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 This study explores the use of multi-class classification to predict cuisines 

based on ingredient list using a Kaggle dataset derived from the Yummly 

recipe database. The goal was to identify the most effective machine-learning 

techniques for classifying recipes into different cuisine regions based on their 

ingredients. Six supervised learning methods were examined: 

Backpropagation Neural Network, Support Vector Machine (SVM), Naive 

Bayes, Decision Tree, Random Forest, and AdaBoost. The preprocessing 

pipeline involved tokenizing ingredients into numerical features, ensuring 

compatibility with machine-learning algorithms, and facilitating model 

training and evaluation. Among the models tested, the SVM and Random 

Forest algorithms performed the best, achieving accuracies of 76.7% and 

73.2%, respectively. These results were relatively close to the top competition 

leaderboard accuracy of 83%. Our custom implementations of the 

Backpropagation Neural Network and Decision Tree demonstrated 

competitive performance, though hardware limitations during 

experimentation prevented the full optimization of these models. The findings 

emphasize the critical role of factors such as parameter tuning, dataset size, 

and feature preprocessing in determining classification accuracy. 

Additionally, the study highlights how a combining of well-selected 

algorithms and data preprocessing can yield meaningful improvements in 

prediction quality. All codes and materials used in this research are publicly 

available, enabling further exploration by other researchers and practitioners. 

 

This is an open access article under the CC BY-SA license. 
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1. INTRODUCTION 

AI-assisted cooking is a modern way to enhance your cooking experience. With AI, you can discover 

new recipes, optimize ingredient usage, and create innovative dishes. Despite the challenges, the benefits 

offered by this technology are significant, especially for those who want to cook more efficiently and creatively 

[1]-[6].  Each region has its own unique cuisines. . This is reflected in the ingredients used in cooking; for 

example, cheese is common in Italian cuisines, and cumin is common in Indian cuisines. Kaggle created a 

competition regarding this condition [7]-[12]. Its main objective is to build machine learning methods to solve 

the multi-class classification problem and predict cuisines based on the ingredients.  Many solutions have been 

submitted, and the highest accuracy score from the Kaggle leaderboard website is 0.83216. 

In our research project in this paper, we acquired the competition dataset from the Kaggle website. The 

dataset itself comes from the Yummly website, which provides recipe recommendations. The data uses JSON 

format with a total size of 2.2 MB. The training data consists of a unique recipe id, type of cuisine, and the list 

of ingredients that belong to the cuisine. The test data for the type of cuisine field were omitted. The goal is to 

predict the cuisine type, given the ingredients correctly.  

For this research, we explored six supervised learning methods: Backpropagation Neural Network 

[13][14], Support Vector Machine [15][16], Naive Bayes [17][18], Decision Tree [19][20], Random Forest 

https://creativecommons.org/licenses/by-sa/4.0/
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[21]-[23], and AdaBoost [24]-[26]. We evaluated each method’s result by submitting it to the Kaggle 

competition website and acquired its accuracy and rank.   

RecipeDB is a food recipe database developed with the help of Artificial Intelligence (AI) and Machine 

Learning (ML) technology. This database is designed to provide structured information about various food 

recipes from around the world, including details of ingredients, cooking methods, nutritional values, and 

relationships between certain ingredients. RecipeDB aims to help users find recipes that suit their preferences, 

such as special diets, allergies, or ingredients available in the kitchen [27]-[29]. Sharma et al. built a set of 

systems to learn ingredients, instructions, and utensils and used them to predict the cuisine’s region from the 

RecipeDB dataset [19]. The methods used are Naive Bayes, Logistic Regression, Support Vector Machine, 

Random Forest, and Recurrent Neural Network.  Our research uses a similar approach where we explored 

several classification methods to solve the Kaggle’s cuisine dataset.  

Fausett gives a thorough explanation regarding of Neural Networks [30]. We used this as the primary 

reference when we built our Backpropagation implementation.  Meyer et al. conducted an SVM benchmarking 

study, comparing its performance to 16 classification and 9 regression methods [31]. Although SVM results 

were not the best among the three experiments, SVM produced a good overall result, especially for 

classification. This paper motivated us to use SVM in our research. We wanted to see whether our Neural 

Network implementation can outperform SVM or not in classifying the cuisines. Naive Bayes is a Machine 

Learning method whose underlying feature-independent assumption might not work well in many cases. 

