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ABSTRACT 
 

A mixture experiment is a special case of response surface methodology in which the value of the 

components is proportions. In case there are constraints on the proportions, the experimental region can 

be not a simplex. The classical designs such as a simplex-lattice design or a simplex-centroid design, in 

some cases, cannot fit the problem. In this case, the optimal design comes up as a solution. A D-optimal 

design is seeking a design in which minimizing the covariance of the model parameter.  Some model 

parameters are important and some of them are less important. As the priority of the parameters, the 

prior information of parameters is needed in advance. This brings to a Bayesian D-optimal design. The 

focus in this research was on a baking experiment in which consisted of three ingredients with lower 

bounds on the proportion of the ingredients. The assumption model was a quadratic model. Due to the 

priority of the model parameters, the Bayesian D-optimal design was used to solve the problem. A point-

exchange algorithm was developed to find the optimal design. Nineteen candidates were used to choose 

twelve design points. It found that the potential term is feasible to the actual model and design points 

represent overall points in the design area. 
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1 Introduction 

Mixture experimental design used especially in the industrial sector. A Mixture 

experiment is a design in which the components is proportions. The proportions lie between 0 

and 1 and the sum of the proportions among the components is unity [1]. Due to the restriction 

of the mixture experiment, the proportions of the components are dependence [2].  

Unlike other designs, the compositions of a mixture design depend on the assumption 

model. The model parameters are some important but others are not. The prior information on 

the parameters is needed. Besides, there are some constraints on the proportions. The constraints 

affect the experimental region. In some cases, the classical mixture designs cannot fit the 

problem. Hence, it needs an optimal design approach. The optimal design is seeking a design 

based on a certain criterion. A D-optimality criterion is a criterion that widely used in mixture 
experiments. It can reduce the uncertainty of estimating the parameters model [3]. This criterion 

is useful for the performance of design under the assumption of the model [4]. The “D” stands 

for determinant. The D-optimality criterion is a criterion that minimizing the determinant of the 

inverse of the information matrix or it is equivalence with maximizing the determinant of the 

information matrix [5].  

The optimal design based on the matrix of design very depends on the assumption of the 

model [6]. Inaccuracies in model assumption impact on inaccuracies in design result. The D-
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optimality criterion with the Bayesian approach can retrieve basic information from the 

distribution of the parameter model, so the dependence of D-optimal to model that assumed can 

be reduced. 

2 Theory 

2.1 Bayesian D-optimal Design 

The model assumed used the quadratic canonical Shefee model [7]. The general form of 

the quadratic canonical model is  

𝜼(𝒙) = ∑𝜷𝒊𝒙𝒊 + ∑𝜷𝒊𝒋𝒙𝒊𝒙𝒋

𝒊<𝒋𝒊

 (1) 

The total proportion of components which amounted to 100% in the mixture caused the linear 

model do not have intercept. Then, the cross product 𝒙𝒊𝒙𝒋 and 𝒙𝒊
𝟐 cannot be included together 

to the model, because it caused perfect collinearity [8]. Estimating model parameters using least 

squares estimation can be calculated as 

𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀 (2) 

The variance of 𝜷 is 𝜎2(𝑿𝑻𝑿)−1. Minimizing the variety of 𝜷 can be calculated as a maximize 

of the determinant (𝑿𝑻𝑿). 

In the Bayesian approach of D-optimal design, matrix X divided into two conditions, 

namely primary and potential terms. The most important term that wants to fit in the model 

called primary terms and the term that potential (possibly important) to the model called 

potential terms [9]. Bayesian used initial information to predict the condition. Thereafter, the 

initial information is taken from estimating parameters of primary and potential terms. The 

initial information can be formed into prior distribution. The prior distribution of the primary 

term is 𝜷𝒑𝒓𝒊~𝑁(𝜇, 𝜎2) and the prior distribution of the potential term is  𝜷𝒑𝒐𝒕~𝑁(0, 𝜏2𝜎2𝐼). 

The value of 𝜏 is the ratio of the variety on the potential terms with the error rate. A large value 

of 𝜏 means that some of the potential terms are feasible on the model. Then, a small value of 𝜏 

means all potential terms should not be included in the model [6]. 

