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Abstract. A mixture experiment is a special case of response surface methodology in which the 

value of the components are proportions. In case there are constraints on the proportions, the 

experimental region can be not a simplex. The classical designs such as a simplex-lattice design 

or a simplex-centroid design, in some cases, cannot fit to the problem. In this case, optimal design 

come up as a solution. A D-optimal design is seeking a design in which minimizing the 

covariance of the model parameter.  Some model parameters are important and some of them are 

less important. As the priority of the parameters, the prior information of parameters is needed 

in advance. This brings to a Bayesian D-optimal design. This research was focus on a baking 

experiment in which consisted of three ingredients with lower bounds on the proportion of the 

ingredients. The assumption model was a quadratic model. Due to the priority of the model 

parameters, the Bayesian D-optimal design was used to solve the problem. A point-exchange 

algorithm was developed in order to find the optimal design. The results show that the Bayesian 

D-optimal design was better than the D-optimal design in terms of parameter estimation for the 

baking experiment. Nineteen candidates is used to choose twelve design points. It found that the 

potential term is feasible to the actual model. The design points also represent overall points in 

the design area.  

1. Introduction 

Mixture experimental design used especially in industrial sector. A Mixture experiment is a design in 

which the components are proportions. The proportions lie between 0 and 1 and the sum of the 

proportions among the components is unity [11]. Due to the restriction of the mixture experiment, the 

proportions of the components are dependence [2].  

Unlike other designs, the compositions of a mixture design depends on the assumption model. The 

model parameters are some important but others are not. The prior information of the parameters is 

needed. In addition, there are some constraints on the proportions. The constraints effects to the 

experimental region. In some cases, the classical mixture designs cannot suite to the problem. Hence, it 

needs an optimal design approach. The optimal design is seeking a design based on a certain criterion. 

A D-optimality criterion is a widely criterion used in mixture experiments. It can reduce the uncertainty 

of estimating parameters model [7]. This criterion is useful for the performance of design under the 

assumption of model [4]. The D stands for determinant. The D-optimality criterion is a criterion which 

minimizing the determinant of the invers of the information matrix or it is equivalence with maximizing 

the determinant of the information matrix [3].  

The optimal design based on the matrix of design is very depend on the assumtion of model [6]. 

Inaccuracies in model assumption impact to inaccuracies in design result. The used of D-optimality 
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criterion with the Bayesian approach can retrieve basic information from the distribution of parameter 

model, so the dependence of D-optimal to model assumption can be reduced. 

 

2. Bayesian D-Optimal Design 

Assumption model used the quadratic canonical Shefee model [12]. The general form of quadratic 

canonical model is 

 

𝜂(𝑥) = ∑𝛽𝑖𝑥𝑖 + ∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑖<𝑗𝑖

 

 

Total proportion of components which amounted to 100% in the mixture caused the form of a linear 

model do not have intercept. Then, the cross product 𝒙𝒊𝒙𝒋 and 𝒙𝒊
𝟐 cannot included together to the model, 

because it caused perfect collinierity [10]. Estimating model parameters using least squares estimation 

can be calculated as 

 

𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀    (2) 

 

Variance of 𝜷 is 𝜎2(𝑿𝑻𝑿)−1. Minimizing the variety of 𝜷 can be calculate as maximize of determinant 

(𝑿𝑻𝑿). 

In the Bayesian approach of D-optimal design, matrix X divided into two conditions, namely 

primary and potential terms. The most important term that really want to fit in model lead to primary 

terms and the term that potential (possibly important) to the model called as potential terms [5]. Bayesian 

used initial information to predict the condition. Thereafter, the initial information is taken from 

estimating parameters of primary and potential terms. The initial information can be formed into prior 

distribution. Prior distribution for primary term is 𝜷𝒑𝒓𝒊~𝑁(𝜇, 𝜎2) and prior distribution for potential 

term is  𝜷𝒑𝒐𝒕~𝑁(0, 𝜏2𝜎2𝐼). The value of 𝜏 is the ratio of the variety on the potential terms with the error 

rate. A large value of 𝜏 means that some of the potential terms are feasible on the model. Conservely, a 

small value of 𝜏 means all potential terms should not be included in the model [6]. 

