Sains & Matematika

ISSN 2302-7290 Vol. 3 No. 1, Oktober 2014

Bentuk-bentuk Ideal pada Semiring (Z^+ , +,.) dan Semiring (Z^+ , \oplus , \odot)

Ideals in the Semiring (Z^+ , +,.) and the Semiring (Z^+ , \oplus , \odot)

Dian Winda Setyawati,* Soleha, RuzikaRimadhany Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih Sukolilo, Surabaya

ABSTRAK

Himpunan bilangan bulat taknegatif, yaitu $(Z^+,+,.)$ merupakan semiring terhadap operasi penjumlahan dan perkalian biasa, sedangkan himpunan (Z^+,\oplus,\bigcirc) juga merupakan semiring terhadap operasi penjumlahan \oplus dan perkalian \bigcirc yang didefinisikan sebagai berikut: untuk setiap $a,b\in Z^+$ berlaku $a\oplus b=FPB(a,b)$ dan $a\odot b=KPK(a,b)$. Pada semiring R, himpunan bagian R disebut ideal pada R jika R disebut ideal pada semiring R maka R R maka R R maka

Kata kunci: Q-ideal, ideal prima, ideal semiprima, ideal primary

ABSTRACT

The set of nonnegative integers $(Z^+,+,.)$ is a semiring of the usual operations of addition and multiplication otherwise set $(Z^+,+,.)$ is also a semiring of the addition operation \oplus and multiplication \bigcirc defined as follows: for each $a,b\in Z^+$ applies $a\oplus b=\gcd(a,b)$ and $a\odot b=lcm(a,b)$. At semiring R, a subset I of R is called an ideal in R if $a,b\in I$ and $r\in R$, then $a+b\in I$ and r_0 and shows the relationship of the ideal on the semiring $(Z^+,+,-)$ and forms of the ideal on the semiring $(Z^+,+,-)$ and forms of the ideal with the other ideal. Ideal form sthat will be shown is the maximal ideal, substractive ideal, Q-ideal, prime ideal, and the semiprime ideal and, primary ideal.

Key words: Q-ideal, primeideal, semiprime ideal, primary ideal

PENDAHULUAN

Saat ini banyak paper yang membahas tentang semiring serta jenis-jenis ideal pada semiring. Setyawati (2005) membahas tentang ideal-p kiri utama dalam semiring inversive regular -p; sedangkan Setyawati (2011) membahas ideal prima pada semiring $D_{nxn}(Z^+)$, $D_{nxn}(Z^+)$ merupakan himpunan semua matriks diagonal berukuran nxn atas Z^+ serta Setyawati & Soleha (2013) membahas ideal prima pada semiring $S_{nxn}(Z^+)$, $S_{nxn}(Z^+)$ merupakan

himpunan semua matriks segitiga atas berukuran nxn atas Z^+ .

Gupta & Chaudhari (2009) menunjukkan bentuk ideal prima pada (Z^+ ,+,.), sedangkan Chaudhari & Ingale (2012) menunjukkan bentuk ideal substraktif, Q-ideal, ideal maksimal, ideal prima dan *ideal primary* pada (Z^+ , \oplus , \bigcirc). Pada paper ini akan dilengkapi bentukbentuk ideal baik pada semiring (Z^+ , \oplus , \bigcirc) maupun pada semiring (Z^+ , \oplus , \bigcirc) serta menunjukkan hubungan ideal satu dengan yang lain. Sebelumnya akan diberikan beberapa definisi yang akan digunakan

^{*} Alamat Korespondensi: surel: dian_ws_math@matematika.its.ac.id

untuk membahas bentuk-bentuk ideal baik pada semiring ($Z^+,+,\cdot$) maupun pada semiring (Z^+,\oplus,\odot).

Definisi 1.1 (Khanna, 1993)

Himpunan tak kosong R terhadap operasi biner + dan . ditulis (R,+,.) disebut ring jika

- (i) (R,+) grup komutatif
- (ii) (R,.) bersifat asosiatif
- (iii) (R,+,.) bersifat distributif

Semiring merupakan bentuk generalisasi dari *Ring* dengan salah satu atau lebih syarat pada *ring* dihilangkan. Pada paper ini syarat yang dihilangkan adalah eksistensi invers pada *R* terhadap + sehingga semakin banyak himpunan yang dapat dibentuk menjadi semiring. Definisi semiring lebih jelasnya tertuang dalam definisi berikut.

