Innovation in STEM-Based Learning Projects by Utilizing Ocean Wave Theory as a Source of Electrical Energy Using a Four-Pendulum Pontoon

Authors

  • Daniya Nabila Bayuputri Universitas Negeri Surabaya
  • Intan Safinah Universitas Negeri Surabaya
  • Putri Citra Ratna Gumilang Universitas Negeri Surabaya
  • Nadita Vera Valiska Universitas Negeri Surabaya
  • Rosyidatul Mufida Universitas Negeri Surabaya
  • Nurita Apridiana Lestari Universitas Negeri Surabaya
  • Muhammad Nur Hudha Universitas Sebelas Maret

Keywords:

STEM, sea waves, pontoon, pendulum, electrical energy

Abstract

This study aims to examine the potential of using ocean wave energy as a source of electrical energy through a pontoon system with four pendulums as an innovation in STEM-based learning projects. The method used is a literature review with a descriptive-analytical approach, namely examining various relevant scientific publications related to the design, working principles, and energy conversion efficiency of ocean wave power generation technology. The stages of this research consist of identifying the research topic, conducting a review of scientific sources, examining the design and operational principles of the system, analyzing the collected information, and formulating conclusions along with recommendations. The results of the study show that a pontoon with four pendulums equipped with a Double Free Wheel Rotation Transmission System and a flywheel is able to convert ocean wave motion into electrical energy through a mechanism of converting mechanical energy into electrical energy using a slow-rotating three-phase generator. This system utilizes the swing of the pendulum due to the movement of the pontoon by ocean waves, which is then converted into a rotational motion with high torque to drive the generator. Literature analysis also shows that the stability of the pontoon, the configuration of the pendulums, and the transmission design significantly affect the efficiency of electrical output. Although it has great potential for application in coastal areas and remote islands, further research is needed to optimize the design, improve energy conversion efficiency, and assess its technical and economic feasibility. The findings of this study have implications for strengthening renewable energy literacy within STEM-based learning, while also contributing to raising students' awareness of environmentally friendly energy utilization. The innovation of the four-pendulum pontoon has the potential to serve as a contextual learning medium that supports the mastery of physics concepts and the development of 21st-century skills. The recommendation of this research is the development of a laboratory- or field-scale prototype and its integration into the science curriculum, enabling students to connect theoretical knowledge with real-world applications of renewable energy.

Author Biography

Nurita Apridiana Lestari, Universitas Negeri Surabaya

SINTA ID: 6010344

Google Scholar ID: 863V-VcAAAAJ

Scopus ID: 57201959687

References

Agustinaningrum, N. A., Sabrina, N. M. N., Kuswanti, N., & Krisdiyanti, D. (2024). Inovasi pendidikan berbasis proyek: Implementasi diorama kota ramah lingkungan dalam proyek penguatan profil pelajar Pancasila (P5). Dedikasi: Journal of Community Engagement and Empowerment, 2(2), 56–63. https://doi.org/10.58706/dedikasi.v2n2.p56-63.

Alamsah, A., Wahjudi, A., Park, J. M., Hamidi, N., & Widhiyanuriyawan, D. (2025). Spatial and temporal potential of current energy and wave height in Indonesian sea. International Journal of Mechanical Engineering Technologies and Applications (MECHTA), 6(2), 249–259. https://doi.org/10.21776/MECHTA.2025.006.02.8.

Aminuddin, A., Jamrud, J., Effendi, M., Nurhayati, N., Widiyani, A., Razi, P., Wihantoro, W., Aziz, A. N., et al. (2020). Numerical analysis of energy converter for wave energy power generation–Pendulum system. International Journal of Renewable Energy Development, 9(2), 255–261. https://doi.org/10.14710/ijred.9.2.255-261.

Anggraini, T. S., & Santoso, C. (2023). Development of ocean renewable energy model in Indonesia to support eco-friendly energy. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-3-2023, 1–5. https://doi.org/10.5194/isprs-archives-XLVIII-M-3-2023-1-2023.

