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 This research presents a technique for optimizing photovoltaic (PV) 
characteristics using a modified version of the Mountain Gazelle Optimizer 
(MGO). The method under consideration is referred to as CEMGO. The 
Mountain Gazelle Optimizer (MGO) is a meta-heuristic algorithm that draws 
inspiration from the social structure and hierarchy observed in wild mountain 
deer. This paper utilizes CEMGO to ascertain the parameters of photovoltaic 
solar panels using a single diode model, relying on experimental datasets. To 
verify the effectiveness of the CEMGO approach. This article employs the 
original MGO algorithm for the sake of comparison. The comparison function 
utilized is the root mean square error. Based on the simulation findings, the 
CEMGO value outperforms the MGO approach, with a superiority of 23.07%. 
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1. INTRODUCTION 

Solar power is a plentiful form of renewable energy that can be easily transformed into electricity[1]–
[6]. The conversion of solar energy into electricity necessitates a systematic procedure facilitated by specialized 
equipment[7]–[11]. Outdoor sites are where solar-based photovoltaic (PV) generators are deployed[12]–[14]. 
A photovoltaic (PV) device is utilized as a mechanism for converting solar energy into electrical energy[15]–
[17]. The utilization of outdoor photovoltaic (PV) systems is contingent upon effective maintenance 
management[18]–[20]. The performance of photovoltaic (PV) systems is frequently constrained by the 
limitations of the device itself, as well as by weather conditions and the geographical area where it is 
installed[21]–[25]. This leads to a restricted capacity to carry out alterations. Research that aims to enhance the 
precision of photovoltaic (PV) system characteristics is gaining popularity and generating attention. The 
challenge of determining the fundamental parameters is frequently attributed to the process of aging and the 
imperfect nature of the instrument. 

Multiple endeavors have been undertaken to enhance the efficacy of power conversion from solar cells, 
one of which involves the utilization of novel materials. Furthermore, it is crucial to simulate and optimize the 
exact configuration of the photovoltaic (PV) cell model. The purpose of this is to enhance the efficiency and 
durability of the generation system, ensuring its resilience in various weather and temperature situations. The 
single diode model (SDM) is a frequently utilized and widely accepted model[26]–[30]. The precision of the 
PV cell model is crucial in achieving the characteristic analysis (I-V curve). The primary concern is the 
determination of the PV parameter. Obtaining the value of model parameters that closely match the 
experimental data has proven to be challenging. This aspect hampers the optimization of the PV model's 
performance. PV parameters serve as a benchmark for constructing solar cells, enhancing PV conversion 
efficiency, and optimizing the tracking of maximum power spots. Conventional approaches for identifying PV 
parameters involve analyzing many curve spots, specifically the I-V (current-voltage) and P-V (power-voltage) 
curves. This approach offers the benefits of being computationally inexpensive and straightforward to 
implement. However, the primary disadvantage of this strategy is the utilization of certain assumptions that are 
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made in order to decrease the quantity of unknown factors[31]–[33]. The Newton-Raphson and Gauss-Seidel 
methods are employed to overcome the constraints of the analytical technique. The outcome derived from this 
method is greatly influenced by the starting conditions of the unknown variables and effectively captures the 
best answer within a specific region.  

The method is unsuitable for extracting PV model parameters in any environmental circumstances. 
Computational methodologies were employed to enhance the precision and dependability of optimization. 
Several academics have proposed several strategies, including the utilization of Particle Swarm Optimization 
(PSO) as a strategy[34]–[37]. 

Nevertheless, efforts to improve PV characteristics through optimization remain an interesting and widely 
explored field of study. This paper introduces a method to optimize PV parameters using a modified Mountain 
Gazelle Optimizer (MGO). Mountain Gazelle Optimizer (MGO), a meta-heuristic algorithm inspired by the 
social life and hierarchy of wild mountain gazelles[38]. The contributions of this paper include: 

- This study proposes a way to optimize PV parameters using the modified MGO method using elite[39] 
and chaotic equations[40]. The proposed method is named Chaotic Elite Mountain Gazelle Optimizer 
(CEMGO) 

- CEMGO is evaluated against whale optimization algorithm, Aquilla Optimizer, and hunger games 
search in terms of performance. 

The structure of this paper consists of two parts, with the second part focusing on the MGO approach and the 
PV model. The third part of this document deals with the presentation and analysis of the findings. The final 
step entails drawing conclusions. 
 
