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 The evolution of energy systems concerning IoT-enabled smart grids require 

new innovative solutions to address enormous open issues in demand-supply 
balance, grid reliability, and sustainability. In this research work, attention is 

centered on integrating real-time energy demand forecast and adaptive 

demand response optimization. This is solely to improve efficiency and 

resilience of modern smart grids. We use Advanced ML technique known as 
Long Short-Term Memory (LSTM) networks to determine accurate energy 

demand forecast by capturing temporal dependencies and non-linear trends 

when consuming energy data. Using Simulation, we present model’s efficacy 

in achieving accurate forecast using Mean Absolute Percentage Error 
(MAPE) of 5.6%, a peak load reduction of 20%, and energy cost savings that 

exceeds 24%. We validate Computational efficiency with execution times that 

is better for real-time operation and grid scalability of 10,000 IoT devices. 

these results pave way for future research in hybrid forecast analysis, and 

multi-objective optimization. This can ensure stability of the grid in dynamic 

and decentralized energy landscape. 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION 

In the global energy sector, there is a significant transition towards sustainability, efficiency, and 

resilience. The rising adoption of renewable energy sources, the expansion of distributed energy resources 

(DERs), and increasing electrification have rendered power system management increasingly complex [1]. 

Smart grids, which combine conventional electrical grids with sophisticated communication and computer 

technologies, have become the foundation of this transition [2][3]. These grids facilitate dynamic energy 

management, improve dependability, and promote cleaner energy alternatives. Forecasting energy demand in 

real-time and optimizing adaptive demand response (ADR) are essential for the effective functioning of smart 

grids [4][5]. Forecasting enables grid operators to anticipate energy demand precisely, ensuring optimal 

resource allocation, whereas ADR systems dynamically modify energy usage to uphold grid stability [6]. 

Incorporating Internet of Things (IoT) technologies enhance these capabilities by delivering continuous, real-

time data from smart meters, sensors, and interconnected devices. This data-centric methodology underpins 

accurate energy forecasts and dynamic demand management, empowering utilities and consumers to make 

informed energy choices [7]. This research uses IoT technologies for real-time energy demand prediction and 

adaptive demand response optimization in smart grids. It tackles essential issues, including integrating 

intermittent renewable energy sources, enhancing grid flexibility, and promoting energy efficiency without 

sacrificing consumer convenience. 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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Figure 1. 

 

1.1. Research Issues 

This paper examines related studies to determine how to fully integrate real-time IoT data into 

decentralized energy forecasting models, which is a significant research gap. Also, there is an issue of 

Scalability and Latency. Existing forecasting and DR optimization methods face challenges in large-scale IoT-

enabled systems, particularly in managing data latency and processing demands. Similarly, a Consumer-

Centric Approaches analysis is required. The Current DR framework prioritizes grid benefits over consumer 

convenience by underscoring the need for user-friendly and incentivized solutions. Finally, a significant 

challenge of renewable energy integration is the need for more robust methods to incorporate the variability of 

renewable energy into real-time forecasting and DR systems. By addressing these open issues, further research 

can advance the efficiency and sustainability of smart grids. 

1.2. Smart Grids and IoT Integration 

Smart grids signify the integration of conventional power systems with contemporary information and 

communication technology [8][9]. These technologies seek to improve grid efficiency, integrate renewable 

energy, and enable distributed energy management. Research in [7] provides extensive analyses of innovative 

grid systems and their transformational capabilities. The Internet of Things (IoT) has enhanced smart grid 

functionalities by facilitating real-time data collection and communication. [10] underscore the significance of 

IoT in monitoring, control, and automation, accentuating its capacity to enhance grid intelligence.  

Notwithstanding these gains, considerable problems remain. Challenges include interoperability, data security, 

and scalability, which impede extensive use. [11] indicates possible alternatives such as edge computing and 

blockchain technology to mitigate the problems. These methodologies [12][13] augment the scalability and 

security of IoT-enabled smart grids, facilitating more resilient deployments.  

1.3. Real-Time Energy Demand Forecasting 

Accurate energy demand forecasting ensures grid resilience and optimizes resource distribution. 