However, Domingos and Pazzani showed that it can perform well even when strong attribute dependencies 

exist [32]. We wanted to test this on our cuisine problem, since we think the ingredients are not independent 

of each other, especially in regional cuisines.  Patel et al. describes various types of Decision Trees, their 

applications, libraries, and issues [33]. We used this paper as our entry to understand the landscape of the 

Decision Tree method. 

Breiman explains the advantages of random forests and how the noise in the model will be reduced by 

using a random set of features instead of using all the features [34]. The author also describes how using many 

trees will let the random forests converge well and reduce overfitting. This paper helped us understand the 

mathematical foundations and advantages of Random Forests and the reasons behind the generalizability of 

the models.  Hastie et al. propose a variant of the AdaBoost algorithm called SAMME (Stagewise Additive 

Modeling using a Multi-class Exponential loss function) that directly extends to multi-class classification 

without reducing it to multiple two-class problems by adjusting the weight term used for boosting the 

misclassified examples [35]. This algorithm is equivalent to a forward stagewise additive modeling algorithm 

that minimizes an exponential loss function for multi-class classification. Our AdaBoost implementation uses 

SAMME for multi-classification.  

There are three contributions to this research. The first is the comparison of six supervised learning 

methods’ accuracy in solving the cuisine prediction problem. The second is the exploration of different 

parameters’ effects on the learning methods. The last is producing and publishing relevant code and other 

materials that are openly available at https://github.com/OmkarChekuri/CuisineSL. 

In the following sections, we start by detailing the supervised learning methods explored, including 

Backpropagation Neural Network, Support Vector Machine, Naive Bayes, Decision Tree, Random Forest, and 

AdaBoost, emphasizing their implementations and the reasoning behind their selection. Following this, we 

discuss the preprocessing techniques used to transform the Kaggle dataset for model training and testing. We 

then present the experimental setup in section 3, including parameter tuning and accuracy evaluation, and a 

comparative analysis of model performance. This is followed by the discussion section that delves into insights 

gained from the results and the limitations encountered. Finally, the conclusion summarizes the research 

contributions and suggests avenues for future work, highlighting the open-source resources we have provided 

to encourage further exploration. 

  

2. METHOD 

Backpropagation is a neural network that computes the gradient of the loss function and minimizes the 

error between the input and output set. In this research, we used learning rate = 0.1, a single hidden layer with 

30 and 60 neurons in it. We recorded the impact of using a different number of neurons on the model’s 

performance.  

Support Vector Machine is a supervised learning method that classifies the data into spaces limited by 

clear gaps as wide as possible. It can perform linear and non-linear classification. In this research, we conducted 

an experiment where we varied the percentage of training data used and recorded the results. 

Naive Bayes is a method to classify data using a probabilistic model. Our experiment used three different 

types of Naive Bayes: Gaussian, Bernoulli, and Multinomial. We wanted to know which one produced the best 

result for cuisine data whose features are not independent.  We used the ID3 (Iterative Dichotomizer 3) 

algorithm to build a decision tree. The ID3 algorithm builds the decision tree using a greedy approach. It begins 
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by assigning all the labels to a root node and calculating the entropy of the root node. It then makes a split 

based on the attribute that produces the highest information gain by looping through all the attributes. The tree 

gets built recursively at each node until the leaf nodes are pure.   

Random Forest is a type of ensemble machine learning algorithm. Random forests build several decision 

trees by taking a random sample of the training data with replacement and using a constant number of variables 

or attributes which are selected at random and building three to the most significant extent possible. For 

classification, the algorithm takes the majority vote of the decision trees and makes the prediction.   

 AdaBoost classifier builds a classifier and then adjusts the weights of the examples by increasing the 

weights of the samples that were classified incorrectly and reducing the weights of the samples sampled 

incorrectly such that the weak learners focus more on improving the predictions. The word boosting essentially 

refers to boosting the weights of misclassified training data. We trained different models with various numbers 

of estimators: [10, 20, 40, 80, 100, 200].  

Each model is developed using the sci-kit-learn library so that we can conduct experiments. We also chose 

to build Backpropagation and Decision Tree from scratch since we had some experience regarding those two 

methods and wanted to build them personally. Both are library-based, and our implementation is available on 

the GitHub repository. 

 

3. RESULTS AND DISCUSSION 

The data acquired from the Kaggle website went through three significant steps. The first is Preprocessing, 

in which the data is loaded, cleaned, and formatted for the next step. The second is Learning in which the 

training data was used to train the models. The last step is to use the model to classify the test data and produce 

the CSV file for accuracy submission on the Kaggle website. 