2. METHOD 
2.1. Mountain Gazelle Optimizer (MGO) 
 MGO is a nature-inspired algorithm that draws inspiration from the behavior of mountain gazelles.These 
animals, native to the Arabian peninsula, possess characteristics that closely resemble those of the robinia tree. 
This species possesses a distinct territorial nature, resulting in significant distances between individuals. This 
species exhibits a social structure that consists of three distinct groups: parent-child territory, young male 
territory, and lone male zone. The MGO algorithm optimization incorporates four crucial components: non-
grouping, Stag Male groups, maternity groups, male zones, and the migration process for food exploration. 
 
a. Male Zones 
This lesson explores the competition for resources and mates among mountain gazelles. Every person possesses 
an individual and distant territory. The nature of the young male is to assert dominance over either the territory 
or the female. Simultaneously, the additional responsibility is to maintain and attend to the specific location. 
This session can be mathematically derived as follows: 
𝑀௭ = 𝑚௚ − |(𝑟𝑖ଵ × 𝑌𝑀 − 𝑟𝑖ଶ × 𝑋(𝑡)) × 𝐹| × 𝑐𝑣 (1) 

𝑌𝑀 = 𝑋௥௔ × ⌊𝑟ଵ⌋ + 𝑀௣௥ × ⌈𝑟ଶ⌉, 𝑟𝑎 = ቄቚ
ே

ଷ
ቚ … 𝑁ቅ (2) 

𝐹 = 𝑁ଵ(𝐷) × 𝑒𝑥𝑝 ൬2 − 𝑖𝑡 × ቀ
ଶ

௠௔௫௜௧
ቁ൰ (3) 

𝑐𝑣 =

⎩
⎨

⎧
(𝛼 + 1) + 𝑟ଷ

𝛼 × 𝑁ଶ(𝐷)

𝑟ସ(𝐷)

𝑁ଷ(𝐷) × 𝑁ସ(𝐷)ଶ × cos( (𝑟ଶ × 2) × 𝑁ଷ(𝐷))

 (4) 

𝛼 = −1 + 𝑖𝑡 × ቀ
ିଵ

௠௔௫௜௧
ቁ (5) 

 
Where the position of the optimum global breaking is 𝑚௚. The 𝑟𝑖ଵAnd 𝑟𝑖ଶ are the random value. 𝑐𝑣 is a 
coefficient vector which is random and updated in each iteration. 𝑋௥௔ is illustrated as a random value with a 
range 𝑟𝑎. 𝑀௣௥ is illustrated as the average value of the search agent. The total of search agents is 𝑁. A random 
value from the basic distribution is 𝑁ଵ(𝐷). 𝑖𝑡 and 𝑚𝑎𝑥𝑖𝑡 are the current interation and maximum iteration. 𝑟ଷ, 
and 𝑟ସ are random numbers [0,1]. 𝑁ଶ, 𝑁ଷ and 𝑁ସ are random numbers in the natural space and the sizes of the 
issue. 
 
b. Maternity Groups 
In this section, the maternity group holds the key to the life cycle of the mountain gazelles. This session will 
get a tough stag. This session can be modeled mathematically as follows 
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𝑀𝐺 = (𝑌𝑀 + 𝑐𝑣) + (𝑟𝑖ଷ × 𝑚௚ − 𝑟𝑖ସ × 𝑥௥௔௡ௗ) × 𝑐𝑣 (6) 

Where 𝑥௥௔௡ௗ  is the vector position of a agent that is randomly chosen from the all population. The 𝑟𝑖ଷAnd 
𝑟𝑖ସ are the integer and the random value 
 
c. Stag Male Groups 
In this session, adult males are encouraged to dominate the territory and females. This power struggle occurs 
between young males and adult males. behavior in this session can be formulated as follows: 
𝑆𝑇𝐺 = (𝑋(𝑡) − 𝐷) + (𝑟𝑖ହ × 𝑚௚ − 𝑟𝑖଺ × 𝑀𝐺) × 𝑐𝑣 (7) 

𝐷 = ൫|𝑋(𝑡)| + ห𝑚௚ห൯ + (2 × 𝑟଺ − 1) (8) 

Where The 𝑟𝑖ହAnd 𝑟𝑖଺ are integers 1 or 2 that are selected randomly. 𝑋(𝑡) and 𝑟଺ are the positions of the agent 
vectors in the current iteration and random value. 
 