Definisi 1.2 (Gupta & Chaudhari, 2009)

Himpunan tak kosong R terhadap operasi biner + dan . ditulis (R,+,.) disebut semiring jika

- (i) (*R*,+) bersifat asosiatif, komutatif dan mempunyai elemen identitas 0
- (ii) $(R_{\prime\prime})$ bersifat asosiatif
- (iii) (R,+,.) bersifat distributif.

Salah satu contoh semiring adalah Z^+ dan $D_{nxn}(Z^+)$ terhadap operasi penjumlahan dan perkalian standar Z^+ maupun $D_{nxn}(Z^+)$ bukan merupakan ring karena terhadap operasi biner +, elemen pada Z^+ maupun $D_{nxn}(Z^+)$ tidak mempunyai invers. Selanjutnya akan didefinisikan ideal pada semiring yang identik dengan definisi ideal pada ring

Definisi 1.3 (Gupta & Chaudhari, 2009; Chaudhari & Ingale, 2012)

Diberikan semiring R dan I subset dari R. I disebut ideal pada R jika untuk setiap $x,y \in I$ dan $x \in R$ berlaku $x+y \in I$ dan $rx,ry \in I$

Berikut ini akan diberikan jenis-jenis ideal pada semiring *R* yang akan digunakan pada artikel ini.

- (i) Ideal $I=\langle a\rangle=\{n\cdot a:n\in R\}$, $a\in R$ disebut ideal utama pada R, yaitu ideal utama yang dibangun oleh a.
- (ii) Ideal I disebut ideal *subtractive* jika a, $a+b \in I$, $b \in R$, maka $b \in I$.
- (iii) Ideal M disebut ideal maksimal jika terdapat ideal J dari semiring R dan M subset J maka J = M atau J = R.
- (iv) Ideal *I* disebut ideal prima jika $ab \in I$, $b \in R$ maka $a \in I$ atau $a \in R$.
- (v) Ideal I disebut ideal semiprima jika $a^2 \in I$, maka $a \in I$, untuk semua $a \in R$.
- (vi) Ideal I disebut *ideal primary* jika $ab \in I$ dan $a \notin I$ maka $b^n \in I$ untuk suatu $n \ge 1$, $n \subset Z$

(vii) Ideal I disebut Q-ideal jika ada himpunan Q subset dari R sehingga

$$R = \bigcup_{q \in Q} q + I$$

dan jik $q_1, q_2 \in Q$, maka $(q_1+I) \cap (q_2+I) \neq \emptyset \Leftrightarrow q_1=q_2$.

METODE PENELITIAN

Pada artikel ini terlebih dahulu dikaji bentuk ideal prima pada semiring $(Z^+,+,\cdot)$ pada Gupta & Chaudhari (2009) dan bentuk ideal substraktif, Qideal, ideal maksimal, ideal prima dan *ideal primary* pada semiring (Z^+,\oplus,\odot) pada Chaudhari & Ingale (2012). Selanjutnya dilengkapi bentuk-bentuk ideal baik pada semiring $(Z^+,+,\cdot)$ maupun semiring (Z^+,\oplus,\odot) dengan cara mengkonstruksi atau membentuk suatu himpunan yang memenuhi bentuk-bentuk ideal tersebut. Pada artikel ini, urutan teorema maupun cara membuktikan untuk beberapa teorema berbeda dengan Gupta & Chaudhari (2009) dan Chaudhari & Ingale (2012).

HASIL DAN PEMBAHASAN

Himpunan bilangan bulat tak negatif, yaitu $(Z^+,+,\cdot)$ membentuk semiring terhadap penjumlahan dan perkalian biasa. Berikut ini akan diberikan bentukbentuk ideal dari semiring $(Z^+,+,\cdot)$.

Teorema 3.1.1:

Setiap ideal I pada semiring $(Z^+,+,\cdot)$ berbentuk $I=<x_1,x_2,...,x_n>$ dengan $x_1,x_2,...,x_n\in Z^+$

Bukti:

(i) Akan ditunjukkan bahwa $I = \langle x_1, x_2, ..., x_n \rangle$ merupakan ideal pada semiring $(Z^+, +, \cdot)$ Ambil $x, y \in \langle x_1, x_2, ..., x_n \rangle$ dan $z \in Z^+$ maka x dan y dapat dinyatakan dalam $x = k_1 x_1 + k_2 x_2 + ... + k_n x_n$ dan $y = l_1 x_1 + l_2 x_2 + ... + l_n x_n$, $k_1, k_2, ..., k_n, l_1, l_2, ..., l_n \in Z^+$ sehingga $x + y = (k_1 + l_1) x_1 + (k_2 + l_2) x_2 + ... + (k_n + l_n) x_n \in \langle x_1, x_2, ..., x_n \rangle$

dan
$$zx = xz = (zk_1)x_1 + (zk_2)x_2 + ... + (zk_n)x_n \in \langle x_1, x_2, ..., x_n \rangle$$