  

Preprocessing:  

The data is in JSON format with many overlapping ingredient values. We created codes to read the data 

file and split the cuisine and ingredients pairs into separate arrays. Next, the ingredients must be grouped 

together to make an array in which each element is unique. Using this array, we convert each ingredient in 

training data to a numerical value based on its index. For this step, we used the count vectorizer function 

available in the Sci-kit Learn library to convert the ingredient array into an array of token counts. This array is 

the one we used to train the models. We used the same vocabulary obtained from the previous tokenization 

process to make the testing data from the test.json file.   

 

3.1. Results 

 After preprocessing, the dataset was split into 39,774 training examples with 6,867 features (ingredients) 

and 9,944 test examples for predictions. Various machine learning models were evaluated with specific 

configurations, recording both accuracy and runtime for a comprehensive comparison. Below are the results 

and observations for each model. 

 

 Table 1. The hidden layer neuron number and number of iteration experiment result 

Hidden Layer 

Neurons 
Iteration Accuracy 

Time 

(seconds) 

30 

10 0.61886 413.99 

50 0.71671 1949.11 

100 0.72365 4133.63 

200 0.72718 7937.19 

300 0.72878 12116.08 

400 0.72898 15771.77 

60 

10 0.62500 709.08 

50 0.71530 3835.36 

100 0.72214 7196.27 

200 0.74004 14512.08 

300 0.74255 20995.17 

400 0.74155 26979.08 

 

3.1.1. Back Propagation 

We experimented with varying the number of hidden layer neurons and training iterations, as shown in 

Table 1. The results indicate that increasing the number of iterations generally improves accuracy, but only up 
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to a point, after which overfitting occurs. Training with 60 neurons and 300 iterations achieved the highest 

accuracy of 74.26%, though it required a significant runtime of approximately 5.8 hours. Table 1 summarizes 

the training time for different configurations and the corresponding accuracy obtained from submissions to the 

Kaggle website. 

From the experiment result, we get that the higher the iteration, the scores generally, the higher, except 

for 400 iterations with 60 neurons. We suspect that this condition is caused by overfitting our model. We 

stopped our experiment at 400 iterations because of the overfitting suggestion and the long duration of running 

time. It took 7.5 hours to complete the last experiment on our system. 

  

3.1.2. Support Vector Machine 

Next, we build a Support Vector Machine model. The result is shown in Table 2. We varied the percentage 

of the training data used. This is because we used 100% of the training data in our first attempt and did not 

receive any results after several hours. We thought that we made some mistakes in the program. So, we decided 

to stop the running process and redid the training with much less data: 2.5%. Our code was OK, and the SVM 

model just needed some time to finish. Then, we tried to increase the training data percentage to 25%. After 

gaining familiarity with the running time, we rerun it for all training data. It took 4.5 hours for the program to 

give the result. The result shows that the higher the percentage of training data used, the higher the accuracy.   

 

Table 2. The Support Vector Machine experiment result 

 

% of Training data used Accuracy (%) 

2.5 0.47747 

25 0.69489 

100 0.76769 

 

3.1.3. Naïve Bayes 

For the Naïve Bayes experiment, we built Gaussian, Bernoulli [36], and Multinomial models [37] for the 

Sci-kit Bayes experiment. The result is shown in Table 3. The Multinomial model achieves the best result. The 

good part of Naïve Bayes is that it can reach comparable accuracy in a much shorter running time compared to 

the previous experiments. 

 

Table 3. The Naïve Bayes three types experiment result 

Type Accuracy Time(seconds) 

Gaussian 0.34332 13.05 

Bernoulli 0.70917 118.45 

Multinomial 0.73722 118.45 

 

3.1.4. Decision Tree Algorithm 

In our initial experiments using the Scikit library for decision trees on the current cuisine prediction 

dataset, we achieved better accuracy with the Gini index for calculating information gain and a max depth of 

500 for the tree. We used the same parameters to build our implementation of the Decision tree. We achieved 

the results shown in Table 4 for the Decision Tree without using the Maximum Depth parameter and Table 5 

for the Decision Tree with a Maximum Depth of 500. Due to the large number of features and examples, the 

Decision tree algorithm took a very long time to train. 