d. Migration Process 
In this session it is described that this animal has a good running and jumping character. They always move 
long distances in search of food. This session can be formulated as follows: 
𝑀 = (𝑈𝐵 − 𝐿𝐵) × 𝑟଻ + 𝐿𝐵 (9) 
2.2.   Solar PV modelling 

When analyzing, it is important to numerically simulate the photovoltaic cells. This study employs a 
photovoltaic modeling methodology utilizing a solar photovoltaic system with a single diode model. This 
device possesses the benefit of exhibiting high precision while maintaining a straightforward design. The 
source is supposed to be solar photovoltaic (PV). Figure 1 displays an illustration of an equivalency circuit 
diagram. This architecture is ideal for photovoltaic systems that necessitate cost-effectiveness and rapid 
responsiveness. The mathematical equation for the SDM system is as follows:  

 
 

Figure. 1. Single diode circuit of PV  
𝐼௅ = 𝐼௣௛ − 𝐼ௗ − 𝐼௦௛ (10) 

𝐼ௗ = 𝐼௦ௗ ቂexp ቀ
(௏ಽାோೞ಺ಽ

)

௏೟
ቁ − 1ቃ (11) 

𝐼௦௛ =
௏ಽାோೞ಺ಽ

ோೞ೓
 (12) 

𝑉௧ =
ఈ௄்

௤
 (13) 

Where 𝛼 represents the ideality factor of the diode, 𝑞 = 1.60217646 ×  10ିଵ C represents the electron 
charge, 𝑞 = 1.3806503 ×  10ିଶ J/K. From Eq. (15), it is seen that the parameters (𝐼௣௛, 𝐼௦ௗ , 𝑅௦, 𝑅௦௛, and 𝛼) 
need to be estimated correctly in SDM. 

2.3. Newton–Raphson Technique 
To obtain the roots of nonlinear equations, a popular technique is Newton-Raphson (NR). The NR 

technique is stated as follows: 

𝐼௅(೘శభ)
= 𝐼௅(೘)

−
௙(ூಽ(೘)

௙ᇱ(ூಽ(೘)

 , 𝑚 ≥ 0 (14) 

𝑓(𝐼௅(೘)
= 𝐼௅(೘)

− 𝐼௣௛ + 𝐼௦ௗ ቈexp ቆ
ቀ௏ಽାோೞ಺ಽ

ቁ

௏೟
ቇ − 1቉ +

௏ಽାோೞ಺ಽ

ோೞ೓
= 0 (15) 
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𝑓′(𝐼௅(೘)
= 1 +

ூೞ೏∙ோೞ

௏೟
ቈexp ቆ

ቀ௏ಽାோೞ಺ಽ
ቁ

௏೟
ቇ − 1቉ +

ோೞ

ோೞ೓
= 0 (16) 

The NR approach offers the benefit of rapid and uncomplicated convergence. Nevertheless, the NR approach 
has limitations. The NR approach proved unsuitable for estimating a significant number of unknown variables. 
Obtaining an accurate initial value for commencing this procedure with a significant number of unknown 
variables is a considerable challenge. Inaccurate beginning values can result in inaccurate estimations. 
 
2.3. The Proposed Of Chaotic Elite Mountain Gazelle Optimizer (CEMGO) 
 This article presents a modification of MGO by using the parameters elite individual and chaotic. 
Individual elites are individuals with minimum fitness. 
𝑋௘௟௜௧௘ = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑋௜)) (17) 
Eq.17 is integrated into equation 2 and equation 5. So that equation 2 becomes Eq.18 and Eq.19 becomes 
equation 12. 

𝑌𝑀 = 𝑋௥௔ × ⌊𝑟ଵ⌋ + 𝑀௣௥ × ⌈𝑟ଶ⌉ × 𝑋𝑒𝑙𝑖𝑡𝑒 , 𝑟𝑎 = ቄቚ
ே

ଷ
ቚ … 𝑁ቅ (18) 

𝛼 = −1 + 𝑖𝑡 × ቀ
ିଵ

௠௔௫௜௧
ቁ × 𝑋𝑒𝑙𝑖𝑡𝑒 (19) 