Terbukti $\langle x_1, x_2, ..., x_n \rangle$ merupakan ideal pada semiring $(Z^+, +, \cdot)$

(ii) Andaikan Himpunan $I \subseteq Z^+$, $I \neq \langle x_1, x_2, ..., x_n \rangle$, maka I bukan ideal pada semiring $(Z^+, +, \cdot)$ sebab terdapat $a \in I$ tetapi $ra \notin I$ untuk $r \in Z^+$ sebab $I \neq \langle x_1, x_2, ..., x_n \rangle$

Himpunan Z⁺=<1> sehingga dari teorema di atas diperoleh akibat sebagai berikut

Akibat 3.1.2

Ideal sejati I dari semiring $(Z^+,+,\cdot)$ adalah maksimal jika dan hanya jika $I=<2,3>=Z^+-\{1\}$

Teorema 3.1.3

Ideal I pada semiring $(Z^+,+,\cdot)$ adalah substraktif jika dan hanya $I=\{x\}$ untuk suatu $x \in Z^+$

Bukti:

- (\rightarrow) Andaikan $I=<x_1,x_2,...,x_n>$ untuk n>1 dengan $x_1,x_2,...,x_n\in Z^+$ dan $x_1< x_2<...< x_n$, maka $x_1\in I$ dan $x_1+a=x_2\in I$, tetapi $a\not\in I$, maka I bukan ideal substraktive
- (←) Akan ditunjukkan ideal I=<x> adalah substraktif. Ambil a, a+b ∈ I artinya $a=k_1x$ dan $a+b=k_2x$, maka $b=(k_2-k_1)x ∈ I$

Sebagai gambaran <2> dan <3> merupakan ideal substraktif dari semiring $(Z^+,+,\cdot)$ tetapi <2,3> bukan ideal substraktif dari semiring $(Z^+,+,\cdot)$ sebab 2,3 \in <2,3> tetapi 1 \notin <2,3>

Teorema 3.1.4

Ideal I pada semiring $(Z^+,+,\cdot)$ adalah Q-ideal jika dan hanya I=< x> untuk $x\in Z^+$

Bukti:

 (\rightarrow) Andaikan $I=\langle x_1,x_2,...,x_n \rangle$ untuk n>1 maka anggota dari I dapat diurutkan dari yang terkecil dan selisih dua elemen berurutan tidak konstan sehingga jika terdapat $Q\subseteq Z^+, \cup_{q\in Q}q+1=Z^+$ maka tidak berlaku $p+I\cap q+I\neq\emptyset \Leftrightarrow p=q$ dengan $p,q\in Q$

 (\leftarrow)

- (i) I-<0>-{0} merupakan Q-ideal dengan Q= Z+
- (ii) $I=<1>=Z^+$ merupakan Q-ideal dengan $Q=\{0\}$
- (iii) I=<x> untuk $x\in Z^+-\{0,1\}$ merupakan Q-ideal pada semirin $(Z^+,+,\cdot)$ dengan Q= $\{0,1,2,...,x-1\}$ memenuhi $\cup_{q\in Q}q+1=Z^+$ dan $(q_1+I)\cap (q_2+I)\neq\emptyset\Leftrightarrow q_1=q_2$ dengan $q_1,q_2\in Q$

Pada teorema berikut akan diberikan bentuk ideal prima secara umum, tetapi sebelumnya akan diberikan beberapa lemma yang akan digunakan untuk membantu pembuktian teorema tersebut.

Lemma 3.1.5

Diberikan $x \in Z^+$. Ideal sejati taknol < x > pada semiring $(Z^+,+,\cdot)$ adalah prima jika dan hanya jika x bilangan prima.

