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 This paper presents a Proportional-Integral-Derivative (PID) parameter 
optimization method for direct current (dc) motors. The method utilizes a 
metaheuristic technique known as Frilled Lizard Optimization (FLO), which 
is inspired by natural processes. FLO draws inspiration from the lizard's 
hunting method of employing a sit-and-wait approach with great patience. 
The method is divided into two distinct phases: the exploration phase, which 
simulates a swift predator attack by a lizard, and the exploitation phase, which 
imitates the lizard's return to the treetop after feeding. This study confirms the 
effectiveness of FLO by conducting performance tests on the CEC2017 
benchmark function and a DC motor. Through the simulations conducted on 
the CEC2017 benchmark function, it has been determined that FLO has 
superior exploration and exploitation capabilities. When testing a DC motor, 
it was discovered that the PID-FLO approach is effective in reducing 
overshoot and achieving optimal performance. 
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1. INTRODUCTION  

Direct current (DC) motors are extensively utilized in a diverse range of industrial and home 
equipment, including servo control and other operational capacities[1]–[5]. DC motors exhibit high efficiency, 
long-lasting performance, and facilitate the implementation of suitable feedback control systems, particularly 
those based on proportional-integral (PI) and proportional integral derivative (PID) configurations. The 
controller is a component that works to reduce erroneous signals[6]–[8]. The PID controller is the most often 
used type of controller. The proportional (P), integral (I), and derivative (D) controller elements all strive to 
enhance the response time of a system, eliminate any deviations from the desired value, and generate significant 
initial adjustments[9]–[11]. The PID controller has demonstrated its ability to deliver excellent control 
performance, despite its straightforward and easily comprehensible algorithm. The key aspect in the design of 
a PID controller is the adjustment of the P, I, and D parameters in order to get the desired response of the 
system[12]–[14]. 

Optimization is a systematic approach to achieve a reduced or improved value or cost relative to 
alternative techniques. Optimization has permeated multiple disciplines, including engineering, science, 
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business, and economics. Various approaches have been proposed to address difficulties with distinct 
attributes. Alternative approaches offer an alternative approach to problem-solving compared to conventional 
methods[15], [16]. 

An essential factor in the design of the PID controller is the process of determining the parameters of 
the controller in order to ensure that the closed-loop system satisfies the specified performance criteria. This 
process is commonly referred to as controller tuning. Various traditional approaches of PID control have been 
described in multiple works, including Ziegler-Nichols[17]–[19]  and Cohen-Coon[20], [21]. The conventional 
technique is known for its time-consuming process of optimizing PID parameters and occasionally resulting in 
severe overshoot levels. Various alternative approaches have been proposed to address the limitations of PID 
tuning. The metaheuristic method is widely recognized as one of the most popular approaches. Multiple papers 
have demonstrated the utilization of various versions of metaheuristic techniques, including the JAYA 
algorithm[22], Harris Hawks optimization[23], [24], Snake Optimizer[25], Ant Colony Optimization[26]–[28], 
Particle Swarm Optimized[29]–[31], Grasshopper Optimization Algorithm[32], [33], and Firefly 
Algorithm[34]–[36]. 

This article introduces the tuning approach for power system stabilizers utilizing the modified Frilled 
Lizard Optimization (FLO) method[37]. The FLO method being offered is an algorithm that is based on the 
frilled lizard. The design of FLO is derived from two distinct behavioral patterns observed in frilled lizards. 
The initial behavior pertains to the intelligent tactic employed by frilled lizards while hunting, known as the 
sit-and-wait hunting method. The second activity pertains to the frilled lizards' approach of climbing trees after 
dining. The objective is to enhance the proficiency of RTH. The research has made the following contributions: 

1. Use the 23 CEC2017 Benchmark function, the performance of FLO in solving optimization 
problems is assessed and compared with Aquila Optimizer (AO)[38] and Marine Predator Algorithm 
(MPA)[39]. The benchmark function is designed to provide an objective evaluation standard for 
optimization algorithms, such as genetic algorithms, swarm algorithms, and other evolutionary 
algorithms 

2. Apply the Frilled Lizard Optimization (FLO) approach to PID for DC Motor. 
The essay is organized as follows: Section 2 provides a description of the Frilled Lizard Optimization and DC 
Motor. Section 3 includes both discussions and simulations. The conclusion is provided in the final section.  