 
Apart from that, the random values are 𝑁ଷ and 𝑁ସ multiplied by the choatic parameters in Eq.20 
𝑦𝑙𝑜𝑔(௜ାଵ) = 𝑎 × 𝑦𝑙𝑜𝑔(௜)൫1 − 𝑦𝑙𝑜𝑔(௜)൯ (20) 

 
 
3. RESULTS AND DISCUSSION  

The efficacy of MMGO is assessed and verified using the global optima function and utilized to acquire 
solar PV parameters using the SDM model. The findings are compared with the RTH, AO, and MPA 
techniques. The simulation was conducted utilizing Matlab/Simulink on a laptop equipped with an AMD A9-
9425 processor (3.1Ghz) and 4 GB of RAM. By considering and comparing optimal functions, Figure 2 is 
convergence curve of CEMGO. 

 

Figure 2. Comparison convergence curve between CEMGO and MGO 

The current experimental parameter values consist of solar cells manufactured by R.T.C France. The 
diameter of this solar cell is 57 mm, and the data was simulated at a temperature of 33 C. Table 1 provides a 
comprehensive breakdown of the specific measurements for SDM. Figure 3 displays the characteristic curves 
of solar photovoltaic (PV) systems, specifically the power-voltage (P-V) and current-voltage (I-V) curves. 
Figure 3(a) displays the empirical current data alongside the current estimation based on voltage measurement. 
Figure 3(b) displays the relationship between experimental power and power estimation as voltage increases. 
Figure 3 displays the characteristic curves of solar PV, specifically the P-V and I-V curves. 
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Table 1. Parameter Range For SDM 
Parameter LB UB 

𝐼௣௛ 0 1 
𝐼௦ௗ 0 1 
𝛼 1 2 

𝑅௦௛ 0 100 
𝑅௦ 0 0.5 

 
Table 2 presents a juxtaposition of the corresponding parameters calculated by multiple algorithms. In 

order to acquire precise estimates of the PV model parameters, the initial step is to identify the error function 
that can effectively capture the disparity between the measured current data and the experimental data. The 
objective of this essay is to get a collection of PV parameters with minimal inaccuracy. The root mean square 
error (RMSE) is utilized to quantify the overall error. The mathematical formulation is as follows: 

𝑅𝑀𝑆𝐸 = ට
ଵ

ே
∑ 𝑓(𝑉௅, 𝐼௅ , 𝑋)ே

௜ୀଵ  (20) 

Where N is the number of experimental data.  
 

Table 2. Performance comparison between CEMGO and its competitors with SDM. 

Algorithm 𝐼௣௛ 𝐼௦ௗ 𝛼 𝑅௦௛ 𝑅௦ RMSE 

CEMGO 0.7508 0.216 1.4417 47.303 0.0381 0.0013 

MGO 0.7581 0.7433 1.5708 100 0.0278 0.0010 

Table 3. Individual absolute error (IAE) from CEMGO with SDM 
Simulation Current (A)  Simulation Power (W) 

Iୱ୧୫(A) IAE − I P(W) Pୱ୧୫(W) IAE − P 

0.7630 -0.0010 -0.1570 -0.1572 -0.0002 

0.7620 0.0000 -0.0984 -0.0984 0.0000 

0.7611 0.0006 -0.0447 -0.0447 0.0000 

0.7602 -0.0003 0.0043 0.0043 0.0000 

0.7594 -0.0006 0.0491 0.0491 0.0000 

0.7586 -0.0004 0.0899 0.0899 0.0000 

0.7579 0.0009 0.1272 0.1270 -0.0002 

0.7571 0.0001 0.1614 0.1614 0.0000 

0.7562 0.0007 0.1925 0.1923 -0.0002 

0.7548 0.0008 0.2207 0.2205 -0.0002 

0.7524 0.0019 0.2460 0.2453 -0.0006 

0.7481 0.0016 0.2682 0.2676 -0.0006 

0.7403 0.0018 0.2867 0.2860 -0.0007 

0.7269 -0.0011 0.3007 0.3012 0.0004 

0.7058 -0.0007 0.3086 0.3090 0.0003 

0.6736 -0.0019 0.3092 0.3101 0.0009 

0.6291 -0.0029 0.3009 0.3023 0.0014 

0.5706 -0.0024 0.2830 0.2842 0.0012 

0.4987 -0.0003 0.2553 0.2554 0.0001 

0.4137 0.0007 0.2178 0.2174 -0.0003 

0.3182 0.0017 0.1718 0.1708 -0.0009 

0.2136 0.0016 0.1179 0.1170 -0.0009 

0.1041 0.0006 0.0587 0.0583 -0.0004 

-0.0084 0.0016 -0.0048 -0.0057 -0.0009 

-0.1247 -0.0017 -0.0728 -0.0717 0.0010 

-0.2108 -0.0008 -0.1243 -0.1239 0.0004 
Sum IAE 0.006 Sum IAE -0.0002 
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(a) (b) 

Figure 3. (a) Simulation current curve of GJO, (b) Simulation power graph of CEMGO. 