Bukti:

(→) Andaikan x bukan bilangan prima maka x dapat dinyatakan dalam $x=p_1p_2$. Jelas bahwa $x=p_1p_2 \in$

- <*x*> tetapi $p_1 \notin <$ *x*> dan $p_2 \notin <$ *x*> sehingga <*x*> tidak prima. Terjadi kontradiksi. Terbukti jika Ideal <*x*> pada Z^+ adalah *prime*, maka *x* bilangan prima
- (←) Karena x bilangan prima maka setiap $y \in \langle x \rangle$ menyatakan bahwa y mempunyai faktor prima x. Sekarang jika $a,b \in Z^+$ dan $a,b \in \langle x \rangle$ maka ab mempunyai faktor prima x. Hal ini terjadi jika salah satu atau keduanya dari a dan b mengandung faktor prima x. Dengan kata lain $a \in \langle x \rangle$ atau $b \in \langle x \rangle$ lain Terbukti $\langle x \rangle$ prima \blacksquare

Lemma 3.1.6 (Gupta & Chaudhari, 2009)

Jika $a,b \in Z^+$, b>a>1 dan FPB (a,b)=1, maka terdapat $n \in Z^+$ sedemikian hingga $t \in \langle a,b \rangle$ untuk semua $t \geq n$

Bukti:

Karena FPB(a,b) = 1 maka ada $p,q \in Z^+$ sedemikian hingga qa=pb+1 jelas $p,q\neq 0$. Ambil n=paqa maka $t=n+r, r\geq 0$

Kasus 1: untuk r = 0, jelas t ∈ $\langle a,b \rangle$

Kasus 2: jika 0 < r < a, maka, t = n + r = paqa + r.1 = pa(pb+1) + r(qa-pb) = (pa-r)pb + rqa. Jelas bahwa $pa-r \in Z^+$ sehingga $t \in \langle a,b \rangle$

Kasus 3: jika $r \ge a$ maka r dapat dinyatakan r=ka+p, 0<p<a sehingga t=n+r=n+ka+p=n+p+ka. Dengan menggunakan kasus 2 maka n+p ∈ <a,b>. Akibatnya t ∈ <a,b> ■

Teorema 3.1.7 (Gupta & Chaudhari, 2009)

Ideal sejati tak nol I pada semiring $(Z^+,+,\cdot)$ adalah prima jika dan hanya jika I= untuk suatu bilangan prima p atau I = <2, $3>=Z^+-\{1\}$

Bukti:

(→) jelas bahwa jika I = maka p bilangan prima. Diasumsikan I bukan ideal principal (utama). Misal a elemen terkecil tak nol dari I, maka a bilangan prima dan juga terdapat bilangan terkecil b dari I sehingga FPB (a,b) = 1

Jika a > 2, maka menurut lemma 3.1.6 terdapat $n \in Z^+$ sedemikian hingga $t \in \langle a,b \rangle$, untuk semua $t \geq n$. Pilih j terkecil, $j \in Z^+$ dan $2^j \in I$. Karena I *ideal prime* dan $2^j - 2 2^{j-1} \in I$, maka $2 \in I$ atau $2^{j-1} \in I$. Terjadi kontradiksi sehingga a = 2.

Jika b > 3, maka menurut lemma 3.1.6 terdapat $m \in Z^+$ sedemikian hingga $t \in \langle a,b \rangle$ untuk semua $t \geq m$. Pilih k terkecil, $k \in Z^+$ dan $3^j \in I$. Karena I *ideal prime* dan $3^j - 3 \, 3^{j-1} \in I$ maka $3 \in I$ atau $3^{j-1} \in I$. Terjadi kontradiksi sehingga b = 3, sedangkan $\langle 2,3 \rangle = Z^+ - \{1\}$ (terbukti)

(←) Jelas dari lemma 3.1.5 dan $<2,3>=Z^+-\{1\}$ merupakan ideal prima pada $(Z^+,+,\cdot)$ ■

Teorema 3.1.8

Ideal sejati tak nol I=< x> untuk $x \in Z^+$ pada semiring $(Z^+,+,\cdot)$ adalah semiprima jika dan hanya jika $x=p_1p_2...p_n$, p_i adalah faktor prima yang berbeda dari x

Bukti:

(←) Ideal I=<x> pada Z^+ dimana $x=p_1p_2...p_n$ merupakan semiprima sebab $a^2 \in <x>$ artinya $a^2=b^2$ $p_1p_2...p_n p_1p_2...p_n$, $b \in Z^+$ sehingga $a=bp_1p_2...p_n \in <x>$

$$(\rightarrow)$$
 Andaikan $x = p_1^{r_1} p_2^{r_2} \dots p_n^{r_n}$

(1) Andaikan terdapat r_i bilangan genap, yaitu tanpa mengurangi keumuman misalkan r_1 adalah bilangan genap, maka terdapat

$$\begin{split} a^2 &= \ p_2^{\,k2} \ldots p_n^{\,k_n} p_1^{\,r_1} p_2^{\,r_2} \ldots p_n^{\,r_n} \ \in \langle x \rangle \\ , \ \frac{k_i + r_i}{2} &\in \mathbb{Z}^+ \ \text{untuk} \ i = 2, 3, \ldots, n, \ \text{maka} \\ a &= \frac{r_1}{2} \frac{k_2 + r_2}{2} \frac{k_3 + r_3}{2} \ldots p_n^{\,\frac{k_n + r_n}{2}} \not\in \langle x \rangle \, \text{sehingga} \\ I &= \langle x \rangle \, \text{bukan ideal semiprima} \end{split}$$

