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1. INTRODUCTION

In the global energy sector, there is a significant transition towards sustainability, efficiency, and
resilience. The rising adoption of renewable energy sources, the expansion of distributed energy resources
(DERs), and increasing electrification have rendered power system management increasingly complex [1].
Smart grids, which combine conventional electrical grids with sophisticated communication and computer
technologies, have become the foundation of this transition [2][3]. These grids facilitate dynamic energy
management, improve dependability, and promote cleaner energy alternatives. Forecasting energy demand in
real-time and optimizing adaptive demand response (ADR) are essential for the effective functioning of smart
grids [4][5]. Forecasting enables grid operators to anticipate energy demand precisely, ensuring optimal
resource allocation, whereas ADR systems dynamically modify energy usage to uphold grid stability [6].
Incorporating Internet of Things (IoT) technologies enhance these capabilities by delivering continuous, real-
time data from smart meters, sensors, and interconnected devices. This data-centric methodology underpins
accurate energy forecasts and dynamic demand management, empowering utilities and consumers to make
informed energy choices [7]. This research uses IoT technologies for real-time energy demand prediction and
adaptive demand response optimization in smart grids. It tackles essential issues, including integrating
intermittent renewable energy sources, enhancing grid flexibility, and promoting energy efficiency without
sacrificing consumer convenience.
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1.1. Research Issues

This paper examines related studies to determine how to fully integrate real-time IoT data into
decentralized energy forecasting models, which is a significant research gap. Also, there is an issue of
Scalability and Latency. Existing forecasting and DR optimization methods face challenges in large-scale loT-
enabled systems, particularly in managing data latency and processing demands. Similarly, a Consumer-
Centric Approaches analysis is required. The Current DR framework prioritizes grid benefits over consumer
convenience by underscoring the need for user-friendly and incentivized solutions. Finally, a significant
challenge of renewable energy integration is the need for more robust methods to incorporate the variability of
renewable energy into real-time forecasting and DR systems. By addressing these open issues, further research
can advance the efficiency and sustainability of smart grids.

1.2. Smart Grids and IoT Integration

Smart grids signify the integration of conventional power systems with contemporary information and
communication technology [8][9]. These technologies seek to improve grid efficiency, integrate renewable
energy, and enable distributed energy management. Research in [7] provides extensive analyses of innovative
grid systems and their transformational capabilities. The Internet of Things (IoT) has enhanced smart grid
functionalities by facilitating real-time data collection and communication. [10] underscore the significance of
IoT in monitoring, control, and automation, accentuating its capacity to enhance grid intelligence.
Notwithstanding these gains, considerable problems remain. Challenges include interoperability, data security,
and scalability, which impede extensive use. [11] indicates possible alternatives such as edge computing and
blockchain technology to mitigate the problems. These methodologies [12][13] augment the scalability and
security of loT-enabled smart grids, facilitating more resilient deployments.

1.3. Real-Time Energy Demand Forecasting

Accurate energy demand forecasting ensures grid resilience and optimizes resource distribution.
Conventional techniques, including statistical models like ARIMA and exponential smoothing, have been
extensively utilized but frequently fail to accurately represent non-linear and dynamic energy consumption
trends [14][15]. Machine learning (ML) and deep learning (DL) methodologies, including artificial neural
networks (ANNs) and long short-term memory (LSTM) networks, have exhibited exceptional efficacy in this
field. [16] Created an LSTM-based model for short-term load forecasting, resulting in significant enhancements
in accuracy. Hybrid models integrating statistical and machine learning techniques have gained prominence
due to their robustness.

1.4. Demand Response and Optimization Techniques

Demand response (DR) mechanisms modify energy use to correspond with grid circumstances,
facilitating peak load reduction and improved stability. [17][ 18] emphasizes the economic and environmental
advantages of demand response (DR), encompassing enhanced grid efficiency and diminished operational
expenses. Optimization methods are fundamental to adaptive demand response. Techniques including linear
programming, game theory, and heuristic algorithms such as genetic algorithms (GA) and particle swarm
optimization (PSO) have been utilized in diverse demand response (DR) scenarios [19]. Recently,
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reinforcement learning (RL) has surfaced as an effective instrument for real-time demand response (DR)
optimization, providing dynamic adjustment to grid variations [20]. Notwithstanding these developments, most
studies concentrate on centralized demand response systems. Decentralized methodologies, facilitated by IoT
and edge computing, remain little investigated. These frameworks could enhance scalability and
responsiveness, particularly in systems with substantial integration of distributed energy resources.