Arisanti, R., Pontoh, R. S., Winarni, S., Putri, S. P., Widiantoro, C. E., & Silvi. (2025). Harnessing ocean wave energy to assess oscillating water column efficiency in Indonesian waters. International Journal of Energy Production and Management, 10(1), 131–143. https://doi.org/10.18280/ijepm.100113.

Arridina, & Ibrahim. (2020). Energy textbook new and updated. Sleman: Deepublish Publisher.

Avalos, G. O. G., Shadman, M., & Estefen, S. F. (2022). Application of the latching control system on the power performance of a wave energy converter characterized by gearbox, flywheel, and electrical generator. Journal of Marine Science and Application, 20(4), 767–786. https://doi.org/10.1007/s11804-021-00238-7.

Chand, A. K., Burns, S. J., & M. C. (2025). Design and development of a wave power generation system using lever propulsion and gear mechanism. International Journal of Research Publications and Reviews, 6(6), 6841–6851. https://doi.org/10.55248/gengpi.6.0625.2241.

Glosson, G., McMorris, J., Filho, F., Abdel-Salam, T., & Duba, K. (2021). Project-based teaching: Wave to water technology. ASEE Southeastern Section Conference.

Graves, J., & Zhu, M. (2022). Design and experimental validation of a pendulum energy harvester with string-driven single clutch mechanical motion rectifier. Sensors and Actuators A: Physical, 333, 113237. https://doi.org/10.1016/j.sna.2021.113237.

Hantoro, R., Septyaningrum, E., Hudaya, Y. R., & Utama, I. K. A. P. (2022). Stability analysis for trimaran pontoon array in wave energy converter–Pendulum system (WEC-PS). Brodogradnja: An International Journal of Naval Architecture and Ocean Engineering for Research and Development, 73(3), 59–68. https://doi.org/10.21278/brod73304.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 1–11. https://doi.org/10.1186/s40594-016-0046-z.

Kurniawan, A. T., Budiman, A., Budiarto, R., & Prasetyo, R. B. (2022). Wave energy potential using OWC (oscillating water column) system at Baron Beach, Gunung Kidul, DI Yogyakarta, Indonesia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 92(2), 191–201. https://doi.org/10.37934/arfmts.92.2.191201.

Lestari, D. A., & Sucahyo, I. (2023). Pengembangan alat peraga Mini Sopetric (Solar Powered Electricity) pada materi energi alternatif di kelas X SMA. Jurnal Ilmu Pendidikan dan Pembelajaran, 1(2), 77–90. https://doi.org/10.58706/jipp.v1n2.p77-90.

Liu, T., Liu, Y., Huang, S., & Xue, G. (2022). Shape optimization of oscillating buoy wave energy converter based on the mean annual power prediction model. Energies, 15(20), 7470. https://doi.org/10.3390/en15207470.

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of the literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522.

Milansi, R. (2023). What are the differences between waves, currents, and tides in the sea. Jakarta: Elementari Media.

Nazhifah, N., Wiyono, K., & Ismet, I. (2023). Development of STEM-based e-learning on renewable energy topic to improve the students' creative thinking skills. Journal of Science Education Research, 9(11), 9575–9585. https://doi.org/10.29303/jppipa.v9i11.5206.

Nuryadi, A., Sudiar, N. Y., & Hamdi. (2023). Systematic literature review of ocean wave renewable energy. Journal of the Climate Change Society, 1(2), 88–97. https://doi.org/10.24036/jccs/Vol1-iss2/16.

Peng, W., Zhang, Y., Zou, Q., Yang, X., Liu, Y., & Zhang, J. (2021). Experimental investigation of a triple pontoon wave energy converter and breakwater hybrid system. IET Renewable Power Generation, 15(14), 3151–3164. https://doi.org/10.1049/rpg2.12214.

