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ABSTRACT 
 

This research conducts a case of the cancer patients in censored data using Bayesian methodology. 

There are three types of loss function in Bayesian estimation method such as squared error loss 

function (self), linear exponential loss function (lelf) and general entropy loss function (gelf). Pareto 

survival model is selected as presentation data. To construct a posterior distribution, framing a 

likelihood function of Pareto and a prior, requires the prior distribution. An exponential distribution is 

chosen as a prior that describes parameter character of the Pareto. The posterior distribution is used to 

discover estimators in three loss functions of Bayesian methods. There are estimators held down by 

Bayesian self 𝜃𝐵𝑆 , Bayesian lelf 𝜃𝐵𝐿  and Bayesian gelf 𝜃𝐵𝐺  which substance 3.79, 3.78 and 3.90 

correspondingly. After getting those estimators, the hazard functions ℎ̂𝐵𝑆 , ℎ̂𝐵𝐿 and ℎ̂𝐵𝐺 and survival 

functions  �̂�𝐵𝑆 , �̂�𝐵𝐿  and �̂�𝐵𝐺  can be determined. The result shows that all of survival values under 

Bayesian approaches are lower than the real survival value. It means the result is more trusted because 

as a prior, the parameter is defined more precisely than before. The hazard function confirmations a 

same shape in all approaches. The rates of hazard are decreasing along with survival values which 

show the same behavior. The curves are strictly dropping after first data. This occurrence because due 

to a heavy-tailed character of Pareto.  The result indicates that MSE of parameter estimation under the 

Bayesian self, lelf and gelf are 1.3x10-2, 1.2x10-2 and 0 respectively. The mse of survival estimation 

under the Bayesian self, lelf and gelf are 10-4, 1.1x10-4 and 3x10-5 individually. It concludes that the 

Bayesian gelf  is the best approximation. 

Keywords: survival model, Bayesian, Pareto, prior, Exponential, heavy-tailed. 

 

 

1 Introduction 

  There are some diseases round our life. One of them is cancer which is hazardous and 

making a high death risk. This disease has been suffering people in all ages. In the last years, 

cancer issues are growing wider in the world.  In 2012, lung cancer is the most kind of cancer 

which attach men in Indonesia. Science, especially in Statistics and Actuarial Mathematics, 

provides some influences to perceive the probability of patient life which is attacked the lung 

cancer. Survival model is derived from both Statistics and Actuarial Mathematics. There are 

several estimation methods in statistics. Bayesian is one of them which usage likelihood 

function and prior distribution to construct posterior distribution. It is used to estimate 

parameter of Pareto survival model. It constructs a posterior distribution by formulating a 

likelihood function of Pareto and a prior. Exponential distribution is determined as a prior. A 

censoring is a feature that frequent in lifetime and reliability data analysis. It happens when 

exact lifetimes or run-outs can only be collected for a portion of the inspection units [1]. The 
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data is Pareto distributed which will be composed with an Exponential distribution as its prior 

to build a posterior distribution. It offers the relative weights to each parameter value after 

analizing the data [2]. The Bayesian inference has some approximations such as generalized 

non-informative prior, linear exponential loss function, Lindley approximation, general 

entropy loss function and squared error loss function. 

 

2 Literature Review   

2.1 Pareto Distribution 

Pareto distribution is a random variable with a heavy tail (modern actuarial risk theory). There 

are four main properties of Pareto distribution in Survival analysis. First, the probability 

density function 𝑓(𝑡) presents a failure time random variable. Second, cumulative density 

function 𝐹(𝑡) provides the probability death less than and equal to time 𝑡. Third, survival 

function 𝑠(𝑡) which describes the probability of failure time is greater than the value of 𝑡. 
Fourth,  hazard function ℎ(𝑡)  is the conditional rapid of failure quantity at time 𝑡 which given 

survival time to 𝑡 [3]. The 𝑓(𝑡), 𝐹(𝑡), 𝑠(𝑡) and ℎ(𝑡)of random variable 𝑇 are formulated  in 

equations (1), (2), (3) and (4).    