(2) Andaikan terdapat r_i bilangan ganjil, r_i >1, yaitu tanpa mengurangi keumuman misalkan r_1 adalah bilangan ganjil maka terdapat

$$\begin{split} &a^2 = p_1 p_2^{k2} \dots p_n^{k_n} p_1^{r_1} p_2^{r_2} \dots p_n^{r_n} \ \in \langle x \rangle \\ &\text{dengan} \ \frac{k_i + r_i}{2} \in \mathbb{Z}^+ \ \text{untuk} \ i = 2, 3, \dots, n \ \text{maka} \\ &a = p_1^{\frac{r_1 + 1}{2}} p_2^{\frac{k_2 + r_2}{2}} p_3^{\frac{k_3 + r_3}{2}} \dots p_n^{\frac{k_n + r_n}{2}} \not\in \langle x \rangle \end{split}$$

sehingga *I*=<*x*> bukan ideal semiprima

Teorema 3.1.9

Ideal sejati tak nol I=< x> untuk $x \in Z^+$ pada semiring $(Z^+,+,\cdot)$ adalah primary jika dan hanya jika x bilangan prima.

Bukti:

 $(\rightarrow) \text{ Andaikan } x \text{ bukan bilangan prima maka}$ $x = p_1^{r_1} p_2^{r_2} \dots p_n^{r_n}, p_i \text{ adalahfaktorprimayang berbeda}$ dari x, maka terdapat $ab = k \ p_1^{r_1} p_2^{r_2} \dots p_n^{r_n} \in \langle x \rangle$, $FPB(k, p_1) = 1 \ \text{dan } a = p_1^{r_1} \notin \langle x \rangle \text{ maka}$ $b^n = \left(k \ p_2^{r_2} \dots p_n^{r_n}\right)^n \notin \langle x \rangle \text{ untuk setiap n} \ge 1 \text{ dan}$

 $n \in Z$ +sehingga I=<x> bukan *ideal primary*.

(←) Karena x bilangan prima, untuk setiap $ab=kx \in \langle x \rangle$ dan $a \notin \langle x \rangle$, maka a adalah faktor dari k sehingga diperoleh $b=k_1$ $x \in \langle x \rangle$, $k_1=k/a$ faktor

dari k. Jadi terbukti bahwa *I=*<*x*> *ideal primary*.

Himpunan bilangan bulat tak negatif, yaitu (Z^+,\oplus,\bigcirc) membentuk semiring komutatif dengan elemen identitas 1 terhadap penjumlahan \oplus dan perkalian \odot yang didefinisikan sebagai berikut: Untuk setiap $a,b\in Z^+$ berlaku $a\oplus b=FPB(a,b)$ dan $a\odot b=KPK(a,b)$. Pada semiring (Z^+,\oplus,\bigcirc) ini didefinisikan $a\oplus 0=a$ dan $a\oplus 0=0$ untuk semua $a\in Z^+$. Sebelum diberikan bentuk-bentuk dari semiring (Z^+,\oplus,\bigcirc) terlebih dahulu akan didefinisikan ideal utama pada semiring (Z^+,\oplus,\bigcirc) sebagai berikut.

Definisi 3.2.1

Diberikan semiring (Z^+ , \oplus , \odot). *Untuk a* \in (Z^+ , \oplus , \odot), I=<a>={n○a:n \in Z⁺} disebut ideal utama pada semiring (Z^+ , \oplus , \odot) yang dibangun oleh a.

Lemma berikut ini menunjukkan bahwa ideal utama pada semiring (Z^+, \oplus, \circ) dapat dinyatakan dengan kelipatannya.

Lemma 3.2.2 (Chaudhari & Ingale, 2012) Jika $a \in (Z^+, \oplus, \bigcirc)$ maka $\langle a \rangle = \{na: n \in Z^+\}$.

Bukti:

Diketahui $a \in (\mathbb{Z}^+, \oplus, \odot)$.