 
 

4. CONCLUSION  
This paper introduces a method to optimize PV parameters using a modified Mountain Gazelle Optimizer 

(MGO). The proposed method is named CEMGO. Mountain Gazelle Optimizer (MGO) is a meta-heuristic 
algorithm inspired by the social life and hierarchy of wild mountain deer. In this article, CEMGO is applied to 
determine the parameters of photovoltaic solar panels with a single diode model based on experimental 
datasets. to validate the performance of the CEMGO method. This article uses the original MGO algorithm as 
a comparison. The function used as a comparison is the root mean square error. From the simulation results, 
the CEMGO value is better than the MGO method, which is 23.07%. 

This research is a development of the Mountain Gazelle Optimizer (MGO) method and applied to solar 
PV. The proposed method can be tested on complex controls or systems. 

 
REFERENCES 
[1] E. A. Etukudoh, Z. Q. S. Nwokediegwu, A. A. Umoh, K. I. Ibekwe, V. I. Ilojianya, and A. Adefemi, “Solar power 

integration in Urban areas: A review of design innovations and efficiency enhancements,” World J. Adv. Res. Rev., 
vol. 21, no. 1, pp. 1383–1394, 2024. 

[2] F. M. Abir, Q. Altwarah, M. T. Rana, and D. Shin, “Recent advances in molten salt-based nanofluids as thermal 
energy storage in concentrated solar power: A comprehensive review,” Materials (Basel)., vol. 17, no. 4, p. 955, 
2024. 

[3] N. Durga et al., “Barriers to the uptake of solar-powered irrigation by smallholder farmers in sub-saharan Africa: A 
review,” Energy Strateg. Rev., vol. 51, p. 101294, 2024. 

[4] M. B. Bouraima, E. Ayyıldız, I. Badi, G. Özçelik, F. B. Yeni, and D. Pamucar, “An integrated intelligent decision 
support framework for the development of photovoltaic solar power,” Eng. Appl. Artif. Intell., vol. 127, p. 107253, 
2024. 

[5] J. Park, S. Kang, S. Kim, H.-S. Cho, S. Heo, and J. H. Lee, “Techno-economic analysis of solar powered green 
hydrogen system based on multi-objective optimization of economics and productivity,” Energy Convers. Manag., 
vol. 299, p. 117823, 2024. 

[6] M. U. Nawaz, S. Umar, and M. S. Qureshi, “Life Cycle Analysis of Solar-Powered Electric Vehicles: Environmental 
and Economic Perspectives,” Int. J. Adv. Eng. Technol. Innov., vol. 1, no. 3, pp. 96–115, 2024. 

[7] B. Zhang, B. Sun, F. Liu, T. Gao, and G. Zhou, “TiO2-based S-scheme photocatalysts for solar energy conversion 
and environmental remediation,” Sci. China Mater., vol. 67, no. 2, pp. 424–443, 2024. 

[8] F. Zhao et al., “Continuous Solar Energy Conversion Windows Integrating Zinc Anode‐Based Electrochromic Device 
and IoT System,” Adv. Mater., p. 2405035, 2024. 

[9] Y. Cao, P. Lian, Y. Chen, L. Zhang, and X. Sheng, “Novel organically modified disodium hydrogen phosphate 
dodecahydrate-based phase change composite for efficient solar energy storage and conversion,” Sol. Energy Mater. 
Sol. Cells, vol. 268, p. 112747, 2024. 

[10] Y. Qin et al., “Near-zero-emission multifunctional system for combined electricity and methanol with synergistic 
conversion of solar energy and natural gas,” Energy Convers. Manag., vol. 305, p. 118246, 2024. 

