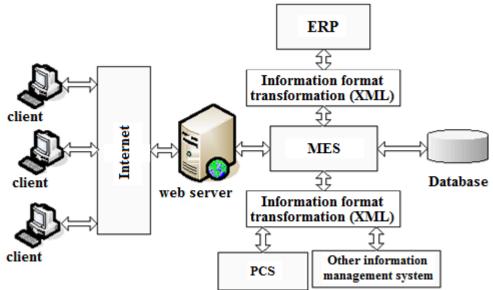


Figure 5. MES Architecture [45]

4.3. Industry Examples

The two most proliferated sectors implementing the integration of AI with IoT in the manufacturing process are the automotive and aerospace sectors, as well as the consumer goods segment. These two industries could not be more different. Applied Research & Early Adoption (2–5 Years). Objective: Test and implement AI and IoT solutions in real-world industrial settings. Smart Factories & Digital Twins: Conduct

pilot projects on digital twins to optimize production lines. Develop AI-enhanced real-time process optimization for precision manufacturing. AI & IoT for Sustainable Manufacturing. Explore AI-driven smart grids for energy-efficient factory operations. Develop IoT-enabled waste reduction models for raw material optimization. Scalable AI Integration. Standardize AI models to integrate seamlessly with existing manufacturing ecosystems. Research AI-powered human-machine collaboration for hybrid automation. The automotive industry is focused on the cost-effective mass production of semi-homogeneous parts and components that can be assembled modularly into many different vehicle models. Aerospace industries seek to manufacture complex, large, bespoke parts that must meet the most rigorous safety standards.

The 'industry examples' section presents industry cases to stimulate manufacturers' interests and spur them to think about operational problems in similar ways in their factories. In the subsection, collaboration with technical partners and system integrators is discussed as an enabler for innovation based on the Industrial Internet of Things and AI. Discussions and sharing between the OEM partner and the system integrator partner allowed the development and implementation of the approach. This kind of application demonstrates the meaningfulness of working with data and combining this and other data sources before using AI and machine learning-type algorithms to make new predictions. The examples draw on the new wave of IoT and AI in manufacturing, and they clearly illustrate how it is changing the foundations of quality and sustainability and making processes more efficient [46].

AI with the Internet of Things is being implemented to get better predictive maintenance on equipment that is produced in-house and at customer facilities for product-service systems in the aerospace industry. Additionally, IoT with AI is part of top research outputs that aim to simplify efficiency and visibility in the aerospace billing process and improve the predictability of jobs and processes in general manufacturing, all tangibly improving production efficiency. In the automotive industry, in-house innovation in AI and IoT has involved a different approach. Some was part of a recent novel manufacturing process and materials development. The examples do not focus on how IoT and AI can be used. Many other research areas show how IoT and AI can be used across manufacturing to detect issues in equipment and processes using in-house or public datasets differently. Instead, the focus here is on the results [47]. How have the processes improved in tangible, quantifiable ways? The intended 'so what' question here is as follows for manufacturers: 'If this approach has been used in two very different industries, then what is the relevance of their results to us? What possibly neglected issues are they solving well?' The results from the aerospace and automotive industries should be relevant to both large and small manufacturers across sectors. The results sections provide a detailed look at the methods or technologies used now. Information is predominantly derived from professionals; the results are detailed in the relevant sections.