 

𝑓(𝑡) =
𝛼𝜃𝛼

𝑡𝛼+1
  ; 𝛼 , 𝜃 > 0 ; 𝑡 > 𝜃 

 

𝐹(𝑡) = 1 − (
𝜃

𝑡
)
𝛼

 

𝑠(𝑡) = 1 − 𝐹(𝑡) = (
𝜃

𝑡
)
𝛼

 

ℎ(𝑡) =
𝑓(𝑡)

𝑠(𝑡)
=
𝛼

𝑡
 

 

(1) 

 

 

(2) 

 

(3) 

 

 

(4) 

According to [4], formula of parameter estimation under squared error loss function, linear 

exponential loss function and general entropy loss function are defined in equation (5), (6) 

and (7) as next, 

𝜃𝐵𝑆 = 𝐸(𝜃) 
 

𝜃𝐵𝐿 = −
1

𝑐
ln[𝐸(𝑒−𝑐𝜃)] 

 

𝜃𝐵𝐺 = [𝐸𝜃(𝜃)
−𝑘]−

1

𝑘 

(5) 

 

 

(6) 

 

(7) 

 

2.2 Bayesian Method 

A way to treat an uncomplete data is censoring. It happens because some events like loss, 

death, or out from observation. According to [5], variables 𝑇1. … . 𝑇𝑛 represent 𝑛 individual 

lifetimes. A time 𝑡𝑖 is the lifetime or a censoring time. The variable 𝛿𝑖 = 0 if 𝑇𝑖 > 𝑡𝑖    and 1 

if 𝑇𝑖 = 𝑡𝑖  is called the censoring or status  indicator for 𝑡1 . Value 𝑡1  is obtained from  

min(𝑇𝑖, 𝐶𝑖) , 𝑖 = 1,2,3, … , 𝑛 where 𝑇𝑖 is the duration of their remission measured from time of 

entry to study and 𝐶𝑖 is the time between their date of entry and the end of study.  The  joint 

densiy function and joint survival function of n random variables 𝑇1. … . 𝑇𝑛 with parameter 𝜃 
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is offered by 𝑓(𝑡𝑖; 𝜃) and 𝑠(𝑡𝑖; 𝜃), correspondingly. On censored data, the likelihood function 

for observation (𝑡𝑖, 𝛿𝑖) 𝑖 = 1,2, . . , 𝑛 can be expressed as, 

 

           𝐿(𝑡𝑖; 𝜃, 𝛿) =∏[𝑓(𝑡𝑖; 𝜃)]
𝛿𝑖[𝑠(𝑡𝑖; 𝜃)]

1−𝛿𝑖

𝑛

𝑖=1

 

                       =∏[
𝛼𝜃𝛼

𝑡𝑖
𝛼+1]

𝛿𝑖

[(
𝜃

𝑡𝑖
)
𝛼

]

1−𝛿𝑖𝑛

𝑖=1

 

=
𝛼∑ 𝛿𝑖

𝑛
𝑖=1 𝜃𝑛𝛼

∏ 𝑡𝑖
𝛿1+𝛼𝑛

𝑖=1

 

 

 

 

 

 

 

 

(8) 

 

An exponential distribution with parameter 𝜇  is chosen as prior distribution to Pareto 

distribution. Let 𝜃  is a continuous random variable of exponential distribution with a 

parameter𝜇, we can present the probability density function as following, 

 

𝑓(𝜃) = 𝜇𝑒−𝜇𝜃             (9) 

 

Posterior distribution is constructed by composing of likelihood function and prior 

function. The posterior distribution of Pareto and exponential prior is 

 

𝑓(𝜃 𝑡𝑖) =
𝐿(𝑡𝑖; 𝜃, 𝛿)𝑓(𝜃)

∫ 𝐿(𝑡𝑖; 𝜃, 𝛿)𝑓(𝜃)𝑑𝜃
∞

0

 

 

=

𝛼∑ 𝛿𝑖
𝑛
𝑖=1 𝜃𝑛𝛼

∏ 𝑡𝑖
𝛿1+𝛼𝑛

𝑖=1

𝜇𝑒−𝜇𝜃

∫
𝛼
∑ 𝛿𝑖
𝑛
𝑖=1 𝜃𝑛𝛼

∏ 𝑡𝑖
𝛿1+𝛼𝑛

𝑖=1

𝜇𝑒−𝜇𝜃𝑑𝜃
∞

0

 

 

=
𝜃𝑛𝛼𝑒−𝜇𝜃

∫ 𝜃𝑛𝛼𝑒−𝜇𝜃𝑑𝜃
∞

0

 

 

=
𝜇𝑛𝛼+1𝜃𝑛𝛼𝑒−𝜇𝜃

Г(𝑛𝛼 + 1)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10) 

This research practices three Bayesian approaches. Firstly, the estimator of Bayes, �̂�𝑩𝑺, of 𝜽 

under the squared error loss function is the conditional mean of 𝜽  comparative to the 

probability density function of posterior distribution 𝒇(𝜽 𝒕𝒊) is 

𝜃𝐵𝑆 = 𝐸(𝜃) = ∫ 𝜃𝑓(𝜃 𝑡𝑖)𝑑𝜃
∞

0

 

= ∫ 𝜃
𝜇𝑛𝛼+1𝜃𝑛𝛼𝑒−𝜇𝜃

Г(𝑛𝛼 + 1)
𝑑𝜃

∞

0

 