1.5. Integration of Renewable Energy

The variability and irregularity of renewable energy sources present considerable issues for system
reliability. Efficient energy management necessitates forecasting and demand response optimization
methodologies considering these uncertainties. loT-enabled systems provide real-time data on renewable
generation, enhancing the responsiveness and efficacy of demand response tactics [21]-[23].

2. METHOD

This research uses Real-time data generated through IoT-enabled devices, such as smart meters and
sensors. Essential parameters encompass energy consumption trends, device conditions, environmental factors
including temperature and humidity, and outputs from renewable energy sources. We adopt the Dataset [24]
from reliable research consolidated from a central repository mainly for processing. We also conducted
Preprocessing procedures to address absent values, remove outliers, and diminish noise. The data is organized
into time-series formats appropriate for model training and evaluation. In terms of simulation, we simulated a
smart grid scenario to validate the models. In the scenario created, we incorporate renewable energy generation

profiles and dynamic grid conditions to emulate real-world conditions effectively.
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Figure 2. Smart Grid Component

The model used in this research is Forecasting Energy Demand in Real Time. This concept uses Machine
learning (ML) and deep learning (DL) algorithms. The algorithms are designed to anticipate energy demand
with high precision. Also, we use Long Short-Term Memory (LSTM) networks to identify their capacity to
capture temporal dependencies in time-series data. The ML and DL models incorporate external variables,
which include meteorological conditions, appliance consumption, and electricity tariffs, to improve prediction
accuracy [25][26]. The process of training and validation adopts historical and real-time data streams.

2.1. Optimization of Adaptive Demand Response

To optimize demand responses, reinforcement learning (RL) is employed. This is to develop an adaptive
demand response system. Also, a famous approach to assist dynamic acquisition of energy is the deep Q-
learning approach [27]. However, loT devices can facilitate the implementation of demand response controls.
This process deals with load shifting and to reduce peak load. Therefore, optimization is required to ensure
energy efficiency, cost reduction, and user ease. The entire process led to this study's Development of a Hybrid
Framework. Therefore, an establishment is required for a cohesive framework that adds forecasting and
demand response of the systems.
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2.2. Forecast Accuracy

A critical attribute of real-time energy demand prediction is the forecasting accuracy. It ensures effective
energy management and stability in IoT-enabled smart grids. It gives us the ability to evaluate forecasting
performance using mathematical error metrics [28]. For practical analysis on the accuracy of energy demand
prediction, we depend on Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE). MAE analyses average magnitude for absolute errors between actual and predicted
values [29]-[31]. The low MAE value, the accurate forecasting [32][33]. There is a straightforward measure of
error in the same unit as energy demanded. It also provides prediction accuracy. We use MAPE to represent
forecast accuracy as a percentage to normalize the mistakes generated from actual values. It is also used to
compare models based on our datasets with varying scales. Coefficient of Determinant R? is used to evaluate
how to forecast model variance in actual energy demand. The value realized in R? near 1 presents high forecast
accuracy and can be modeled using naive model. Analytically, we can express the three components by the
formular below.

1 “
MAE = ;thv=1|Yt = Vel (1)

yi: Actual energy demand at time t
$: Predicted energy demand at time t
N: Total number of time intervals

MAPE = ~¥¥,

Ye— 9t
¢

x 100 )

N (= 902
RZ =1- t=1
I - ¥)? A

y: Mean of the actual values

For the Practical application of Forecasting Accuracy, We Consider a test case in a situation where
the actual energy demand (y:) and the predicted demand are being measured using 10-time intervals as
presented in the table below.

Table 1. Output DC motor with PID

t Actual Demand (y;) Predicted Demand (¥;) Error (y; — 9¢) Absolute Error Percentage
Error

1 120 115 5 5 4.17%

2 150 140 10 10 6.67%

10 200 195 5 5 2.5%

2.3. Demand Response Effectiveness

This strategy is implemented in smart grids to adjust energy consumption patterns in response to grid
signals. This includes pricing or supply-demand issues. The strategy is mathematically computed using metrics,
models, and optimization techniques [34]. We consider Peak Load Reduction (PLR) to examine the percentage
decrease for ink demand when there is a demand response situation. therefore, higher values of PLR present
effective demand response when reducing grid peak load. Energy Cost Savings (ECS)quantifies monetary
savings for power consumers or grid operators due to demand response actions. High value of ECS present
significant financial benefits from demand response participation. Load Shifting Ratio (LSR) measures energy
proportion for consumption from peak to off-peak hours [35][36]. When LSR nears 1 presents effective load
shift with no significant energy reduction.