Conventional techniques, including statistical models like ARIMA and exponential smoothing, have been 

extensively utilized but frequently fail to accurately represent non-linear and dynamic energy consumption 

trends [14][15]. Machine learning (ML) and deep learning (DL) methodologies, including artificial neural 

networks (ANNs) and long short-term memory (LSTM) networks, have exhibited exceptional efficacy in this 

field. [16] Created an LSTM-based model for short-term load forecasting, resulting in significant enhancements 

in accuracy. Hybrid models integrating statistical and machine learning techniques have gained prominence 

due to their robustness.  

1.4. Demand Response and Optimization Techniques 

Demand response (DR) mechanisms modify energy use to correspond with grid circumstances, 

facilitating peak load reduction and improved stability. [17][18] emphasizes the economic and environmental 

advantages of demand response (DR), encompassing enhanced grid efficiency and diminished operational 

expenses. Optimization methods are fundamental to adaptive demand response. Techniques including linear 

programming, game theory, and heuristic algorithms such as genetic algorithms (GA) and particle swarm 

optimization (PSO) have been utilized in diverse demand response (DR) scenarios [19]. Recently, 
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reinforcement learning (RL) has surfaced as an effective instrument for real-time demand response (DR) 

optimization, providing dynamic adjustment to grid variations [20]. Notwithstanding these developments, most 

studies concentrate on centralized demand response systems. Decentralized methodologies, facilitated by IoT 

and edge computing, remain little investigated. These frameworks could enhance scalability and 

responsiveness, particularly in systems with substantial integration of distributed energy resources. 

1.5. Integration of Renewable Energy 

The variability and irregularity of renewable energy sources present considerable issues for system 

reliability. Efficient energy management necessitates forecasting and demand response optimization 

methodologies considering these uncertainties. IoT-enabled systems provide real-time data on renewable 

generation, enhancing the responsiveness and efficacy of demand response tactics [21]-[23]. 

2. METHOD 

This research uses Real-time data generated through IoT-enabled devices, such as smart meters and 

sensors. Essential parameters encompass energy consumption trends, device conditions, environmental factors 

including temperature and humidity, and outputs from renewable energy sources. We adopt the Dataset [24] 

from reliable research consolidated from a central repository mainly for processing. We also conducted 

Preprocessing procedures to address absent values, remove outliers, and diminish noise. The data is organized 

into time-series formats appropriate for model training and evaluation. In terms of simulation, we simulated a 

smart grid scenario to validate the models. In the scenario created, we incorporate renewable energy generation 

profiles and dynamic grid conditions to emulate real-world conditions effectively.  

 
Figure 2. Smart Grid Component 

The model used in this research is Forecasting Energy Demand in Real Time. This concept uses Machine 

learning (ML) and deep learning (DL) algorithms. The algorithms are designed to anticipate energy demand 

with high precision. Also, we use Long Short-Term Memory (LSTM) networks to identify their capacity to 

capture temporal dependencies in time-series data. The ML and DL models incorporate external variables, 

which include meteorological conditions, appliance consumption, and electricity tariffs, to improve prediction 

accuracy [25][26]. The process of training and validation adopts historical and real-time data streams. 

2.1. Optimization of Adaptive Demand Response 

To optimize demand responses, reinforcement learning (RL) is employed. This is to develop an adaptive 

demand response system. Also, a famous approach to assist dynamic acquisition of energy is the deep Q-

learning approach [27]. However, IoT devices can facilitate the implementation of demand response controls. 

This process deals with load shifting and to reduce peak load. Therefore, optimization is required to ensure 

energy efficiency, cost reduction, and user ease. The entire process led to this study's Development of a Hybrid 

Framework. Therefore, an establishment is required for a cohesive framework that adds forecasting and 

demand response of the systems. 
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2.2. Forecast Accuracy 

A critical attribute of real-time energy demand prediction is the forecasting accuracy. It ensures effective 

energy management and stability in IoT-enabled smart grids. It gives us the ability to evaluate forecasting 

performance using mathematical error metrics [28]. For practical analysis on the accuracy of energy demand 

prediction, we depend on Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute 

Percentage Error (MAPE). MAE analyses average magnitude for absolute errors between actual and predicted 

values [29]-[31]. The low MAE value, the accurate forecasting [32][33]. There is a straightforward measure of 

error in the same unit as energy demanded. It also provides prediction accuracy. We use MAPE to represent 

forecast accuracy as a percentage to normalize the mistakes generated from actual values. It is also used to 

compare models based on our datasets with varying scales.  Coefficient of Determinant R2 is used to evaluate 

how to forecast model variance in actual energy demand. The value realized in R2 near 1 presents high forecast 

accuracy and can be modeled using naïve model. Analytically, we can express the three components by the 

formular below. 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑡 −  𝑦̂𝑡|𝑁

𝑡=1                      (1) 

yt: Actual energy demand at time t 
ŷt: Predicted energy demand at time t 
N: Total number of time intervals 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑦𝑡− 𝑦̂𝑡