- (i) Ambil $x \in \{na: n \in Z^+\}$, maka terdapat $n_1 \in Z_0^+$ sedemikian hingga $x = n_1 a = KPK(n_1 a, a) = n_1 a \odot a$ yang artinya $x \in \langle a \rangle$ sehingga $\{na: n \in Z^+\} \subseteq \langle a \rangle$
- (ii) Ambil $x \in \langle a \rangle$, maka ada $n \in Z^+$ sehingga $x = n \odot$ $a = KPK\{n,a\} = ka$ untuk suatu $k \in Z^+$ yang artinya $x \in \{na: n \in Z^+\}$ sehingga $\langle a \rangle \subseteq \{na: n \in Z^+\}$.

Dari lemma di atas diperoleh akibat berikut ini. **Akibat 3.2.3**

- (i) Jika $q \in \mathbb{Z}^+$ dan l adalah faktor dari q maka $\langle q \rangle \subseteq \langle l \rangle$.
- (ii) Jika $m \in \mathbb{Z}^+$ dan m bukan merupakan faktor dari q dan m < q maka $< q > \not\subset < m >$.

Selanjutnya dibahas mengenai bentuk dari ideal pada semiring (Z^+, \oplus, \bigcirc) .

Lemma 3.2.4 (Chaudhari & Ingale, 2012). Setiap ideal dari semiring (Z^+, \oplus, \circ) adalah ideal utama.

Bukti:

Jelas bahwa $I=\{0\}=<0>$. Sekarang misalkan I merupakan ideal tak nol di semiring (Z^+, \oplus, \bigcirc) , dan d merupakan elemen terkecil dari I dan tak nol, akan ditunjukkan bahwa I=<d>.

- (i) Ambil $a \in I$, maka $a \oplus d \in I$. Karena d merupakan elemen terkecil dari I diperoleh $a \oplus d$ =FPB $\{a,d\}$ =d sehingga mengakibatkan a=kd, untuk suatu $k \in Z$ + akibatnya $a \in <d>$. Oleh karena itu, $I \subseteq <d>$.
- (ii) Ambil $y \in \langle d \rangle = \{ nd : n \in Z^+ \}$, maka terdapat $n_1 \in Z^+$

sedemikian hingga, $y=n_1d=KPK(n_1d,d)=n_1d\odot d$. Karena I ideal dan $d\in I$, maka $y\in I$. Oleh karena itu, diperoleh $< d>\subseteq I$. Jadi dapat ditunjukkan bahwa I=< d>.

Dari akibat 3.2.3 dan lemma 3.2.4 diperoleh akibat berikut ini.

Akibat 3.2.5

I adalah ideal maksimal di semiring (Z^+, \oplus, \odot) jika dan hanya jika I = untuk suatu p adalah bilangan prima.

Selanjutnya akan ditunjukkan bentuk ideal subtraktif dan Q-ideal pada semiring (Z^+, \oplus, \bigcirc) .

Lemma 3.2.6 (Chaudhari & Ingale, 2012)

Setiap ideal dari semiring $(\bar{Z}^+, \oplus, \odot)$ adalah ideal subtraktif.

Bukti:

Jelas bahwa I={0}=<0> merupakan ideal substraktif pada (Z^+ ,⊕,○). Sekarang misalkan I adalah ideal tak nol dari (Z^+ ,⊕,○). Dari lemma 3.2.4, diperoleh I={d} dengan d merupakan elemen terkecil dari I dan d tak nol. Ambil a, a ⊕ b ∈ I = <d> dan b ∈ Z^+ , berarti a=kd dan a ⊕ b=Id, untuk suatu k,I∈ Z^+ Karena a ⊕ b=ID{a,b}, maka Id=ID{a0} ID{a1} ID{a2} ID{a3} ID{a4} ID{a4} ID{a5} ID{a6} ID{a6} ID{a6} ID{a7} ID{a8} ID{a8} ID{a8} ID{a8} ID{a8} ID{a8} ID{a9} ID{a9</sub> ID{a9} ID{a9</sub> ID{a9} ID{a9</sub> ID{a9} ID{a9</sub> ID{

Lemma 3.2.7 (Chaudhari & Ingale, 2012)

Jika I adalah ideal sejati tak nol dari semiring (Z^+, \oplus, \bigcirc) , maka I bukan merupakan Q-ideal.

Bukti:

Misal I adalah ideal sejati tak nol dari semiring (Z^+, \oplus, \circ) . Akan ditunjukkan bahwa I bukan merupakan Q-ideal. Dari lemma 3.2.4, I=<d> dengan d merupakan elemen terkecil dari I, $d \in Z^+$ – $\{0,1\}$.