Based on prior distributions above, posterior distribution to parameters of model [9,10] is  

𝑝(𝜷|𝒚, 𝜎)~𝑁 [(𝑿𝑻𝑿 +
𝑲

𝜏2
)−1𝑿𝑻𝒀 , 𝜎2(𝑿𝑻𝑿 +

𝑲

𝜏2
)−1] (3) 

K is (𝑝 + 𝑞) × (𝑝 + 𝑞) identity matrix with p diagonal is zero and q others diagonal is one. The 

variance of the posterior distribution is 𝜎2(𝑿𝑻𝑿 + 𝑲/𝜏2)−1. So, minimize the variance similar 

to maximize the value of the determinant information matrix below [11] 

(𝑿𝑻𝑿 + 𝑲/𝝉𝟐) (4) 

DuMouchel and Jones also introduce the procedure called scaling convention [9]. This 

procedure is to make the effect of the potential term can be interpreted. Then, the scaling 

convention also minimizes the correlation between primary and potential terms. Let 𝑿 =
[𝑿𝒑𝒓𝒊|𝑿𝒑𝒐𝒕] is a design matrix that divided into primary and potential terms. Each unconstant 

primary term transformed by interval  -1 to 1. Then potential terms transformed such that 

max(𝑿𝒑𝒐𝒕)-min(𝑿𝒑𝒐𝒕)=1 [9]. 
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For each primary term, the midpoint value is  𝑀 = (𝐿 + 𝑈)/2 and the half of the range is 

∆= (𝑈 − 𝐿)/2, L and U is a lower and an upper value of the primary term. Then the scaled, 𝑙𝑘, 

from the primary term 𝑥𝑘 is 

𝑥𝑘 = (𝑙𝑘 − 𝑀)/∆ (5) 

Potential terms regressed to primary terms, by least square estimation the coefficients 

regression (𝜶) of 𝑿𝒑𝒐𝒕  to 𝑿𝒑𝒓𝒊  is 

𝜶 = (𝑿𝒑𝒓𝒊
𝑻 𝑿𝒑𝒓𝒊)

−𝟏𝑿𝒑𝒓𝒊
𝑻 𝑿𝒑𝒐𝒕 (6) 

Defined R residual of regression of  𝑿𝒑𝒐𝒕   to 𝑿𝒑𝒓𝒊  , 𝑹 = 𝑿𝒑𝒐𝒕 − 𝑿𝒑𝒓𝒊𝜶  and Z is the 

transformation of R. 

𝒁 = 𝑹/ (𝑚𝑎𝑥(𝑹) − 𝑚𝑖𝑛 (𝑹)) (7) 

 

The result, definition of 𝑿 = [𝑋𝑝𝑟𝑖|𝑋𝑝𝑜𝑡] becomes 𝑿 = [𝑿𝒑𝒓𝒊|𝒁].  

 

2.2 Point Exchange Algorithm 

The process of finding optimal design points from candidate points is carried out with an 

algorithm. One simple algorithm that can be used is the point exchange algorithm. This 

algorithm starts by randomly selecting the design points on the set of candidate points as many 

as n points as the initial design. Next, one by one the points in the initial design are exchanged 

with one other point from the set of candidate points in sequence. This process is carried out to 

improve the initial draft criteria that have been selected. 

The randomization of points for the initial design does not guarantee that the design 

obtained is the optimal design. The point replacement process also does not find many 

permutations from all of the candidate points owned. Therefore, some initial designs were 

chosen randomly and carried out iteratively to overcome the limitations of point changes. 

3 A Practical Example 

 As a practical use of the D-optimal design using the Bayesian approach, an example of a 

mixture experimental design with three components and constraints function was presented. 

Defined the first component as 𝑥1, the second component as 𝑥2, and the third component as 𝑥1. 

The constraint function of the first and second components greater than or equal to 0.1 and third 

component greater than or equal to 0.6. 

      
(a)                                       (b) 

Figure 1: Design region in the full area (a) Design region by the constraint function (b) 
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The constraint function of each component can figure out as a design region. The region 

with constraints function is a small part of the full design area (Figure 1a). If the region was 

magnified, it can be seen as Figure 1b and points along the design can be chosen as the candidate 

point. Points on the edge of the region called extreme vertices. It represents the maximum 

proportion of each component. The other points can be in the middle of the line, within, or 

center of the region.  

Nineteen candidates generated using Cox-direction. Define the first component as 𝑥𝑖 and 

other components as 𝑥𝑗, so changes for every component can be calculated 𝑥̃𝑖 = 𝑥𝑖 + 𝛿𝑖 dan 

𝑥̃𝑗 = 𝑥𝑗 − 𝛿𝑖𝑥𝑗 /(1 − 𝑥𝑖) for 𝑖 ≠ 𝑗 and 𝑖 = 1,2,… , 𝑝, p is the number of candidates that can be 

generated [12]. A list of candidates in this case, can be shown in table 1. 