 

Table 4. Decision Tree experiment results without max depth parameter 

% of 

Training data used Accuracy Max Depth 
Time 

(seconds) 

2.5 0.4243 None 99.2 

25 0.5496 None 2820.0 

50 0.5896 None 8487.7 

100 0.61745 None 21972.8 
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Table 5. Decision Tree Experiment results with max depth 500 

% of 

Training data used Accuracy Max Depth 
Time 

(seconds) 

2.5 0.43714 500 243.0 

25 0.58055 500 9472.5 

50 0.60488 500 27356.3 

100 0.62745 500 126458.5 

 

We also implemented a Decision tree algorithm in the Scikit learn library using full data Gini index 

criteria and a maximum depth of 500 to understand how it performs compared to the algorithm we developed. 

We used different built-in hyperparameters, such as minimum samples in the leaf node to split the tree and 

minimum samples in the leaf node to improve the model. We found that the performance of the decision tree 

remained mostly unchanged, producing an accuracy of 60% to 61%, which is very close to our model. Table 6 

shows the results of our experiments. 

 

Table 6. Scikit learn Decision tree Experiment results  

Min samples at 

leaf Node 

Min samples required 

to split Accuracy 

3 2 0.60985 

5 2 0.61559 

10 2 0.61126 

2 5 0.60382 

5 10 0.61518 

 

3.1.5. Random Forests 

We experimented with maximum features for the Random Forests, which equals the square root of the 

total number of features. This reduced the features used by the model from 6867 to 83 and improved the running 

time from hours to minutes and seconds in some cases. The performance of Random forests improved by 

increasing the number of Decision trees called estimators. The result is shown in Table 7. Due to hardware 

limitations, we could not run models with 200 trees and beyond, which resulted in system failure. 

 

Table 7. Random Forests Experiment results with increasing estimators and constant features 

Estimators Accuracy 
Max 

Features 

Time 

(seconds) 

20 0.7026 83 41 

50 0.72294 83 101 

100 0.72727 83 201 

150 0.73189 83 302 

 

We also ran experiments by varying the Max Features while keeping the Estimator number constant and 

achieved the results in Table 8. The best results are achieved by using a smaller number of Max Features. The 

time required in Table 8 is higher than that in Table 7 since the number of Max Features is significantly higher. 
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Table 8. Random Forests Experiment results with increasing features and constant estimators 

Estimators Accuracy 
Max 

Features 

Time 

(seconds) 

50 0.69398 1000 357.0 

50 0.68694 2000 625.7 

50 0.68302 3000 1101.5 

 

3.1.6 Ada Boosting:  

For the Ada Boosting experiment, we used the algorithm called AdaBoost-SAMME (Stagewise Additive 

Modeling using a Multi-class Exponential loss function developed by Hastie et al. [35]. We experimented with 

varying decision stumps and found that the accuracy improved slowly over time at a much slower rate. The 

result is shown in Table 9.  

 

Table 9. Ada Boosting Experiment results 

Number of Estimators Accuracy 

10 0.3265 

20 0.4183 

40 0.4183 

80 0.5370 

100 0.5548 

200 0.5545 

 

3.2 Discussion 

The performance of our built Neural Network is just a little under 75%. We deemed this result good 

enough, considering that the highest accuracy obtained on the website leaderboard was 83%. The increase of 

hidden layer neuron number raised the accuracy a little bit. It needs to be noted that our Neural Network 

implementation uses only one hidden layer. LeCun et al.[38] and Krizhevsky et al.[39]  have shown that adding 

more hidden layers will significantly improve the performance of classification tasks for deep learning 

methods. We left adding more hidden layers to the future work. We also suspect that the training data size 

influenced the accuracy, as neural networks tend to perform poorly with small datasets, as shown by Nguyen 

et al. [40]. 

The SVM model outperformed the Backpropagation results in our experiments. This result is similar to 

Chen and Wu’s [41]. Nguyen et al.[40], Vapnik [42], and Caruana et al.[43]  also, SVM might outperform the 

neural networks for smaller datasets as they can generalize well with small datasets. Neural networks may 

struggle with overfitting unless specific techniques like regularization are applied. Furthermore, deep learning 

methods require large datasets to avoid overfitting, as observed by Chollet [44] , Tang and Russ [45].  

Our Naïve Bayes can reach more than 70% accuracy. This result shows that Naïve Bayes can perform 

well in cuisine data that we suspect to have dependency features. Since Gaussian Naïve Bayes is geared toward 

continuous values, it did not perform well in our experiment. Also, Gaussian Naïve Bayes assumes that the 

continuous features follow a normal (Gaussian) distribution. If the data does not meet this assumption, the 

model's performance can degrade significantly [46]. Applying transformations to make the data more 

Gaussian-like, such as log transformation or Box-Cox transformation, can sometimes improve GNB 

performance [47]. Multinomial and Bernoulli performed better since they are discrete data classifiers, fitting 

for our discrete cuisine ingredient data. The integer features of the dataset are more suitable for Multinomial 

performance since it uses integer counts than Bernoulli, which is designed for binary features. The fast running 

of the Naïve Bayes suggests that the algorithm is computationally efficient and it requires less training data. 