Ambil $d = p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_k^{r_k}$ dengan $p_1, p_2,...,p_k$ adalah pasangan bilangan prima yang berbeda dan $k, r_1 \in N$. Dengan bukti kontradiksi, misalkan I adalah Q-ideal, maka ada dengan tunggal $q \in Q$ sehingga $p \in q \oplus I$ untuk semua bilangan prima p selain faktor prima dari d.

Misal p', p'' adalah suatu bilangan prima selain faktor prima dari d, $p' \oplus I \subseteq q_1 \oplus I$ dan $p^n \oplus I \subseteq q_2 \oplus I$, $q_1,q_2 \in Q$. Karena p', p'' adalah suatu bilangan prima selain faktor prima dari d, maka diperoleh $1=p' \oplus d \in q_1 \oplus I$ dan $1=p'' \oplus d \in q_2 \oplus I$ sehingga didapat, $(q_1 \oplus I) \cap (q_1 \oplus I) \neq \emptyset$. Karena I merupakan Q-ideal diperoleh bahwa $q_1=q_2$. Dengan kata lain untuk semua bilangan prima p selain faktor prima dari d, maka terdapat dengan tunggal $q \in Q$ sehingga $p \in q \oplus I$. Jelas bahwa $q \ge 1$.

Pilih sebuah bilangan prima f dengan f > q sehingga

 $f \in q \oplus I$. Karena $f \in q \oplus I$, maka $f \in q \oplus \langle d \rangle$ artinya terdapat $n \in \mathbb{Z}_0^+$ sehingga $f = q \oplus nd = FPB(q, nd)$ yang artinya $f \mid q$ dan $f \mid nd$. Terjadi kontradiksi karena $f \triangleright q$, maka tidak mungkin terjadi $f \mid q$. Jadi terbukti bahwa $I = \langle d \rangle$ bukanQ-ideal.

Dari definisi Q-ideal dari semiring *R* dan teorema 3.2.7, maka diperoleh akibat berikut

Akibat 3.2.8

 $\{0\}$ dan Z^+ merupakan satu-satunya Q-ideal pada semiring (Z^+, \oplus, \odot) .

Bukti:

- (i) {0} merupakan Q-ideal pada semiring (Z⁺,⊕,○)O-Z⁺
- (ii) Z+merupakan Q-ideal pada semiring (Z+, \oplus , \odot), Q={0}

Pada semiring (Z^+ , \oplus , \odot), untuk setiap $a \in Z^+$ berlaku $a^2 = a \oplus b = KPK\{a,a\} = a$ sehingga diperoleh akibat berikut:

Akibat 3.2.9

Setiap ideal dari semiring (Z^+, \oplus, \odot) adalah semiprima.

Selanjutnya akan ditunjukkan bentuk ideal prima pada semiring (Z^+, \oplus, \bigcirc) serta hubungan antara ideal primary dengan ideal prima pada semiring (Z^+, \oplus, \bigcirc) .

Teorema 3.2.10 (Chaudhari & Ingale, 2012)

Ideal sejati tak nol I pada semiring (Z^+, \oplus, \bigcirc) adalah prima jika dan hanya jika $I = < p^r >$ untuk suatu bilangan prima p dan $r \ge 1$

Bukti:

(→)Andaikan $I=(p_1^{r_1}p_2^{r_2}\dots p_k^{r_k}),p_i$ adalah bilangan prima yang berbeda dan $k\geq 2$. I bukan merupakan

ideal prima sebab $p_1^{r_1}p_2^{r_2}\dots p_k^{r_k}\in I$, tetapi $p_1^{r_1}\not\in I$ dan $p_2^{r_2}\dots p_k^{r_k}\not\in I$

 (\leftarrow) Ambil $a,b \in Z^+, a \oplus b \in I = \langle p^r \rangle$ artinya

KPK $(a,b)=kp^r$, maka a mempunyai faktor p^r atau b mempunyai faktor p^r sehingga $a \in I$ atau $b \in I$. Jadi terbukti I prima

Teorema 3.2.11 (Chaudhari & Ingale, 2012)

Setiap ideal tak nol dari semiring (Z^+, \oplus, \bigcirc) adalah *ideal primary* jika dan hanya jika ideal tersebut adalah ideal prima.

Bukti:

(→)Pada semiring (Z^+ ,⊕,⊙) berlaku $b^n=b\odot b\odot...\odot$ $b=KPK\{b,b,...,b\}=b$ untuk setiap $b,n\in Z^+$, $n\geq 1$. Jadi jika *I ideal primary*, maka *I* pasti ideal prima.