5. CHALLENGES AND OPPORTUNITIES

Indeed, significant barriers face the effective adoption of intelligent manufacturing technologies. One crucial issue is data security. Being connected to the internet, or even just an internal network, creates new entryways for hackers who can potentially bring entire systems to a standstill. The interoperability of systems also remains an issue. AI and IoT systems generate vast amounts of sensitive industrial data, making them vulnerable to cyber threats. Edge Computing with AI Encryption (e.g., Cisco Edge Intelligence) - Processes data closer to the source to reduce exposure to cyber risks. AI-Driven Anomaly Detection (e.g., Darktrace, IBM Security) - Uses AI to detect unusual network activities and prevent real-time cyberattacks. Zero Trust Security Model - Requires strict authentication and continuous monitoring for all IoT devices accessing the network. Blockchain for Secure Data Transactions (e.g., IBM Blockchain) - Ensures tamper-proof data logging and authentication in smart factories—regular Cybersecurity Audits - Periodic penetration testing and compliance reviews to mitigate vulnerabilities. Systems will have to be developed with the capability of integrating with those from a range of technology providers to meet the demands of manufacturers. Once produced, these technologies will also require training workers to operate them, which may depend highly on the skills available within a particular labor market. There is also the very real and considerable potential for job displacement. If machines are shown to be equal or capable of producing better outputs than human workers, it is obvious that firms will begin to prefer machines over human workers. There will also be a necessary and unavoidable shift in the skill set of the available workforce. This shift in jobs and possibly the loss of jobs will likely have significant social implications. Yet for all of its associated complexities, this is also a highly exciting time for the manufacturing industry. Time and money spent on product development are slashed when time-consuming tasks are allocated to machines. High levels of efficiency will allow manufacturers of all sizes new spaces for innovation, customization, and unique designs, which can set them apart from international competition in a uniquely global and open market. What will be crucial is a welldefined and effectively implemented strategy for addressing the challenges and opportunities of creating intelligent manufacturers. Governments, to support this aim, will also need to take action to assist and encourage manufacturers in creating systems that have the potential to benefit society as a whole

significantly and not just a select few individuals or firms. This could be achieved through regulation, which would lead manufacturers towards the most sustainable practice, or incentive-based policies, which would, if successful, bring them considerably higher profits in return. Ultimately, there is much to gain from bringing manufacturers and policymakers together to create ethical manufacturers that fit the future economy.

5.1. Ethical Considerations

Manufacturers and the developers of AI systems have an ethical duty to consider how the deployment of their AI systems affects members of the workforce. This also extends to the workers' right to consent to apply technologies to monitor performance. It is worth noting that new tools can identify mood based on the tone and language used, and these have the potential to be used to monitor employee well-being. Questions arise about consent to use such technology, data privacy, and the steps to inform all relevant parties before their introduction. The impact of automation on jobs is a genuine concern for the workforce; new technology has introduced more skill-defining jobs than the lower-skilled jobs it has displaced. This enables the workforce to advance and benefit from technological advancements. However, there must be careful retrospection on AI and IoT implementation in parallel with a strategic approach that addresses low-skilled jobs for the system to separate and differentiate successfully.

The primary moral considerations are if and at what level we allow AI decision support systems to act and make decisions. Blurring lines between ethical and moral responsibilities and solid legal principles means these must be considered. Losing the traceability of responsibility, whereby humans cannot retrace the decision process by the AI systems they have designed, is a genuine concern. Furthermore, a potentially automated decision-making process may sense human ethics, particularly in fallible organizations, and develop systems that do not fully represent the same values. With a view to adverse outcomes, the ability to determine who is responsible allows organizations, consumers, and government bodies to move forward with the deployment of AI and IoT systems. This should include methods of accountability and transparency of the application to the user. Changes due to the digital age imply that the methods of accountability and openness discussed require rethinking. Manufacturers and decision-makers in AI production and implementation can only establish best practices and programs for the ethical development and deployment of responsible AI through the practical application of these guidelines. However, developing and applying detailed ethical practices can be challenging due to the change in, and scope of, a rapidly evolving digital and technological landscape and the associated socioeconomic impact [48].

Proactive initiatives are also required, and considerations should be given to corporate social responsibilities and the implications for socioeconomics, including accessibility, digital inclusion, and the ability for programs to foster a fair and inclusive digital economy on a global scale. Following our discussion about ethics and moral obligation, we consider our precise responsibilities as AI innovators, designers, and manufacturers. Ethical engagement should lead to moral motivation and empowerment, cementing a foundation to create a responsible system and enforce ethical design and deployment. A moral orientation or principled trajectory for one's organization should lead to practical and regulatory implications. This may include creating novel structures or institutions to assess and monitor firms based on their proof of having ethical standards and responsible technology. Furthermore, such a check should only be entrusted to companies that prove they are embracing digital inclusion and underpinning corporate social responsibility, thus leading to an ecosystem where artificial intelligence can be marketed as responsible and reliable.

6. Conclusion and Future Outlook

The transformative potential of these technologies was fundamentally redefining production efficiency, enhancing quality precision, and fostering environmental sustainability. Despite the considerable energy consumption and global contribution to greenhouse gas emissions that AI presents, case studies have shown how the advent of Industry 4.0 is set to unlock vast efficiency gains that will see manufacturing components being consumed with power to the order of a search. This implication, alongside recent discussions of "technological unemployment," paints a vivid picture of the future of production, suggesting that we may already be entering into an era where one of the principal purposes of a manufacturing system can be described as one of providing social competence for managing the conversion applications of technology into the built environment as a production system.