2. METHOD  
2.1.  DC Motor 

The DC motor possesses the attribute of a single control system that is capable of operating in two control 
modes. The initial mode is the armature control mode, in which the field current remains constant. 
Alternatively, it is referred to as a field control mode with a constant armature current. The features of a DC 
motor consist of resistance, inductance, and return electromotive-force voltage, as seen in Figure 1. 

 
Figure 1. Illustration DC motor circuit[40]  

 
𝑉௔(𝑠) = (𝑅௔ + 𝐿௔ . 𝑠). 𝐼௔(𝑠) + 𝑒௕(𝑠) (1) 
 
𝑒௕(𝑠) = 𝐾௕𝜔(𝑠) (2) 

Where Ra and La are Armature resistance and Armature inductance. 𝑒௕ is back electromotive force.  
 
2.2. Frilled Lizard Optimization 
 

During each iteration of Algorithm FLO, the position of the frilled lizard in the problem-solving space is 
updated in two independent phases. The exploration phase initially replicates the frilled lizard's motion towards 
its prey while hunting, with the goal of expanding the range of possible solutions and investigating new 
potential options. This stage enables the algorithm to explore various regions of the issue space, making it 
easier to find new locations that may hold the best possible answers. Additionally, the exploitation phase 
replicates the frilled lizard's motion when it ascends a tree following a meal. During this phase, the algorithm 
utilizes the knowledge acquired during exploration to take advantage of interesting regions that have been 
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recognized as potential optimal solutions. The exploitation phase strives to enhance the quality of solutions 
and converge towards the global optimum by focusing on improving these regions.  

Phase 1: Hunting Strategy (Exploration) 
The frilled lizard exhibits a distinctive hunting approach, which is one of its most notable natural behaviors. 
The frilled lizard is an ambush predator that pounces on its target once it has visually detected it. The frilled 
lizard's movement simulation towards the prey causes significant shifts in the positions of the population 
members in the problem-solving space, hence enhancing the algorithm's ability to explore globally in search 
of solutions. During the initial phase of FLO, the positions of the individuals in the population are updated in 
the solution space of the issue, using the hunting strategy of the frilled lizard.  In the design of FLO, the prey 
position for each frilled lizard is determined by considering the location of other population members who have 
a superior objective function value.  Based on this information, the positions of potential prey for each frilled 
lizard are determined using Equation (3). 

𝐶𝐹𝐿௜ =  {𝑋௜|𝐹௞ < 𝐹௜ 𝑎𝑛𝑑 𝑘 ≠ 𝑖 }𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … . 𝑁 𝑎𝑛𝑑 𝑘 ∈ {1,2, … , 𝑁}  (3) 

𝑋௜,௝
௉ூ =  𝑥௜,௝ + 𝑟௜,௝ ∙ ൫𝑆𝑃௜,௝ −  𝐼௜,௝ ∙ 𝑥௜,௝൯    (4) 

𝑋௜ = ൜
𝑋௜

௉ூ , 𝐹௜
௉ூ <  𝐹௜

𝑋௜ , 𝑒𝑙𝑠𝑒
     (5) 

Where 𝐶𝐹𝐿௜  represents the placements of prey, while X_best refers to the optimal candidate solution, which 
is the best osprey. The new position of the prey, denoted as𝑋௜,௝

௉ூ , is determined by the first phase. Here, 𝑖 th 
represents the prey's index, 𝑆𝑃௜,௝ represents its 𝑖-th dimension, 𝑟௜,௝is a randomly generated and  𝐼௜,௝ is another 
randomly generated number. 
 