PLR = Ppaseline— PDR x 100 (4)

Ppaseline

Pyaseline : Peak demand without demand response intervention
Ppr: Peak demand during response events
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Also,
ECS = th\lzlctbaseline _ CtDR (5)

CPaseline; Energy cost at time t without demand response
CPR: Energy cost at time t during demand response event
N: Total number of time intervals

_ AEoff—peak
LSR = T (6)

AE ¢t peak: Energy added to off — peak hours due to load shifting
AEcax: Energy reduced during peak hours

The Practical application includes optimizing demand response required to balance cost savings, user
comfort, and grid stability. It provides Scalability because there are Advanced optimization algorithms, such
as reinforcement learning, to manage complex, large-scale smart grid environments. Finally, it involves
Customization, where weighting factors with the objective function enables operators to prioritize specific
goals. These include satisfaction or peak load reduction.

2.4. Computational Efficiency

We evaluate real-time applicability of energy demand forecasting and adaptive demand response
optimization in IoT-enabled smart grids using computational efficiency. This is because of its ability to process
large datasets on a system, execute optimization models, and deliver actionable policy that is within stringent
time constraints [37][38]. We consider processing time (Latency) to determine time needed to execute
forecasting or optimization the system can maintain performance for scalability e as the number of [oT devices
increase. similarly, the algorithm complexity provides the computational ability of the algorithm that is used
to forecast and optimize using Big-O notation. energy consumption present energy efficiency of computation
as it is crucial for [oT-based systems.

Ttotar = Taata + Tmodet + Taecision (7
Tgata: Data acquisition and preprocessing time

Timodel: Model computation time (forecast/optimisation)
T4ecision: decisions time for grid

Trotat(Nior) = To + k. Nyor (8)

Ty: processing time for single device
k: Time increment per additional device

Forecast (LSTM):0(n - h? - t) 9)
n: Number of neurons

h: Number of hidden layers
t: Time steps

Optimisation (Reinforcement learning):0(s - a - i) (10)
s: State space size

a: Action space size
i: iterations to converge

Ecompute = Pepy - Tcompute (11)

Pcpy: Average power consumption of the processing unit
Tcompute: Total consumption time
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3. RESULTS AND DISCUSSION

We consider three parameters to analyze the result using Python. The model frameworks were simulated
using TensorFlow and NumPy to train and conduct evaluation. These includes Forecasting Accuracy, Demand
Response Effectiveness, and Computational Efficiency.

3.1. Forecasting Accuracy

For forecast accuracy, the effectiveness of energy demand prediction models in IoT-enabled smart grids
is evaluated. Simulation results examined the accuracy of forecasting methods like Long Short-Term Memory
(LSTM) networks under varying conditions. We use Real-world energy consumption as our dataset from a
smart grid which span over 12-month period. However, dataset contains hourly energy demand readings with
other external considerations like temperature, weather conditions, and pricing signals. For the forecasting
model, the LSTM-based time series prediction model was tronned at 80% of the dataset and tested on the
remaining 20%. Simulation results are summarized in table 2 below for performance metrics under different
conditions.

Table 2. Performance Analysis

Condition MAE (kW) RMSE (kW) MAPE (%)
Normal Demand Pattern 1.15 1.47 3.2%
Sudden Demand Spikes 3.25 4.18 9.5%
Seasonal Variations 1.85 2.21 4.8%
Combined Factors (Overall) 2.08 2.62 5.6%

Based on table above, forecasting model performs efficiently under normal demand patterns. Therefore,
it has low error rates and high accuracy. In other words, Accuracy decreases slightly in situations of sudden
demand spikes. This presents the need for enhanced responsiveness to anomalies. However, Seasonal
variations present moderate errors. This can be mitigated by integrating external predictors, such as temperature
and time-of-year effects.

To compare using Benchmark research, our proposed LSTM model is compared with selected standard
forecasting techniques, which include Linear Regression (LR) and Autoregressive Integrated Moving Average
(ARIMA), as presented in the table below.