𝑦𝑡
|𝑁

𝑡=1  ×  100                    (2) 

𝑅2 = 1 − 
∑ (𝑦𝑡− 𝑦̂𝑡)2𝑁

𝑡=1

∑ (𝑦𝑡− 𝑦̅)2𝑁
𝑡=1

                                            (3) 

y̅: Mean of the actual values 

For the Practical application of Forecasting Accuracy, We Consider a test case in a situation where 

the actual energy demand (yt) and the predicted demand are being measured using 10-time intervals as 

presented in the table below. 

Table 1. Output DC motor with PID 

t Actual Demand (𝑦𝑡) Predicted Demand (𝑦̂𝑡) Error (𝑦𝑡 −  𝑦̂𝑡) Absolute Error Percentage 

Error 

1 120 115 5 5 4.17% 

2 150 140 10 10 6.67% 

… … … … … … 

10 200 195 5 5 2.5% 

2.3. Demand Response Effectiveness 

This strategy is implemented in smart grids to adjust energy consumption patterns in response to grid 

signals. This includes pricing or supply-demand issues. The strategy is mathematically computed using metrics, 

models, and optimization techniques [34]. We consider Peak Load Reduction (PLR) to examine the percentage 

decrease for ink demand when there is a demand response situation. therefore, higher values of PLR present 

effective demand response when reducing grid peak load. Energy Cost Savings (ECS)quantifies monetary 

savings for power consumers or grid operators due to demand response actions. High value of ECS present 

significant financial benefits from demand response participation. Load Shifting Ratio (LSR) measures energy 

proportion for consumption from peak to off-peak hours [35][36]. When LSR nears 1 presents effective load 

shift with no significant energy reduction. 

𝑃𝐿𝑅 =  
𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒− 𝑃𝐷𝑅

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ×  100                    (4) 

Pbaseline: Peak demand without demand response intervention 

PDR: Peak demand during response events 
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Also, 
 

𝐸𝐶𝑆 =  ∑ 𝐶𝑡
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝐶𝑡

𝐷𝑅𝑁
𝑡=1                    (5) 

Ct
baseline: Energy cost at time t without demand response 

Ct
DR: Energy cost at time t during demand response event 

N: Total number of time intervals 

𝐿𝑆𝑅 =  
∆𝐸𝑜𝑓𝑓−𝑝𝑒𝑎𝑘

∆𝐸𝑝𝑒𝑎𝑘
                     (6) 

∆Eoff−peak: Energy added to off − peak hours due to load shifting 

∆Epeak: Energy reduced during peak hours 

 The Practical application includes optimizing demand response required to balance cost savings, user 

comfort, and grid stability. It provides Scalability because there are Advanced optimization algorithms, such 

as reinforcement learning, to manage complex, large-scale smart grid environments. Finally, it involves 

Customization, where weighting factors with the objective function enables operators to prioritize specific 

goals. These include satisfaction or peak load reduction. 

2.4. Computational Efficiency 

We evaluate real-time applicability of energy demand forecasting and adaptive demand response 

optimization in IoT-enabled smart grids using computational efficiency. This is because of its ability to process 

large datasets on a system, execute optimization models, and deliver actionable policy that is within stringent 

time constraints [37][38]. We consider processing time (Latency) to determine time needed to execute 

forecasting or optimization the system can maintain performance for scalability e as the number of IoT devices 

increase. similarly, the algorithm complexity provides the computational ability of the algorithm that is used 

to forecast and optimize using Big-O notation. energy consumption present energy efficiency of computation 

as it is crucial for IoT-based systems. 