Phase 2: Ascending the Hierarchy (Exploitation) 

 

Following its meal, the frilled lizard seeks refuge at the highest point of a nearby tree. By simulating the frilled 
lizard's movement to the top of the tree, slight adjustments are made to the positions of the individuals in the 
population within the problem's solution space. Consequently, this enhances the algorithm's ability to utilize 
local search. During the second phase of FLO, the individuals in the population are repositioned in the solution 
space using the technique of a frilled lizard retiring to the top of a tree after feeding. By employing a 
mathematical model to simulate the locomotion of the frilled lizard towards the uppermost part of the adjacent 
tree, a revised position is determined for each member of the population using Equation (6). Subsequently, if 
the new position enhances the value of the objective function, it will supplant the prior position of the relevant 
individual according to Equation (7): 

𝑋௜,௝
௉ଶ =  𝑥௜,௝ + (1 − 2𝑟)

∙൫௨௕ೕି ௟௕ೕ൯

௧
 ;  𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, … , 𝑚;  𝑡 = 1,2, . . 𝑇   (6) 

𝑋௜ = ൜
𝑋௜

௉ଶ, 𝐹௜
௉ଶ <  𝐹௜

𝑋௜ , 𝑒𝑙𝑠𝑒
    (7) 

Where 𝑋௜,௝
௉ଶ represents the updated position of the prey during the second phase. The symbol 𝑥௜,௝^ represents a 

variable or element in a mathematical equation or expression. 𝐹௜  represents the 𝑗 th dimension, denoted as, 𝐹௜
௉ଶ 

represents the numerical value of the goal function. 
The first iteration of the Frilled Lizard Optimization (FLO) algorithm ends after updating the positions of 

all frilled lizards in the problem-solving space, following the execution of the first and second phases. After 
obtaining the updated values, the algorithm starts the next iteration to continue updating the positions of the 
frilled lizards. This procedure continues until the algorithm reaches completion, following equations (3) to (7). 
During each iteration, the algorithm continuously updates and keeps track of the best candidate solution by 
comparing the resulting objective function values. After the algorithm has completed all of its iterations, the 
best candidate solution obtained is presented as the final FLO solution for the given problem. 
 
3. RESULTS AND DISCUSSION 
3.1. Convergence Curve 

The FLO algorithm code has been implemented and tested on a laptop equipped with an AMD A9-9425 
processor running at a clock speed of 3.1 GHz, and 4 GB of RAM. The software utilized is MATLAB/Simulink. 
Table 1 provides a comprehensive overview of the FLO parameters. Evaluation of the proposed method's 
performance PID-FLO utilizes the global optima function and employs the RTH and AO methods for 
comparison. Figure 3 displays the outcomes of this comparison. 
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TABLE 1.  Comparison of HLAO and HLO 

Function AO MPA 
FLO 

F1 

Best 7.47E-21 1.47E+01 9.52E-44 
Mean 2.55E-12 5.50E+01 1.69E-33 
Worst 1.27E-10 1.08E+02 4.32E-32 

Std 1.79E-11 19.5982 7.00E-33 
Rank 2 3 1 

F2 

Best 7.88E-12 1.49E+00 1.14E-22 
Mean 1.65E-07 2.94E+00 7.14E-18 
Worst 2.69E-06 5.48E+00 1.40E-16 

Std 5.33E-07 0.75899 2.11E-17 
Rank 2 3 1 

F3 

Best 7.84E-19 5.90E+02 7.14E-36 
Mean 4.39E-11 2.05E+03 1.67E-21 
Worst 1.39E-09 3.36E+03 8.25E-20 

Std 2.16E-10 587.9437 1.17E-20 
Rank 2 3 1 

F4 

Best 4.46E-12 2.56E+00 1.43E-22 
Mean 3.83E-08 5.65E+00 1.12E-18 
Worst 9.30E-07 9.40E+00 1.99E-17 

Std 1.44E-07 1.3201 3.44E-18 
Rank 2 3 1 

F5 

Best 0.001187 227.2413 0 
Mean 0.5736 1079.057 0 
Worst 4.3004 4015.648 0 

Std 0.812 735.8228 0 
Rank 2 3 1 

F6 

Best 1.61E-06 16.9108 9.13E-19 
Mean 0.02093 56.0154 3.71E-05 
Worst 0.42304 114.4697 0.000515 

Std 0.06143 23.4712 0.000104 
Rank 2 3 1 

F7 

Best 2.78E-05 0.007981 7.66E-05 
Mean 0.001058 0.028045 0.000872 
Worst 0.005411 0.053379 0.003383 

Std 0.001054 0.012176 0.000706 
Rank 2 3 1 

 
 
 

F8 
 

Best -4890.34 -7511.68 -12569.5 
Mean -3562.16 -6018.06 -9926.96 
Worst -2569.97 -5047.56 -8787.52 