Table 3. Comparison Table with Related Methodology

Model MAE (kW) RMSE (kW) MAPE (%)
LTSM (Proposed) 2.08 2.62 5.6%
LR 3.75 4.29 9.2%
ARIMA 2.95 3.52 7.5%

Based on the output of the table above, LSTM outperforms the traditional techniques in terms of MAE,
RMSE, and MAPE. This is especially true in complex demand patterns. For the ARIMA model, it performs
relatively better but is challenged with sudden spikes in energy demand. Finally, Linear Regression carries the
lowest accuracy, reflecting its inability to capture nonlinear dependencies.

3.2. Demand Response Effectiveness

We evaluate performance for real-time energy demand forecasting and adaptive optimization using
simulation for IoT-enabled smart grids. The impact of demand response policies on grid performance, user
satisfaction, and cost optimization is measured. In the scenario, we consider a smart grid that serves over a
thousand IoT homes. We then used time-based pricing to implement the demand response policy by adjusting
energy prices at peak hours. We then shift the load to encourage users when using energy-intensive processes.
Based on the results, the impact of demand response on determining grid performance is conducted for a 24-
hour simulation as presented in the table below using mathematical computation.

Pbaseline - PDR

PLR = x 100
Pbaseline

prr = 300640 100 = 20%

~ 7800 T an

ECS = Cpasetine — Cpr
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Substituting:

ECS = 4500 — 3400 = 1100 (24.4% savings)

AEoff—peak

LSR =
AEpeak

LSR = 78—078
T

Table 4. Impact of DR on Metrics

Metric Baseline (No DR) With DR Strategies Improvement (%)
Peak Load (kW) 800 640 20%
Total Energy Cost ($) 4500 3400 24.4%
Load Shifting Ratio (LSR) 0.15 0.78 420%
User Discomfort Index - 2.8 -

Table above is derived by substituting PLR (to alleviate grid stress at high-demand period), ECS
(achieving low energy cost led to load shifting to lessen consumption at peak-periods), and LSR (massive
energy shift from off-peak solely to enhance stability of grid) from the earlier formular stated in the previous
section.

3.3. Computational Efficiency

This simulation evaluates Computational efficiency because of its feasibility of real-time energy demand
forecasting and adaptive demand response optimization in IoT-enabled smart grids. For the hardware device,
we consider a multi-core processor (8 cores, 2.8 GHz), 16 GB RAM for efficiency in computing. for the
software, we use Python with TensorFlow for forecasting and PyTorch for optimization. the dataset used was
one-year old data for energy consumption and carrying resolution of 1 minutes. in the scenarios, we consider
small scale (consisting of 100 IoT devices) and medium scale (consisting 1000 IoT devices and a large scale
(consisting of 10000 IoT devices. To determine the mathematical results, we categorize metrics into execution
time, resource utilization, scalability and energy consumption. This is presented mathematically as follows.

Tsmall
Tlarge

Ndevices,large

200
=~ 73300.
({0000’

S 6.06

Ecomp = Pcpy " Texec

where Pqpy = 65W

Table 5. Computation Impact on Three parameters

a.  Execution Time (Tyyec) b.  Resource Utilisation (Ry;;) |c.  Energy
Consumption
(E, cnmp)
Scale Forecasting Optimising Total Time CPU Usage (%) Memory Energy Consumption
Time (ms) Time (ms) (ms) Usage (GB) ()
Small 120 80 200 45 1.2 13.0
Medium 450 380 830 65 4.5 53.95
Large 1800 1500 3300 85 10.8 214.5

4. CONCLUSION AND LIMITATION

Integrating real-time energy demand forecasting and adaptive demand response (DR) optimization is
crucial to enhance the efficiency, reliability, and sustainability of loT-enabled smart grids. This research
presented an advanced machine learning technique using Long Short-Term Memory (LSTM) networks. The
network enables accurate demand forecast of capturing temporal dependencies and non-linear patterns. Our
DR model successfully reduced peak demand, optimized energy costs, and maintained user friendliness using
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dynamic and data-driven control models. Simulation results present how effective real-time operation, high
forecasting accuracy can be achieved, in this case, MAPE with 5.6% and DR effectiveness of 20% peak load
reduction. We validated computational efficiency with execution times that are suitable for real-time
applications. Our scalability to larger grids is presented with minimal resource overhead and excesses. These
results present potential of our proposed model to facilitate a smarter, more resilient energy grid that is capable

of accommodating increasing renewable energy penetration and dynamic user behavior.
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