𝑇𝑡𝑜𝑡𝑎𝑙 =  𝑇𝑑𝑎𝑡𝑎 +  𝑇𝑚𝑜𝑑𝑒𝑙 +  𝑇𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛                    (7) 

Tdata: Data acquisition and preprocessing time 

Tmodel: Model computation time (forecast/optimisation) 

Tdecision: decisions time for grid 

𝑇𝑡𝑜𝑡𝑎𝑙(𝑁𝐼𝑜𝑇) = 𝑇0 + 𝑘. 𝑁𝐼𝑜𝑇                     (8) 

T0: processing time for single device 

k: Time increment per additional device 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝐿𝑆𝑇𝑀): 𝑂(𝑛 ∙ ℎ2 ∙ 𝑡)                    (9) 

n: Number of neurons 
h: Number of hidden layers 
t: Time steps 

𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 (𝑅𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔): 𝑂(𝑠 ∙ 𝑎 ∙ 𝑖)               (10) 

s: State space size 
a: Action space size 
i: iterations to converge 

𝐸𝑐𝑜𝑚𝑝𝑢𝑡𝑒 =  𝑃𝐶𝑃𝑈 ∙  𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒                  (11) 

PCPU: Average power consumption of the processing unit 
Tcompute: Total consumption time 
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3. RESULTS AND DISCUSSION 

We consider three parameters to analyze the result using Python. The model frameworks were simulated 

using TensorFlow and NumPy to train and conduct evaluation. These includes Forecasting Accuracy, Demand 

Response Effectiveness, and Computational Efficiency. 

3.1. Forecasting Accuracy 

For forecast accuracy, the effectiveness of energy demand prediction models in IoT-enabled smart grids 

is evaluated. Simulation results examined the accuracy of forecasting methods like Long Short-Term Memory 

(LSTM) networks under varying conditions. We use Real-world energy consumption as our dataset from a 

smart grid which span over 12-month period. However, dataset contains hourly energy demand readings with 

other external considerations like temperature, weather conditions, and pricing signals. For the forecasting 

model, the LSTM-based time series prediction model was tronned at 80% of the dataset and tested on the 

remaining 20%. Simulation results are summarized in table 2 below for performance metrics under different 

conditions. 

Table 2. Performance Analysis 

Condition MAE (kW) RMSE (kW) MAPE (%) 

Normal Demand Pattern 1.15 1.47 3.2% 

Sudden Demand Spikes 3.25 4.18 9.5% 

Seasonal Variations 1.85 2.21 4.8% 

Combined Factors (Overall) 2.08 2.62 5.6% 

Based on table above, forecasting model performs efficiently under normal demand patterns. Therefore, 

it has low error rates and high accuracy. In other words, Accuracy decreases slightly in situations of sudden 

demand spikes. This presents the need for enhanced responsiveness to anomalies. However, Seasonal 

variations present moderate errors. This can be mitigated by integrating external predictors, such as temperature 

and time-of-year effects. 

To compare using Benchmark research, our proposed LSTM model is compared with selected standard 

forecasting techniques, which include Linear Regression (LR) and Autoregressive Integrated Moving Average 

(ARIMA), as presented in the table below. 

Table 3. Comparison Table with Related Methodology 

Model MAE (kW) RMSE (kW) MAPE (%) 

LTSM (Proposed) 2.08 2.62 5.6% 

LR 3.75 4.29 9.2% 

ARIMA 2.95 3.52 7.5% 

Based on the output of the table above, LSTM outperforms the traditional techniques in terms of MAE, 

RMSE, and MAPE. This is especially true in complex demand patterns. For the ARIMA model, it performs 

relatively better but is challenged with sudden spikes in energy demand. Finally, Linear Regression carries the 

lowest accuracy, reflecting its inability to capture nonlinear dependencies. 

3.2. Demand Response Effectiveness 

We evaluate performance for real-time energy demand forecasting and adaptive optimization using 

simulation for IoT-enabled smart grids. The impact of demand response policies on grid performance, user 

satisfaction, and cost optimization is measured. In the scenario, we consider a smart grid that serves over a 

thousand IoT homes. We then used time-based pricing to implement the demand response policy by adjusting 

energy prices at peak hours. We then shift the load to encourage users when using energy-intensive processes. 

Based on the results, the impact of demand response on determining grid performance is conducted for a 24-

hour simulation as presented in the table below using mathematical computation. 