[11] J. Feng et al., “Structural modification strategies, interfacial charge‐carrier dynamics, and solar energy conversion 
applications of organic–inorganic halide perovskite photocatalysts,” Small Methods, vol. 8, no. 2, p. 2300429, 2024. 

[12] K. Tifidat, N. Maouhoub, F. E. A. Salah, S. S. Askar, and M. Abouhawwash, “An adaptable method for efficient 
modeling of photovoltaic generators’ performance based on the double-diode model,” Heliyon, 2024. 

[13] S. M. A. L. Shurafa, F. B. Ismail, H. A. Kazem, T. E. Sann, and T. A. H. Almajali, “Enhancing Photovoltaic-
Thermoelectric Generator (PV-TEG) system performance via mathematical modeling and advanced thermal interface 
material: An emphasis on Pyrolytic graphite Sheet (PGS),” Sol. Energy, vol. 273, p. 112514, 2024. 



36  Koko Joni. / VUBETA Vol 1 (2024) pp. 30~37 
 

  

[14] J. A. Guzmán-Henao, B. Cortés-Caicedo, B. J. Restrepo-Cuestas, R. I. Bolaños, and L. F. Grisales-Noreña, “Optimal 
integration of photovoltaic generators into urban and rural power distribution systems,” Sol. Energy, vol. 270, p. 
112400, 2024. 

[15] S. Praveenkumar, E. B. Agyekum, A. Kumar, and V. I. Velkin, “Thermo-enviro-economic analysis of solar 
photovoltaic/thermal system incorporated with u-shaped grid copper pipe, thermal electric generators and nanofluids: 
An experimental investigation,” J. Energy Storage, vol. 60, p. 106611, 2023. 

[16] M. J. Khoshnazm, A. Marzban, and N. Azimi, “Performance enhancement of photovoltaic panels integrated with 
thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement,” 
Energy, vol. 267, p. 126556, 2023. 

[17] A. A. Kandil, M. M. Awad, G. I. Sultan, and M. S. Salem, “Performance of a photovoltaic/thermoelectric generator 
hybrid system with a beam splitter under maximum permissible operating conditions,” Energy Convers. Manag., vol. 
280, p. 116795, 2023. 

[18] F. Li et al., “Effect of outdoor ageing on pyrolytic characteristics and kinetics of different organic components in 
waste photovoltaic panels,” J. Anal. Appl. Pyrolysis, p. 106565, 2024. 

[19] A. K. Yadav, R. Khargotra, D. Lee, R. Kumar, and T. Singh, “Novel applications of various neural network models 
for prediction of photovoltaic system power under outdoor condition of mountainous region,” Sustain. Energy, Grids 
Networks, vol. 38, p. 101318, 2024. 

[20] W. Luo, A. M. Khaing, C. D. Rodriguez‐Gallegos, S. W. Leow, T. Reindl, and M. Pravettoni, “Long‐term outdoor 
study of an organic photovoltaic module for building integration,” Prog. Photovoltaics Res. Appl., 2024. 

[21] F. Li, S. Shaw, C. Libby, N. Preciado, B. Bicer, and G. Tamizhmani, “A review of toxicity assessment procedures of 
solar photovoltaic modules,” Waste Manag., vol. 174, pp. 646–665, 2024. 

[22] R. K. Gupta, P. Buason, and D. K. Molzahn, “Fairness-aware photovoltaic generation limits for voltage regulation in 
power distribution networks using conservative linear approximations,” in 2024 IEEE Texas Power and Energy 
Conference (TPEC), 2024, pp. 1–6. 

[23] K. W. Kim et al., “Overcoming stability limitations of efficient, flexible perovskite solar modules,” Joule, vol. 8, no. 
5, pp. 1380–1393, 2024. 

[24] I. Ali et al., “Advances in smart photovoltaic textiles,” ACS Nano, vol. 18, no. 5, pp. 3871–3915, 2024. 
[25] H. H. Jo, J. Kim, and S. Kim, “Enhancing the power generation performance of photovoltaic system: Impact of 

environmental and system factors,” Appl. Therm. Eng., vol. 240, p. 122221, 2024. 
[26] H. A. Ismail and A. A. Z. Diab, “An efficient, fast, and robust algorithm for single diode model parameters estimation 

of photovoltaic solar cells,” IET Renew. Power Gener., vol. 18, no. 5, pp. 863–874, 2024. 
[27] L. M. P. Deotti and I. C. da Silva Junior, “A self-started predictor–corrector method for calculating the Lambert W 