Based on prior distributions above, posterior distribution to parameters of model [5,8] is  

 

𝑝(𝜷|𝒚, 𝜎)~𝑁 [(𝑿𝑻𝑿 +
𝑲

𝜏2)
−1𝑿𝑻𝒀 , 𝜎2(𝑿𝑻𝑿 +

𝑲

𝜏2)
−1]         (3) 

 

K is (𝑝 + 𝑞) × (𝑝 + 𝑞) identity matrix with p diagonal is zero and q others diagonal is one. Variance of 

posterior distribution is 𝜎2(𝑿𝑻𝑿 + 𝑲/𝜏2)−1. So, minimize the variance similar with maximize the value 

of determinan information matrix below [1] 

 

(𝑿𝑻𝑿 + 𝑲/𝝉𝟐)                                (4) 

 

DuMouchel and Jones also introduce the procedure called scalling convention [5]. This procedure is to 

make the effect of potential term can be interpret. Then, scalling convention also minimize correlation 

between primary and potential terms. Let 𝑿 = [𝑿𝒑𝒓𝒊|𝑿𝒑𝒐𝒕] is design matrix that divided to primary and 

potential terms. Each unconstant primary terms transformed by interval  -1 to 1. Then potential terms 

transformed such that max(𝑿𝒑𝒐𝒕)-min(𝑿𝒑𝒐𝒕)=1 [5]. 

For each primary term the midpoint value is  𝑀 = (𝐿 + 𝑈)/2 and the half of the range is ∆=
(𝑈 − 𝐿)/2, L and U is lower and upper value of primary term. Then the scaled, 𝑙𝑘, from the primary 

term 𝑥𝑘 is 

 𝑥𝑘 = (𝑙𝑘 − 𝑀)/∆  (5) 

Potential terms regressed to primary terms, by least square estimation the coefficients regression (𝜶) of 

𝑿𝒑𝒐𝒕  to 𝑿𝒑𝒓𝒊  is 

(1) 



 
 
 
 
 
 

 

𝜶 = (𝑿𝒑𝒓𝒊
𝑻 𝑿𝒑𝒓𝒊)

−𝟏𝑿𝒑𝒓𝒊
𝑻 𝑿𝒑𝒐𝒕                                         (6) 

 

Defined R residual of regression of  𝑿𝒑𝒐𝒕  to 𝑿𝒑𝒓𝒊 , 𝑹 = 𝑿𝒑𝒐𝒕 − 𝑿𝒑𝒓𝒊𝜶 and Z is transformation of R. 

 

𝒁 = 𝑹/ (𝑚𝑎𝑥(𝑹) − 𝑚𝑖𝑛 (𝑹))                          (7)  

 

The result, definition of 𝑿 = [𝑿𝒑𝒓𝒊|𝑿𝒑𝒐𝒕] become 𝑿 = [𝑿𝒑𝒓𝒊|𝒁].  

3. Point Exchange Algorithm 
The process of finding optimal design points from candidate points is carried out with an algorithm. One 

simple algorithm that can be use is point exchange algorithm. This algorithm starts by randomly 

selecting the design points on the set of candidate points as many as n points as the initial design. Next, 

one by one the points in the initial design are exchanged with one other point from the set of candidate 

points in sequence. This process is carried out in an effort to improve the initial draft criteria that have 

been selected. 

Randomization of points for the initial design does not guarantee that the design obtained is the 

optimal design. The point replacement process also does not find much permutation from all of the 

candidate points owned. Therefore, some initial designs were chosen randomly and carried out 

iteratively to overcome the limitations of point changes. 

4. A Practical Example 
As a practical used of the D-optimal design using Bayesian approach, an example of mixture 

experimental design with three components and constraints function was presented. Defined the first 

component as 𝑥1, the second component as 𝑥2, and the third component as 𝑥1. The constraint function 

of the first and second component greater than or equal to 0.1 and third component greater than or equal 

to 0.6. 

 

      
(a)                                       (b) 

Figure 1 Design region in full area (a) Design region by the constraint function (b) 

 

The constraint function of each components can be figure out as design region. The region with 

constraints function is a small part of the full design area (Figure 1a). If the region was magnified, it can 

be seen as Figure 1b and points along the design can be choose as candidate point. Points in the edge of 

region called as extreme vertices. It represent the maximum proportion of each components. The other 

points can be in the middle of line, within, or in center of region.  