Industry 5.0: In less than a decade, the shift from digital manufacturing to green manufacturing may be a new target Roadmap for Future Research: Impact of AI and IoT on Production Efficiency, Quality Precision, and Environmental Sustainability in Manufacturing This roadmap outlines key research directions, challenges, and potential breakthroughs in AI and IoT applications for manufacturing efficiency, precision, and sustainability. In 2029, about 800–1000 large manufacturing companies worldwide will start experimenting with conserving the environment. In this decade, we expect a shift in the market dynamics where most companies will need to seek half of their revenues outside of their traditional manufacturing space. Innovations happen so fast that shifts in the marketplace create an immediate shakeup among the top

companies in manufacturing. The seven companies that dominate the market now are disappearing; instead, they are being replaced by other companies that have emerged in the last couple of years. Software companies play an increasingly important role in electronics and mechatronics—a sub-vertical family within manufacturing.

Today's approach to discovering new business models must be twofold. First, find out which use cases your organization can perform better by improving with advanced technology before anybody else. This involves deploying technology to avoid competitive disadvantages or even creating cost advantages. Secondly, asking your customers is the fastest way to identify potential business models using new technology, as the customer will not usually rely on you failing to disrupt any industry. Furthermore, we will see more and more development in and around computerized tracking and interactive interfaces. People will have the capability to select features and determine characteristics of products, packaging, and distribution, as well as the ability to communicate directly, interact, and track the delivery of products. Points of possible use include personalization and customization of the interface, offering user control, and a digital solution. This new digital interface is a feasible concept for future factory design.

Capitalizing on this new and emerging landscape of manufacturing requires meaningful moves at the individual, organizational, and national levels: manufacturing companies need to reorganize to maximize the potential of these new practices, academics should focus on advancing these technologies, and governments should invest public money in preparing nations for the coming Fourth Industrial Revolution. In adopting these innovations, several ethical and legal guidelines and challenges need to be addressed, including integrating AI and robots into the workforce and ensuring their decisions are transparent enough to remain comprehensible to humans. Based on the collected content, the following four lessons are offered for future factory clients interested in using AI and IoT to realize a competitive advantage through Industry 4.0:

- (i) A manufacturing system is most usefully conceived as an embedded subsystem of the external environment, inheriting robotic competence that efficiently supports the given purpose of the subsystem.
- (ii) (work practices today should be organized towards aggregating sufficient know-how to introduce function generation with cyber-physical learning systems at the scale of the production environment;
- (iii) This will necessitate achieving greater transparency in the decision-making of robotic and AI-based systems, and
- (iv) While AI and IoT are changing manufacturing practices, it will fall to humans to ensure that system design ensures net positive impacts with respect to utility creation for stakeholders. Taken together, this review seeks to motivate a research agenda that seeks to understand AI and IoT in technical, social, and environmental contexts in a way that brings the present concerns of manufacturers into mature academic literature.

There are several avenues for future research in the area, the ripest of which being the development of the mechanisms to integrate AI-based actively and IoT technologies across the wholly or partially automated 'dotted lines' of the traditional production silos. When this is achieved, we can rely on transfer learning and function generation to disseminate knowledge and limit downtime. The further development of digital twins affords the possibility of reducing the necessity for anecdotal and conventional data in creating accurate decision-making, potentially revolutionizing quality control. An exciting further application of AI techniques is to enhance the forward process and product analysis based on demand-side intelligence. Finally, operant conditioning and DLO can potentially be used to integrate social and physical environmental concerns with the adaptive operation of manufacturing systems.