Our results showed that Bernoulli and Multinomial have the same running time, suggesting they have similar 

time complexity. We believe the difference will become prominent for larger datasets.  Manning et al.[37] also 

suggests the same. Further, Naïve Bayes have shown to work well for high dimensional data such as the text 

data by Rennie et al. [48] and McCallum et al. [49]. 
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Our results show that the Decision Trees’s accuracies have more than 10% difference compared to the 

Neural Network’s. We suspect this is because decision trees perform better for lower dimensional data; and 

with high dimensional data, they tend to overfit. Decision trees are based on the statistical measure of entropy, 

and thus they do not account for correlation in high dimensional data. Raileanu et al.[50] have argued that this 

might be due to the fact that decision trees partition the data space using axis aligned splits, which can be 

insufficient for capturing intricate relationships. A single incorrect node can drastically reduce the performance 

of the tree. We ran the same set of experiments with limiting the maximum depth of the tree to 500 and without 

limiting the maximum depth of the tree to see if we can achieve better performance. We achieved slightly better 

performance with limiting the Maximum depth of decision tree to 500. It is also not surprising that a neural 

network model works well for natural language processing tasks such as text classification, as argued by 

Goldberg [51]. 

For the Random Forests experiment, we achieved an accuracy of 73.1% with just 150 trees with only 83 

features, which is better than neural networks in some experiments. Its high accuracy can be attributed to how 

the decision tree handles noise and overfitting [34]. Random forests are less noise-sensitive by incorporating 

randomness in features and selecting examples. Random forests achieve higher convergence by increasing the 

number of decision stumps used in training the data due to the law of large numbers, and they are stable. This 

method is very fast because it uses only a subset of data and features. Ho [52] and Liaw [53] demonstrated 

through experiments that random forests handle high dimensional data well compared to single decision trees. 

However, random forests have low interpretability due to their ensemble nature compared to a single decision 

tree. Our results also suggest that a neural network with a single layer has outperformed the random forest with 

150 trees, suggesting that neural networks have very high expressive power [39]. Random forests are 

computationally much more efficient compared to neural networks. 

We used AdaBoost as our boosting algorithm and Random forests as our Bagging algorithm. . Boosting 

involves training a classifier with the whole dataset, adjusting the weak classifier's weights to improve the 

performance, and then retraining the model iteratively. Unlike in a random forest, training can only occur 

sequentially, where training can be performed parallelly with only a subset of data. Our results showed that the 

convergence of random forests is very fast compared to that of AdaBoost. Our AdaBoost results also indicate 

that it could not handle noise and overfitting efficiently with fewer trees. We believe this is due to the highly 

correlated nature of data and the high dimensionality. Experimental studies by Dietterich [54], Meir and Rätsch 

[55] have shown that AdaBoost can sometimes overfit, especially if the weak learners are too complex or the 

data is too noisy. In comparison, random Forest is generally robust[53] and better at avoiding overfitting due 

to the averaging of multiple trees. 

 

4. CONCLUSION AND LIMITATION 

This study investigates the use of machine learning models to predict cuisines based on ingredient lists, 

evaluating six popular supervised learning methods: Backpropagation Neural Network (BPNN), Support 

Vector Machine (SVM), Naive Bayes, Decision Tree, Random Forest, and AdaBoost, using a Kaggle dataset. 

The findings show that SVM and Random Forest performed the best, with accuracies of 76.7% and 73.2%, 

respectively, suggesting that these models are well-suited for cuisine classification tasks. The research builds 

upon previous studies by offering a comparative analysis of multiple algorithms and introducing insights into 

the importance of data preprocessing, parameter tuning, and feature transformation in improving model 

performance. While BPNN and Decision Trees showed competitive results, hardware constraints limited their 

optimization. The study’s limitations include model generalization and data preprocessing challenges, which 

may affect performance with larger and more diverse datasets. Future research could focus on improving 

feature engineering, experimenting with deep learning models, and optimizing hyperparameters for better 

performance. Further exploration with larger, more varied datasets and real-time prediction systems could 

provide valuable contributions to the field. 
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