Prasetya, A. D., Suharto, D., Faali, M. F., Hamid, A., & Subekti, S. (2024). The effect of a 120 kg pontoon mass on the wave energy converter device due to heaving. Journal of Applied Mechanical Engineering, 5(2), 213–219. https://doi.org/10.37373/jttm.v5i2.1105.

Ribal, A., Babanin, A. V., Zieger, S., & Liu, Q. (2020). A high-resolution wave energy resource assessment of Indonesia. Renewable Energy, 160, 1349–1363. https://doi.org/10.1016/j.renene.2020.06.017.

Sasmi, R. R., Shiha, S. N., Saregar, A., & Deta, U. A. (2025). Perspektif siswa SMA terhadap kearifan lokal, literasi sains, dan motivasi belajar dalam pembelajaran fisika. Reog: Journal of Ecoethnoscience Education, 1(1), 32–39. https://doi.org/10.58706/reog.v1n1.p32-39.

Satriawan, M., & Rosmiati, R. (2022). Simple floating ocean wave energy converter: Developing teaching media to communicating alternative energy. JPPS (Journal of Science Education Research), 12(1), 1–13. https://doi.org/10.26740/jpps.v12n1.p1-13.

Syarief, I. A., Baidowi, A., & Islami, A. N. (2020). Motion response analysis of hexagonal pontoon wave energy converter. International Journal of Marine Engineering Innovation and Research, 5(2), 68–80. https://doi.org/10.12962/j25481479.v5i2.5549.

Susanti, F. M., & Lestari, N. A. (2023). Profile of student’s creative thinking ability in senior high school on climate change materials. International Journal of Research and Community Empowerment, 1(2), 46–52. https://doi.org/10.58706/ijorce.v1n2.p46-52.

Utama, I. K. A. P., Arief, I. S., Hantoro, R., Prananda, J., Safitri, Y., Rachmattra, T. A., & Rindu, F. K. (2018). Response to pontoon and pendulum motion at wave energy converter based on pendulum system. E3S Web of Conferences, 43, 01022. https://doi.org/10.1051/e3sconf/20184301022.

Wan, Z., Li, Z., Zhang, D., & Zheng, H. (2022). Design and research of slope-pendulum wave energy conversion device. Journal of Marine Science and Engineering, 10(11), 1572. https://doi.org/10.3390/jmse10111572.

Waskito, K. T., Yudho, R. H., Yanuar, Y., & Rahardjo, G. P. (2023, December 28). Evaluating wave potential and assessing the economic viability of wave energy converters in the South Java Seas. Ship: Journal of Knowledge and Technology Marine, 20(3), 391–400. https://doi.org/10.14710/kapal.v20i3.60005.

Yona, D., Sartimbul, A., Sambah, A. B., Hidayati, N., Harlyan, L. I., Sari, S. H. J., Fuad, M. A. Z., Rahman, M. A., & Iranawati, F. (2017). Fundamentals of oceanography. Malang: Brawijaya University.

Zhao, T., Li, Z., Niu, B., Xie, G., Shangguan, L., Zhang, M., Zhu, Y., Ma, Y., Chao, H., & Ying, L. (2025). A pendulum-based nanogenerator for high-entropy wave energy harvesting. Nature Communications, 16, 5480. https://doi.org/10.1038/s41467-025-63502-0.

Downloads

Additional Files

Published

2025-09-04

How to Cite

Bayuputri, D. N., Safinah, I., Gumilang, P. C. R., Valiska, N. V., Mufida, R., Lestari, N. A., & Hudha, M. N. (2025). Innovation in STEM-Based Learning Projects by Utilizing Ocean Wave Theory as a Source of Electrical Energy Using a Four-Pendulum Pontoon. Studies in Physics Teaching and Learning, 1(1), 7–15. Retrieved from https://journal.unesa.ac.id/index.php/sptl/article/view/45284
Abstract views: 102 , PDF Downloads: 45 , PDF Downloads: 0