7. Key Findings

This research identifies and discusses considerations regarding the transformative impact of AI and IoT in manufacturing from a practical standpoint, i.e., in the context of an increased focus on the feasibility of technology adoption today. Research findings suggest that a fusion of AI and IoT drives efficiency gains and helps enhance quality management across various production processes. The hypothetical performance enhancements of bringing AI and IoT together include the potential for predictive quality management, robot application at lower batch sizes, and efficient and sustainable energy utilization. Creating value from manufacturing data necessitates integrating digital technologies into decision support systems. The gathering, cleaning, and rapid analysis of large amounts of data are being utilized to produce evidence-based decision-making across various processes, such as production planning and control, operations management, materials and inventory management, logistics, maintenance, quality management, and regulation and governance. In the factory, manufacturing data from across the business is used to guide decisions at the operational level

and in strategic planning. AI and IoT must work together, from the engineers' initial software and sensor designs through to the many layers and nodes involved in data transmission, capture, cleansing, storage, and interrogation, for the decision-making capability of the whole interconnected manufacturing ecosystem to be realized. The edge and fog nodes of these data flows should be able to act on the real-time streaming data, driven by AI, or act independently but within guidelines set by the AI. Case studies show a pressing need for the AI and IoT combination: utilities companies regulating energy use in the factory, measuring temperatures in reflows, automatically adjusting oven energy profiles, managing the water taint flows, maximizing precision in thread examiners in harsh environmental conditions, producing while managing the operator and the robot together in a safe and modular manner. Research also identifies concerns about the pace of technology adoption, promoting a balanced approach that upholds ethical guidelines to encourage sustained investment within manufacturing alongside equitable and ethical innovation that prioritizes care for people and the planet. Industry insights and concluding discussion contribute to recommendations for technology adoption for manufacturers. Even more advanced robotics: Robotics can democratize technology by automating repetitive tasks anywhere. They are also evolving into more sophisticated robotic systems that can work side by side with human co-workers; this enables a new way of collaborating with robots, i.e., no need for a safety fence, thus automating unreachable tasks. Edge IoT Computing: We have seen the rise of energy-efficient edge computing in industry, whereby data is processed locally on an edge device, without sending data to the cloud. This allows for much faster system reaction times and is essential in areas that do not have a good internet connection. Advanced Data Analytics: Current Industry 4.0 has been about data communication, an IoT play. We are already witnessing a shift where data analytics at the edge becomes of paramount importance. In this future factory, data analysis in IoT sensors will optimize machines, guide decisions, and provide better insights into manufacturers. Other solutions that have been overlooked yet have massive potential in the future include quantum computing and using innovative materials, like biohacking.

REFERENCES

- [1] A. Matin, M. Islam, X. Wang, H. Huo, & G. Xu, "AIoT for Sustainable Manufacturing: Overview, Challenges, and Opportunities", *Internet of Things*, vol. 24, pp. 100901, 2023. https://doi.org/10.1016/j.iot.2023.100901
- [2] M. Islam, "AI and IoT in Automation and Security: A Vision for Next Generation Applications", *The IUP Journal of Electrical & Electronics Engineering*, vol. 17, no. 4, pp. 7-32, 2024. https://doi.org/10.20944/preprints202408.0289.v1
- [3] V. Hayyolalam, S. Otoum, & Ö. Özkasap, "Dynamic QoS/QoE-aware Reliable Service Composition Framework for Edge Intelligence", *Cluster Computing*, vol. 25, no. 3, pp. 1695-1713, 2022. https://doi.org/10.1007/s10586-022-03572-9
- [4] J. Arinez, Q. Chang, R. Gao, C. Xu, & J. Zhang, "Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook", *Journal of Manufacturing Science and Engineering*, vol. 142, no. 11, 2020. https://doi.org/10.1115/1.4047855
- [5] A. Borré, L. Seman, E. Camponogara, S. Stefenon, V. Mariani, & L. Coelho, "Machine Fault Detection Using a Hybrid CNN-LSTM Attention-Based Model", Sensors, vol. 23, no. 9, pp. 4512, 2023. https://doi.org/10.3390/s23094512
- [6] J. Methuselah, "Digital Twin Technology for Smart Manufacturing", *Journal of Technology and Systems*, vol. 6, no. 4, pp. 52-65, 2024. https://doi.org/10.47941/jts.2143
- [7] E. Hawkinson, "Automation in Education with Digital Twins: Trends and Issues", *International Journal on Open and Distance E-Learning*, vol. 8, no. 2, 2023. http://dx.doi.org/10.58887/ijodel.v8i2.229
- [8] S. Sundaram and A. Zeid, "Artificial Intelligence-Based Smart Quality Inspection for Manufacturing", Micromachines, vol. 14, no. 3, pp. 570, 2023. https://doi.org/10.3390/mi14030570
- [9] Q. Yu, "Incorporation of Artificial Intelligence Toward Carbon Footprint Management in Hotels to Create Sustainable, Green Hotel: Mini Review", *Tourism Management and Technology Economy*, vol. 7, no. 1, 2024. https://doi.org/10.23977/tmte.2024.070107
- [10] R. Donthi, B. Lakshmi, G. Srinivas, S. Sudhakar, H. Koneru, & P. Yekula, "AI-Driven Numerical Optimization for Carbon Footprint Reduction and Sustainable Supply Chain Management in the Fashion Industry", South Eastern European Journal of Public Health, pp. 1216-1222, 2024. https://doi.org/10.70135/seejph.vi.2023
- [11] M. Chau, X. Nguyễn, T. Huynh, V. Chu, T. Le, T. Nguyễn et al., "Prospects of Application of IoT-based Advanced Technologies in Remanufacturing Process Towards Sustainable Development and Energy-efficient Use", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1-25, 2021. https://doi.org/10.1080/15567036.2021.1994057
- [12] A. Chiarini, "Industry 4.0 Technologies in the Manufacturing Sector: Are We Sure They Are All Relevant for Environmental Performance?", *Business Strategy and the Environment*, vol. 30, no. 7, pp. 3194-3207, 2021. https://doi.org/10.1002/bse.2797
- [13] H. Hamood, M. Mansour, A. Lafta, & S. Nashee, "Numerical Investigation to Study the Effect of Three Height of Triangular Obstacles on Heat Transfer of Nanofluids in a Microchannel", *International Review of Mechanical Engineering (IREME)*, vol. 17, no. 11, pp. 533, 2023. https://doi.org/10.15866/ireme.v17i11.23627
- [14] S. Huang, M. Sadiq, & F. Chien, "Dynamic Nexus Between Transportation, Urbanization, Economic Growth and