function within the scope of the photovoltaic single diode model,” Sol. Energy, vol. 276, p. 112681, 2024. 
[28] C. Cárdenas-Bravo, D. Dutykh, and S. Lespinats, “On the parameters domain of the single-diode model,” Sol. Energy, 

vol. 277, p. 112718, 2024. 
[29] Ó. Dávalos-Orozco, P. M. Rodrigo, F. Brambila-Paz, and J. C. Rosas-Caro, “An accurate explicit six-parameter solar 

cell model based on single-diode and its parameter extraction for seven photovoltaic technologies,” J. Sol. Energy 
Eng., vol. 146, no. 2, 2024. 

[30] R. Kumar and A. Kumar, “Effective-diode-based analysis of industrial solar photovoltaic panel by utilizing novel 
three-diode solar cell model against conventional single and double solar cell,” Environ. Sci. Pollut. Res., vol. 31, no. 
17, pp. 25356–25372, 2024. 

[31] M. Saeedinia, B. Hashemi, A.-M. Cretu, and S. Taheri, “A Novel Computational Intelligence-based Parameter 
Extraction of UAV-Integrated Photovoltaic System,” IEEE Access, 2024. 

[32] N. H. Alombah, A. Harrison, S. Kamel, H. B. Fotsin, and M. Aurangzeb, “Development of an efficient and rapid 
computational solar photovoltaic emulator utilizing an explicit PV model,” Sol. Energy, vol. 271, p. 112426, 2024. 

[33] O. Yüksel, B. Göksu, and M. Bayraktar, “Propulsion and photovoltaic charging system parameter computation for 
an all-electric boat,” Ships Offshore Struct., vol. 19, no. 5, pp. 580–593, 2024. 

[34] W.-L. Lo, H. S.-H. Chung, R. T.-C. Hsung, H. Fu, and T.-W. Shen, “PV Panel Model Parameter Estimation by Using 
Particle Swarm Optimization and Artificial Neural Network,” Sensors, vol. 24, no. 10, p. 3006, 2024. 

[35] M. Qaraad, S. Amjad, N. K. Hussein, M. A. Farag, S. Mirjalili, and M. A. Elhosseini, “Quadratic interpolation and a 
new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation,” Expert 
Syst. Appl., vol. 236, p. 121417, 2024. 

[36] A. Wadood, E. Ahmed, S. Khan, and H. Ali, “Fraction order particle swarm optimization for parameter extraction of 
triple-diode photovoltaic models,” Eng. Res. Express, vol. 6, no. 2, p. 25316, 2024. 

[37] K. V Shihabudheen, G. Dileep, and S. M. Sulthan, “Adaptive Particle Swarm Optimization Based Improved 
Modeling of Solar Photovoltaic Module for Parameter Determination,” e-Prime-Advances Electr. Eng. Electron. 
Energy, p. 100621, 2024. 

[38] B. Abdollahzadeh, F. S. Gharehchopogh, N. Khodadadi, and S. Mirjalili, “Mountain Gazelle Optimizer: A new 
Nature-inspired Metaheuristic Algorithm for Global Optimization Problems,” Adv. Eng. Softw., vol. 174, p. 103282, 
2022. 

[39] W. Aribowo, L. Abualigah, D. Oliva, and A. Prapanca, “A novel modified mountain gazelle optimizer for tuning 
parameter proportional integral derivative of DC motor,” Bull. Electr. Eng. Informatics, vol. 13, no. 2, pp. 745–752, 
2024. 

[40] W. Aribowo, B. Suprianto, and A. Prapanca, “A novel modified dandelion optimizer with application in power system 
stabilizer,” Int J Artif Intell, vol. 12, no. 4, pp. 2033–2041, 2023. 



 Koko Joni. /VUBETA Vol 1 (2024) pp. 30~37  37 
 
 
BIOGRAPHIES OF AUTHORS 
 

 

Koko Joni     is a lecturer in the Department of Electrical Engineering, Universitas 
Trunojoyo, Indonesia. He is received the BSc from the Sepuluh Nopember Institute of 
Technology (ITS) in Power Engineering, Surabaya. He is received the M.Eng from the 
Universitas Gadjah Mada (UGM). He is mainly research in the control system. He can be 
contacted at email: kokojoni@trunojoyo.ac.id 

 