Nineteen candidates generated using Cox-direction. Define first component as 𝑥𝑖 and other 

component as 𝑥𝑗, so changes for every component can be calculate �̃�𝑖 = 𝑥𝑖 + 𝛿𝑖 dan �̃�𝑗 = 𝑥𝑗 −

𝛿𝑖𝑥𝑗 /(1 − 𝑥𝑖) for 𝑖 ≠ 𝑗 and 𝑖 = 1,2, … , 𝑝, p is the number of candidates can be generate [9]. List of 

candidates of this case can be show in table 1. 
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Table 1. Candidates Set of Mixture 

No 
Proportion 

𝑥1 𝑥2 𝑥3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

0.1333 

0.1333 

0.1500 

0.1500 

0.1500 

0.1500 

0.1666 

0.2000 

0.2000 

0.2000 

0.2333 

0.2500 

0.2500 

0.3000 

0.1000 

0.1500 

0.2000 

0.2500 

0.3000 

0.1333 

0.2333 

0.1000 

0.1500 

0.2000 

0.2500 

0.1667 

0.1000 

0.1500 

0.2000 

0.1333 

0.1000 

0.1500 

0.1000 

0.8000 

0.7500 

0.7000 

0.6500 

0.6000 

0.7334 

0.6334 

0.7500 

0.7000 

0.6500 

0.6000 

0.6667 

0.7000 

0.6500 

0.6000 

0.6334 

0.6500 

0.6000 

0.6000 

 

The model used canonical quadratic model, it written as 

 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥1𝑖𝑥2𝑖 + 𝛽5𝑥1𝑖𝑥3𝑖 + 𝛽6𝑥2𝑖𝑥3𝑖  (8) 

 

which 

𝑦𝑖= respose, ni ,...,2,1 . 

𝛽𝑗= model parameters, .6,...,2,1j  

𝑥𝑗𝑖= value of independence variables ni ,...,2,1 , .6,...,2,1j  

From the model above, the design matrix can be constructed as  

 

𝑿 = [

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

⋮ ⋮ ⋮
𝑥𝑛1 𝑥𝑛1 𝑥𝑛3  

𝑥11𝑥12 𝑥11𝑥13 𝑥12𝑥13

𝑥21𝑥22 𝑥21𝑥23 𝑥22𝑥23

⋮ ⋮ ⋮
𝑥𝑛1𝑥𝑛2 𝑥𝑛1𝑥𝑛3 𝑥𝑛2𝑥𝑛3

]   (9) 

 

The first order of model in this case assumed as primary terms, and the second order assumed as potential 

terms. Then to calculate the determinant of matrix information K matrix can be used as 

 

𝑲 =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

    (10) 

 

From design matrix, the matrix information can be construct to get optimal design from several 

value of 𝜏 by equation 4. The result of design points can form as design region below. 
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Figure 2. Design region for several value of 𝜏 

 

The design region in τ = 0.5 have lack points as design, it can be seen from some points was not detect 

in the region. Furthermore, in τ = 1 the design points better then design in τ = 0.5. The design point 

detect in every extreme points and half of design region. Even the design was better, if the value of τ 

increase, when τ = 2 the design points was similiar with τ = 3 and τ = 4. The design have addition one 

point from the design in τ = 1. So, from this result the design constant strart from τ = 2, and this design 

choosed as optimal design points. The result of optimal design points using Bayesian D-optimal design 

in two components of mixture can be seen in table 2. Determinant for this design about 1464.09 with 

seven different points of design. 

  

 

Table 2. Design Points of Optimal Design 

No 
Proportion 

𝑥1 𝑥2 𝑥3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0.20 

0.10 

0.10 

0.10 

0.30 

0.25 

0.10 

0.20 

0.10 

0.30 

0.20 

0.10 

0.10 

0.20 

0.20 

0.30 

0.10 

0.15 

0.10 

0.20 

0.30 

0.10 

0.10 

0.10 

0.70 

0.70 

0.70 

0.60 

0.60 

0.60 

0.80 

0.60 

0.60 

0.60 

0.70 

0.80 

Determinant 1464.09 
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