Std 555.0943 535.2971 1568.465 
Rank 3 2 1 

 
 
 

F9 
 

Best 0 13.8898 0 
Mean 2.11E-12 77.896 0 
Worst 7.11E-11 129.1826 0 

Std 1.07E-11 28.5761 0 
Rank 2 3 1 

 
 
 

F10 
 

Best 9.99E-13 1.93E+00 8.88E-16 
Mean 9.44E-07 3.05E+00 8.88E-16 
Worst 4.38E-05 4.18E+00 8.88E-16 

Std 6.20E-06 0.47033 0 
Rank 2 3 1 

 
 

F11 
 

Best 0 1.1539 0 
Mean 1.29E-11 1.4544 0 
Worst 3.60E-10 2.0579 0 

Std 5.89E-11 0.19577 0 
Rank 2 3 1 

 
 
 

F12 
 

Best 1.06E-07 0.33299 1.11E-20 
Mean 0.00039 1.084 3.75E-07 
Worst 0.005224 2.462 9.52E-06 

Std 0.00091 0.49735 1.61E-06 
Rank 2 3 1 

 
 
 

F13 
 

Best 2.58E-06 2.0104 9.89E-20 
Mean 0.001997 5.537 2.85E-05 
Worst 0.013171 9.0103 0.001341 

Std 0.003007 1.8026 0.00019 
Rank 2 3 1 

 

TABLE 1.  Comparison of HLAO and HLO(Continued) 

Function AO MPA FLO 

F14 

Best 0.998 0.998 0.998 

Mean 4.5758 1.1966 0.998 

Worst 12.6705 2.9821 0.998 

Std 3.7922 0.53052 3.04E-12 

Rank 3 2 1 

F15 

Best 0.000341 0.00031 0.000312 

Mean 0.001048 0.00069 0.000802 

Worst 0.001885 0.001362 0.001675 

Std 0.000476 0.000223 0.000393 

Rank 3 1 2 

F16 

Best -1.0316 -1.0316 -1.0316 

Mean -1.0243 -1.0316 -1.0272 

Worst -1.001 -1.0316 -0.9969 

Std 0.00769 1.08E-10 0.008682 

Rank 3 1 2 

F17 

Best 0.39797 0.39789 0.39789 

Mean 0.40281 0.39789 0.43729 

Worst 0.43284 0.39789 0.94495 

Std 0.006949 1.56E-09 0.10434 

Rank 2 1 3 

F18 

Best 3.0063 3 3 

Mean 4.3032 3 10.9987 

Worst 30.1117 3.0005 30.8746 

Std 3.8089 7.78E-05 10.6578 

Rank 2 1 3 

F19 

Best -3.8607 -3.8628 -3.8626 

Mean -3.7662 -3.8628 -3.7504 

Worst -3.4808 -3.8624 -3.336 

Std 0.098385 6.95E-05 0.11655 

Rank 2 1 3 

F20 

Best -3.1828 -3.322 -3.1283 

Mean -2.6376 -3.2996 -2.4404 

Worst -1.6816 -3.187 -1.581 

Std 0.34201 0.042411 0.41276 

Rank 2 1 3 

F21 

Best -10.1526 -10.1532 -10.1532 

Mean -9.8613 -9.5414 -9.5187 

Worst -8.4401 -5.0551 -5.0552 

Std 0.39528 1.6735 1.5389 

Rank 3 1 2 

F22 

Best -10.4023 -10.4029 -10.4029 

Mean -10.1216 -9.2289 -10.0026 

Worst -8.9104 -5.0103 -5.0877 

Std 0.30735 2.2277 1.283 
 Rank 2 3 1 

F23 

Best -10.5361 -10.5364 -10.5364 

Mean -10.2377 -9.2307 -10.2437 

Worst -9.2924 -4.9298 -5.1285 

Std 0.33418 2.3474 1.1063 

Rank 1 3 2 

SUM Rank 50 53 35 
MEAN Rank 2.173913 2.304348 1.521739 
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TABLE 2.  Rank comparison of unimodal functions between 
algorithms (F1-F7) 

Function AO MPA FLO 

Sum Rank 12 18 6 

Mean Rank 1.71 2.57 0.86 

Total Rank 2 3 1 
 

TABLE 3.  Rank comparison of multimodal functions between 
algorithms (F8-F13) 