- Environmental Pollution in ASEAN Countries: Does Environmental Regulations Matter?", *Environmental Science and Pollution Research*, vol. 30, no. 15, pp. 42813-42828, 2021. https://doi.org/10.1007/s11356-021-17533-z.
- [15] M. Javaid, A. Haleem, R. Singh, & R. Suman, "Significance of Quality 4.0 Towards Comprehensive Enhancement in Manufacturing Sector", Sensors International, vol. 2, pp. 100109, 2021. https://doi.org/10.1016/j.sintl.2021.100109
- [16] V. Hardas, "Machine Learning and Enhanced Encryption for Edge Computing in IoT and Wireless Networks", Journal of Electrical Systems, vol. 20, no. 1s, pp. 200-210, 2024. https://doi.org/10.52783/jes.765
- [17] Y. Alghamdi and A. Munir, "Image Encryption Algorithms: A Survey of Design and Evaluation Metrics", Journal of Cybersecurity and Privacy, vol. 4, no. 1, pp. 126-152, 2024. https://doi.org/10.3390/jcp4010007
- [18] K. Wu, R. Cheng, H. Xu, & J. Tong, "Design and Implementation of the Zero Trust Model in the Power Internet of Things", *International Transactions on Electrical Energy Systems*, vol. 2023, pp. 1-13, 2023. https://doi.org/10.1155/2023/6545323
- [19] J. Xiang, G. Kang, H. Cheng, J. Liu, Y. Wen, & J. Xu, "Scalable and Optimal QoS-Aware Manufacturing Service Composition via Business Process Decomposition", *Electronics*, vol. 12, no. 4, pp. 991, 2023. https://doi.org/10.3390/electronics12040991
- [20] M. Mosleuzzaman, I. Arif, & A. Siddiki, "Design and Development of a Smart Factory Using Industry 4.0 Technologies", Academic Journal on Business Administration, Innovation & Sustainability, vol. 4, no. 04, pp. 89-108, 2024. http://dx.doi.org/10.69593/ajbais.v4i04.131
- [21] E. Kaasinen, A. Anttila, P. Heikkilä, J. Laarni, H. Koskinen, & A. Väätänen, "Smooth and Resilient Human–Machine Teamwork as an Industry 5.0 Design Challenge", Sustainability, vol. 14, no. 5, pp. 2773, 2022. https://doi.org/10.3390/su14052773
- [22] M. Javaid, A. Haleem, R. Singh, & R. Suman, "Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study", *Journal of Industrial Integration and Management*, vol. 07, no. 01, pp. 83-111, 2021. https://doi.org/10.1142/s2424862221300040
- [23] M. Javaid, A. Haleem, R. Singh, R. Suman, & E. González, "Understanding the Adoption of Industry 4.0 Technologies in Improving Environmental Sustainability", Sustainable Operations and Computers, vol. 3, pp. 203-217, 2022. https://doi.org/10.1016/j.susoc.2022.01.008
- [24] K. Ali, A. Garcia, & A. Vadsariya, "Impact of the AI Dependency Revolution on Both Physical and Mental Health", Journal of Strategic Innovation and Sustainability, vol. 19, no. 2, 2024. https://doi.org/10.33423/jsis.v19i2.7006
- [25] H. Бобро, "Effectiveness of Artificial Intelligence Usage in the Educational Process", *Наука I Техніка Сьогодні*, no. 14(28), 2024. https://doi.org/10.52058/2786-6025-2023-14(28)-168-174