Table 1: Candidates Set of Mixture 

No 
Proportion 

𝒙𝟏 𝒙𝟐 𝒙𝟑 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0.1000 

0.1000 

0.1000 

0.1000 

0.1000 

0.1333 

0.1333 

0.1500 

0.1500 

0.1500 

0.1500 

0.1666 

0.2000 

0.2000 

0.2000 

0.2333 

0.2500 

0.2500 

0.3000 

0.1000 

0.1500 

0.2000 

0.2500 

0.3000 

0.1333 

0.2333 

0.1000 

0.1500 

0.2000 

0.2500 

0.1667 

0.1000 

0.1500 

0.2000 

0.1333 

0.1000 

0.1500 

0.1000 

0.8000 

0.7500 

0.7000 

0.6500 

0.6000 

0.7334 

0.6334 

0.7500 

0.7000 

0.6500 

0.6000 

0.6667 

0.7000 

0.6500 

0.6000 

0.6334 

0.6500 

0.6000 

0.6000 

 

The candidates of the design above can be figured in the design region as figure 2. Nineteen 

candidates chose  based on the great position of the design in the region. So the candidates can 

represent overall of the design. 

 
Figure 2: Design region of candidates design 

 

The model used the canonical quadratic model, it was written as 

𝑦𝑖 = 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥1𝑖𝑥2𝑖 + 𝛽5𝑥1𝑖𝑥3𝑖 + 𝛽6𝑥2𝑖𝑥3𝑖 (8) 
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which 

𝑦𝑖= response, ni ,...,2,1 . 

𝛽𝑗= model parameters, .6,...,2,1j  

𝑥𝑗𝑖= value of independent variables ni ,...,2,1 , .6,...,2,1j  

From the model above, the design matrix can be constructed as  

𝑿 =  [

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

⋮ ⋮ ⋮
𝑥𝑛1 𝑥𝑛1 𝑥𝑛3  

𝑥11𝑥12 𝑥11𝑥13 𝑥12𝑥13

𝑥21𝑥22 𝑥21𝑥23 𝑥22𝑥23

⋮ ⋮ ⋮
𝑥𝑛1𝑥𝑛2 𝑥𝑛1𝑥𝑛3 𝑥𝑛2𝑥𝑛3

] (9) 

The first-order of model assumed as primary terms, and the second-order assumed as potential 

terms. Then to calculate the determinant of the matrix information K matrix can be used as 

𝑲 =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 (10) 

From the design matrix, the matrix information can be constructed to get an optimal design 

from several values of 𝜏 by equation 4. The determinan of matrix information from the optimal 

design of several 𝜏 describe in Figure 3. 

 

Figure 3: The determinant of several values of 𝜏 

Figure 3 described the determinant of designs in difference of 𝜏. In  𝜏 = 0.5 the determinant 

is 71595.63, then significantly decrease in 𝜏 = 1 that the determinant is 5012.25. From 𝜏 = 2, 

𝜏 = 3 , and 𝜏 = 4  the determinant have not many changed, the determinant 1462.409, 
10808.529, 974.12 respectively. So, by the exploration in determinant, the design can be 

optimal in 𝜏 = 2, because the determinant start to convergent there. 

The result of design points also can form as the design region below. 
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5.0  

 
1  

 

 
2  

 
3  

 
4  

Figure 4: Design region for several value of 𝜏 

 

The design in τ = 0.5 have no different with design in τ = 1. The design point detects in every 
extreme point and half of the design region. But, some points of design have different numbers 

of replication in both designs. It means that the design could be changed for higher τ. If the 

value of τ increase, when τ = 2 the design points were similar to τ = 3 and τ = 4. Not only in the 

points of the design but also in the number of replication for all points. The design has added 

one point from the design in τ = 1. So, from this result, the design constant start from τ = 2, and 
this design was chosen as optimal design points. The result of optimal design points using 

Bayesian D-optimal design in two components of the mixture can be seen in table 2. The 

determinant for this design about 1462.409 with seven different points of design. 

Table 2: Design points of optimal design 

No 
Proportion 

𝒙𝟏 𝒙𝟐 𝒙𝟑 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0.20 

0.10 

0.10 

0.10 

0.30 

0.25 

0.10 

0.20 

0.10 

0.30 

0.20 

0.10 

0.10 

0.20 

0.20 

0.30 

0.10 

0.15 

0.10 

0.20 

0.30 

0.10 

0.10 

0.10 

0.70 

0.70 

0.70 

0.60 

0.60 

0.60 

0.80 

0.60 

0.60 

0.60 

0.70 

0.80 

Determinant 1462.409 

 

Table 2 represents the proportion of each component of the mixtures as the result of 

optimal design by Bayesian D-optimal design. There are twelve points with seven different 



115 BAYESIAN APPROACH TO... 

 

points. This combination of points can be running in the laboratory as the optimal composition 

of the component in the mixture. 

4 Conclusion 

Bayesian D-optimal design can be used as an alternative to constructing the optimal 

design of the mixture. By using the D-optimal criterion approach to the Bayesian the 

composition of components in mixture will not depend on the model that assumed. From the 

practical example in three constraint components in a mixture, seven different points from 

twelve points were constructed. The design convergent in τ = 2  with determinant about 
1462.409.  
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