Function AO MPA FLO 

sum rank 13 17 6 

mean rank 2.167 2.833 1 

Total rank 2 3 1 
 

 
TABLE 4.  Rank comparison of fixed-multimodal functions between algorithms (F14-F23) 

Function AO MPA FLO 

sum rank 23 15 22 

mean rank 2.3 1.5 2.2 

Total rank 3 1 2 

 
The statistical analysis compares the performance of FLO with that of competing algorithms to determine if FLO has a statistically 
significant advantage over the other algorithms. The average rank value of any algorithm can be determined by knowing the rank of each 
function. The statistical analysis for each function is presented in Table 1. A rating is a numerical representation of the highest average 
value. The value of FLO is 1, as demonstrated by the cumulative rank value for each algorithm. The average rank value is 1.52173913. 
Table 2 displays a comparison of the rankings of unimodal algorithm functions. FLO holds the top rank in the field of multimodal. Table 
3 displays a comparative analysis of the various multimodal functions utilized, focusing on their ranks. Table 4 displays a comparison of 
fixed-multimodal ranks. 

 
3.2. Application to DC Motor 

PID-based DC motor control requires precise and accurate parameter tuning. In order to achieve the 
best PID settings, it is necessary to verify the performance of the implementation of FLO. Figure 4 displays 
the results of the Proportional-Integral-Derivative (PID) control applied to DC motors utilizing Fuzzy Logic 
Optimization (FLO). The performance of a control can be assessed using many theoretical frameworks. Two 
well-known theories in the field are the Integral of Time-weighted Absolute Error (ITAE) and the Integrated 
of Time-weighted Squared Error (ITSE). In this work, ITSE and ITAE are employed as measures to validate 
performance.  

𝐼𝑇𝑆𝐸 = ∫ 𝑡. 𝑒ଶ(𝑡). 𝑑𝑡
ஶ

଴
 (8) 

𝐼𝑇𝐴𝐸 = ∫ 𝑡. 𝑒(𝑡). 𝑑𝑡
ஶ

଴
 (9) 

By doing FLO-based PID testing on a DC motor with a reference speed of 1 per unit (pu), the ITSE value of 
PID-FLO is 0.0062 and the ITAE value of PID-FLO is 0.0813. The Overshoot value of FLO-PID is superior. 
Table 5 provides a comprehensive breakdown of the performance testing findings for each algorithm. 

 
Figure 4. The Response Of DC Motor 

 
TABLE 5.  Response DC Motor With PID 

Controller Overshoot Rise Time Settling Time ITSE ITAE 

PID 1.007 1.18 2.78 0.3069 0.7944 

PID-AO 1.0032 1.777 2.82 0.2924 0.7644 

PID-MPA 1.0027 1.784 2.854 0.2905 0.7634 

PID-FLO 1.0002 0. 573 1.462 0.0062 0.0813 



 Widi Aribow et al. /VUBETA Vol 1 (2024) pp. 15~21  19 
 
 
4. CONCLUSION AND LIMITATION  

This study introduces the optimization of Proportional-Integral-Derivative (PID) parameters for a direct 
current (dc) motor using a novel metaheuristic technique called Frilled Lizard Optimization (FLO), which is 
inspired by natural processes. FLO draws inspiration from the lizard's hunting strategy of patiently sitting and 
waiting. The algorithm's fundamental concepts are meticulously outlined and organized into two separate 
phases: (i) the exploration phase, which emulates a rapid predatory attack by a lizard, and (ii) the exploitation 
phase, which replicates a lizard's return to the treetop after feasting. This study validates the performance of 
FLO using performance tests on the CEC2017 benchmark function and DC motors. From the simulation on 
the CEC2017 benchmark function, it was found that the performance of FLO has more promising exploration 
and exploitation capabilities. Testing on a DC motor, it was found that the PID-FLO method can reduce 
overshoot. In addition, PID-FLO has the best ITSE Score. The ITSE value of FLO is 97.98% better than 
conventional PID and the ITAE value is 89.77% better than conventional PID. This research can be further 
developed using various other methods and using more complex objects. This research can be developed with 
FLO modifications such as combining it with other methods and applying it to more complex systems. 
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