 (\leftarrow) Jelas bahwa jika I ideal prima maka I pasti *ideal primary*.■

SIMPULAN

Bentuk-bentuk ideal maksimal, ideal utama, ideal substraktif, Q-ideal, ideal prima, ideal semiprima dan *ideal primary* serta hubungan ideal satu dengan yang lain pada semiring (Z^+, \oplus, \bigcirc) sebagai berikut.

Pada semiring $(Z^+,+,\cdot)$ diperoleh

- (i) Setiap ideal I pada $(Z^+,+,\cdot)$ berbentuk $I=\langle x_1,x_2,...,x_n\rangle$ dengan $x_1,x_2,...,x_n\in Z^+$
- (ii) Ideal sejati I dari (Z^+ ,+,·) adalah maksimal jika dan hanya jika $I = <2,3>=Z^+-\{1\}$
- (iii) Ideal I pada ($Z^+,+,\cdot$) adalah substraktif jika dan hanya I untuk suatu $x \in Z^+$
- (iv) Ideal I pada ($Z^+,+,\cdot$) adalah Q-ideal jika dan hanya I=< x> untuk $x\in Z^+$
- (v) Ideal sejati tak nol I pada ($Z^+,+,\cdot$) adalah prima jika dan hanya jika I= untuk suatu bilangan prima p atau I=<2, $3>=Z^+-\{1\}$
- (vi) Ideal sejati tak nol I=<x> untuk $x\in Z^+$ pada $(Z^+,+,\cdot)$ adalah semiprima jika dan hanya jika $x=p_1,p_2,...,p_n,p_i$ adalah faktor prima yang berbeda dari x
- (vii) Ideal sejati tak nol I=<x> untuk $x\in Z^+$ pada $(Z^+,+,\cdot)$ adalah *primary* jika dan hanya jika x bilangan prima

Pada semiring (Z^+, \oplus, \odot) diperoleh:

- (i) Jika $a \in (Z^+, \oplus, \bigcirc)$ maka $\langle a \rangle = \{na: n \in Z^+\}$.
- (ii) Setiap ideal dari (Z+,⊕,⊙) adalah ideal utama
- (iii) I adalah ideal maksimal di (Z^+, \oplus, \odot) jika dan hanya jika I = untuk suatu p adalah bilangan prima
- (iv) Setiap ideal dari (Z⁺,⊕,⊙) adalah ideal substraktif dan ideal semiprima
- (v) {0} dan Z⁺merupakan satu-satunya Q-ideal pada semiring (Z⁺,⊕,⊙)
- (vi) Ideal sejati tak nol I pada (Z^+, \oplus, \odot) adalah prima jika dan hanya jika $I = < p^r >$ untuk suatu bilangan prima p dan $r \ge 1$
- (vii) Setiap ideal tak nol dari semiring (Z+,⊕,⊙)adalah ideal primary jika dan hanya jika ideal tersebut adalah ideal prima.

DAFTAR PUSTAKA

- Chaudhari JN and Ingale KJ, 2012. A Note on Strongly Euclidean Semirings. *International Journal of Algebra*, 6: 271-275. Web publication http://www.m-hikari.com/ija/ija-2012/ija-5-8-2012/chaudhariIJA5-8-2012-2.pdf.
- Gupta V & Chaudhari JN, 2009. Prime Ideals in Semiring. Bulletin of Malaysian Mathematical Science Society. Http://math.usm.my/bulletin. Diunduh tanggal 2 Februari 2010.
- Khanna VJ, 1993. A Course in Abstract Algebra. Department of Mathematics, Kirori Mal ollege, University of Delhi: Vikas Publishing House PVT LYD.
- Setyawati DW, 2005. Ideal-p Kiri Utama dalam Semiring Inversive Regular-p. Sains dan Sibernatika Pascasarjana Ilmu-ilmu Sains Universitas Gadjah Mada; 18: 1–11.
- Setyawati DW, 2011. Ideal prime pada Semiring $D_{nxn}(Z^{+})$. Jurnal Matematika Jurusan Matematika FMIPA Universitas Diponegoro Semarang; 14: 14–18.
- Setyawati DW & Soleha, 2013. Ideal prime pada Semiring $S_{nxn}(Z^+)$. Makalah. Disampaikan pada Seminar Nasional Himpunan Peminat Aljabar ke-21, Universitas Negeri Malang 20–21 April 2013.