- [26] I. Sarker, "AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems", SN Computer Science, vol. 3, no. 2, 2022. https://doi.org/10.1007/s42979-022-01043-x
- [27] S. Suardi and P. Astuty, "The Internet of Things and Its Impact on The Productivity and Economic Growth of The Manufacturing Industry", *Jurnal Indonesia Sosial Sains*, vol. 4, no. 08, pp. 699-706, 2023. https://doi.org/10.59141/jiss.v4i08.865
- [28] C. Milarokostas, D. Tsolkas, N. Passas, & L. Merakos, "A Comprehensive Study on LPWANs With a Focus on the Potential of LoRa/LoRaWAN Systems", *IEEE Communications Surveys & Tutorials*, vol. 25, no. 1, pp. 825-867, 2023. https://doi.org/10.1109/comst.2022.3229846
- [29] I. Khan, M. Ahmad, & J. Majava, "Industry 4.0 and Sustainable Development: A Systematic Mapping of Triple Bottom Line, Circular Economy and Sustainable Business Models Perspectives", *Journal of Cleaner Production*, vol. 297, pp. 126655, 2021. https://doi.org/10.1016/j.jclepro.2021.126655
- [30] W. Lin, D. Chen, & S. Chen, "Emerging Micro-Additive Manufacturing Technologies Enabled by Novel Optical Methods", *Photonics Research*, vol. 8, no. 12, pp. 1827, 2020. https://doi.org/10.1364/prj.404334
- [31] X. Zhu, Y. Shi, & N. Liu, "Artificial Intelligence Technology in Modern Logistics System", *International Journal of Technology, Policy and Management*, vol. 22, no. 1/2, pp. 66, 2022. https://doi.org/10.1504/jjtpm.2022.10046969
- [32] S. Lodhi, A. Gill, & I. Hussain, "AI-Powered Innovations in Contemporary Manufacturing Procedures: An Extensive Analysis", *International Journal of Multidisciplinary Sciences and Arts*, vol. 3, no. 4, pp. 15-25, 2024. https://doi.org/10.47709/ijmdsa.v3i4.4616
- [33] M. Mansour, & A. Ugla, "Employing Genetic Algorithm to Optimize Manufacturing Cells Design", *Academic Journal of Manufacturing Engineering*, vol. 22, no. 3, pp. 53-61, 2024.
- [34] M. Abdulhasan, H. Abdulaali, Q. Al-Doori, H. Dakheel, R. Alabdan, F. Alhachamiet al., "Physicochemical and Heavy Metal Properties of Soil Samples in Waste Disposal Site, Suq Al-Shyokh, Iraq", 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 345-350, 2022. https://doi.org/10.1109/ismsit56059.2022.9932750
- [35] M. Mansour and K. Al-hamdani, "Key Performance Indicators for Evaluating the Efficiency of Production Processes in Food Industry", Passer Journal of Basic and Applied Sciences, vol. 6, no. 2, pp. 494-504, 2024. https://doi.org/10.24271/psr.2024.450557.1555
- [36] M. Mansour, I. Erabee, & A. Lafta, "Comprehensive Analysis of Water Based Emulsion Drilling Fluids in GHARRAF Oil Field in Southern Iraq: Properties, Specifications, and Practical Applications", *International Journal of Computational Methods and Experimental Measurements*, vol. 12, no. 3, pp. 297-307, 2024. https://doi.org/10.18280/ijcmem.120310