𝑃𝐿𝑅 =  
𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −  𝑃𝐷𝑅

𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 ×  100 

 

𝑃𝐿𝑅 =  
800 − 640

800
 ×  100 = 20% 

𝐸𝐶𝑆 =  𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −  𝐶𝐷𝑅 
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𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔: 

𝐸𝐶𝑆 = 4500 − 3400 = 1100 (24.4% 𝑠𝑎𝑣𝑖𝑛𝑔𝑠) 

𝐿𝑆𝑅 =  
∆𝐸𝑜𝑓𝑓−𝑝𝑒𝑎𝑘

∆𝐸𝑝𝑒𝑎𝑘
 

 

𝐿𝑆𝑅 =  
78

15
= 0.78 

Table 4. Impact of DR on Metrics 

Metric Baseline (No DR) With DR Strategies Improvement (%) 

Peak Load (kW) 800 640 20% 

Total Energy Cost ($) 4500 3400 24.4% 

Load Shifting Ratio (LSR) 0.15 0.78 420% 

User Discomfort Index - 2.8 - 

Table above is derived by substituting PLR (to alleviate grid stress at high-demand period), ECS 

(achieving low energy cost led to load shifting to lessen consumption at peak-periods), and LSR (massive 

energy shift from off-peak solely to enhance stability of grid) from the earlier formular stated in the previous 

section.  

3.3. Computational Efficiency 

This simulation evaluates Computational efficiency because of its feasibility of real-time energy demand 

forecasting and adaptive demand response optimization in IoT-enabled smart grids. For the hardware device, 

we consider a multi-core processor (8 cores, 2.8 GHz), 16 GB RAM for efficiency in computing. for the 

software, we use Python with TensorFlow for forecasting and PyTorch for optimization. the dataset used was 

one-year old data for energy consumption and carrying resolution of 1 minutes. in the scenarios, we consider 

small scale (consisting of 100 IoT devices) and medium scale (consisting 1000 IoT devices and a large scale 

(consisting of 10000 IoT devices. To determine the mathematical results, we categorize metrics into execution 

time, resource utilization, scalability and energy consumption. This is presented mathematically as follows. 

𝑆 =  
𝑇𝑠𝑚𝑎𝑙𝑙

𝑇𝑙𝑎𝑟𝑔𝑒

𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠,𝑙𝑎𝑟𝑔𝑒
 

 

       

     𝑆 =  
200

(
3300

10000)
= 6.06 

𝐸𝑐𝑜𝑚𝑝 =  𝑃𝐶𝑃𝑈 ∙  𝑇𝑒𝑥𝑒𝑐 
 

𝑤ℎ𝑒𝑟𝑒 𝑃𝐶𝑃𝑈 = 65𝑊 

Table 5. Computation Impact on Three parameters 

a. Execution Time (𝑇𝑒𝑥𝑒𝑐) b. Resource Utilisation (𝑅𝑢𝑡𝑖𝑙) c. Energy 

Consumption 

(𝐸𝑐𝑜𝑚𝑝) 

Scale Forecasting 

Time (ms) 

Optimising 

Time (ms) 

Total Time 

(ms) 

CPU Usage (%) Memory 

Usage (GB) 

Energy Consumption 

(J) 

Small 120 80 200 45 1.2 13.0 

Medium 450 380 830 65 4.5 53.95 

Large 1800 1500 3300 85 10.8 214.5 

4. CONCLUSION AND LIMITATION  

Integrating real-time energy demand forecasting and adaptive demand response (DR) optimization is 

crucial to enhance the efficiency, reliability, and sustainability of IoT-enabled smart grids. This research 

presented an advanced machine learning technique using Long Short-Term Memory (LSTM) networks. The 

network enables accurate demand forecast of capturing temporal dependencies and non-linear patterns. Our 

DR model successfully reduced peak demand, optimized energy costs, and maintained user friendliness using 
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dynamic and data-driven control models. Simulation results present how effective real-time operation, high 

forecasting accuracy can be achieved, in this case, MAPE with 5.6% and DR effectiveness of 20% peak load 

reduction. We validated computational efficiency with execution times that are suitable for real-time 

applications. Our scalability to larger grids is presented with minimal resource overhead and excesses. These 

results present potential of our proposed model to facilitate a smarter, more resilient energy grid that is capable 

of accommodating increasing renewable energy penetration and dynamic user behavior. 
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