- [37] M. Mansour, H. Hamood, A. Lafta, S. Nashee, & A. Shkarah, "Enhancing the Efficacy of Adsorption-Based Carbon Storage Systems: A Finite Element Analysis Approach", *International Journal of Energy Production and Management*, vol. 9, no. 1, pp. 19-24, 2024. https://doi.org/10.18280/ijepm.090103
- [38] M. Mansour, H. Salman, A. Lafta, S. Nashee, & A. Shkarah, "Simulation Analysis of Protection Oil Pipe in Platform to Reduced Corrosion and Erosion Defect with Sustainability Technique", *Mathematical Modelling of Engineering Problems*, vol. 11, no. 5, pp. 1171-1178, 2024. https://doi.org/10.18280/mmep.110505
- [39] B. Martini, D. Bellisario, & P. Coletti, "Human-Centered and Sustainable Artificial Intelligence in Industry 5.0: Challenges and Perspectives", Sustainability, vol. 16, no. 13, pp. 5448, 2024. https://doi.org/10.3390/su16135448
- [40] N. Motlagh, M. Mohammadrezaei, J. Hunt, & B. Zakeri, "Internet of Things (IoT) and the Energy Sector", Energies, vol. 13, no. 2, pp. 494, 2020. https://doi.org/10.3390/en13020494
- [41] M. Mansour, S. Salman, A. Shkarah, R. Nashee, & M. Lafta, "Simulation of a Sustainable Manufacturing System for Power Plant: Case Study", *Library Progress International*, vol. 44, no. 2, pp. 909-924, 2024.
- [42] M. Mansour and K. Al-hamdani, "Tabu Search Algorithm to Optimize Layout Design for a Multi Objective Plant Function", Passer Journal of Basic and Applied Sciences, vol. 6, no. 2, pp. 446-452, 2024. https://doi.org/10.24271/psr.2024.450554.1554
- [43] N. Najm and M. Mansour, "The Role of Waste Reduction Technology in Sustainable Recycling of Waste Paper at Thi-Qar University", *International Journal of Sustainable Development and Planning*, vol. 19, no. 8, pp. 3153-3163, 2024. https://doi.org/10.18280/ijsdp.190828
- [44] J. Qin, Y. Liu, & R. Grosvenor, "A Categorical Framework of Manufacturing for Industry 4.0 and Beyond", Procedia CIRP, vol. 52, pp. 173-178, 2016. https://doi.org/10.1016/j.procir.2016.08.005
- [45] N. Rane, "Integrating Leading-Edge Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Technologies for Smart and Sustainable Architecture, Engineering and Construction (AEC) Industry: Challenges and Future Directions", SSRN Electronic Journal, 2023. https://doi.org/10.2139/ssrn.4616049
- [46] H. Salman, M. Mansour, A. Lafta, & A. Shkarah, "Modification Design and Process of Pipeline to Reduce Erosion Rate and Deposited", *International Journal of Computational Methods and Experimental Measurements*, vol. 12, no. 2, pp. 165-173, 2024. https://doi.org/10.18280/ijcmem.120206
- [47] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, & M. Gidlund, "Industrial Internet of Things: Challenges, Opportunities, and Directions", *IEEE Transactions on Industrial Informatics*, vol. 14, no. 11, pp. 4724-4734, 2018. https://doi.org/10.1109/tii.2018.2852491
- [48] A. Taneja, G. Nair, M. Joshi, S. Sharma, S. Sharma, A. Jambrak et al., "Artificial Intelligence: Implications for the Agri-Food Sector", *Agronomy*, vol. 13, no. 5, pp. 1397, 2023. https://doi.org/10.3390/agronomy13051397

BIOGRAPHIES OF AUTHORS

Assist .prof. Dr. Mustafa M. Mansour, Lecturer, Teaching at the College of Engineering, Thi Qar University, head of Department of Mechanical Engineering. Was born on November 1988 in Iraq. He received his engineer degree in Industrial Engineering from the technology University of Engineering (Baghdad) in 2010. Then, he received his M.Sc. and PhD degrees in Industrial Engineering from the Baghdad University in 2014 and 2018, respectively. https://orcid.org/0009-0006-1254-2335

Lecturer Dr. Alaa M. Lafta ,Teaching at the College of Engineering, thi Qar University, in the Department of Mechanical Engineering