=
𝜇𝑛𝛼+1

Г(𝑛𝛼 + 1)
∫ 𝜃𝑛𝛼+1𝑒−𝜇𝜃𝑑𝜃
∞

0

 

=
𝜇𝑛𝛼+1

𝜇𝜇𝑛𝛼+1Г(𝑛𝛼 + 1)
∫ 𝑢𝑛𝛼+1𝑒−𝑢𝑑𝑢
∞

0
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=
𝜇𝑛𝛼+1Г(𝑛𝛼 + 2)

𝜇𝜇𝑛𝛼+1Г(𝑛𝛼 + 1)
 

          =
(𝑛𝛼 + 1)

𝜇
 

 

                                                  (11) 

Later, The estimator 𝜃𝐵𝑆 is used to find the estimator of survival function and hazard function, 

�̂�(𝑡)𝐵𝑆 and ℎ̂(𝑡)𝐵𝑆. They are formulated as equation (12) and (13) below, 

�̂�(𝑡)𝐵𝑆 = (
𝜃𝐵𝑆
𝑡
)

𝛼

 

= (
(𝑛𝛼 + 1)

𝜇𝑡
)

𝛼

 

 

                                                   

 

                                                  (12) 

 

 ℎ̂(𝑡)𝐵𝑆 =
𝛼𝜃𝛼

𝑡𝛼+1
𝑡𝛼

𝜃𝛼
=
𝛼

𝑡
 

 

                                                    (13) 

Secondly, the estimator of Bayes, 𝜃𝐵𝐿 , of 𝜽under the linear exponential loss function is 

framed by equation (14). Moreover, the estimator 𝜃𝐵𝐿 is used to find the estimator of survival 

function and hazard function,�̂�(𝑡)𝐵𝐿 and  ℎ̂(𝑡)𝐵𝐿. They are expressed as equation (15) and (16) 

as following, 

𝜃𝐵𝐿 = −
1

𝑐
ln[𝐸(𝑒−𝑐𝜃)] 

= −
𝑛𝛼 + 1

𝑐
ln (

𝜇

𝑐 + 𝜇
) 

(14) 

�̂�(𝑡)𝐵𝐿 = (−
𝑛𝛼 + 1

𝑐𝑡
ln (

𝜇

𝑐 + 𝜇
))

𝛼

 
(15) 

 

ℎ̂(𝑡)𝐵𝐿 =
𝛼𝜃𝛼

𝑡𝛼+1
𝑡𝛼

𝜃𝛼
=
𝛼

𝑡
 

(16) 

Lastly, the estimator of Bayes, 𝜃𝐵𝐺 ,of 𝜃 under the general entropy loss function is framed by 

equation (17). Furthermore, the estimator  𝜃𝐵𝐺  is used to find the estimator of survival 

function and hazard function, �̂�(𝑡)𝐵𝐺 and ℎ̂(𝑡)𝐵𝐺.They are conveyed as equation (18) and (19) 

as following, 

𝜃𝐵𝐺 = [𝐸𝜃(𝜃)
−𝑘]−

1

𝑘 

= [(
𝜇

𝜇 + 𝑘
)
𝑛𝛼+1

]

−
1

𝑘

 

 

 

 

 

(17) 

�̂�(𝑡)𝐵𝐺 =
[(

𝜇

𝜇+𝑘
)
𝑛𝛼+1

]
−
𝛼

𝑘

𝑡𝛼
 

 

 

 

(18) 

ℎ̂(𝑡)𝐵𝐺 =
𝛼𝜃𝛼

𝑡𝛼+1
𝑡𝛼

𝜃𝛼
=
𝛼

𝑡
 

 

 

(19) 
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An estimator which is a little biased, but having a highly focused to the parameter of interest 

may be desirable to an unbiased estimator that is less focused. Thus, it is desirable to have 

more general that allow for both biased and unbiased estimator to be compared, [6]. An bias 

estimator of 𝜃 would give the bias which given by 

 

𝑏(𝜃) = 𝐸(𝜃) − 𝜃 

 

and the mean squared error (MSE) of 𝜃 is given by 

 

𝑀𝑆𝐸(𝜃) = 𝐸[𝜃 − 𝜃]
2
 (20) 

 

3 Result 

The formulas are applied on lung cancer patient data which is taken from R versi 3.3.0. The 

data presents the length of time a patient has cancer in day and a censoring status. 

Kolmogorov-Smirnov test provides information that the data is Pareto distributed. The data 

runs mean value𝐸(𝑡) = 121.63. Choosing an initial value 𝛼 = 2  gives 𝜃 = 3.90 by equation 

(21) as below 

 

𝐸(𝑡) = 𝛼𝜃𝛼∫
𝑡

𝑡𝛼+1

∞

0

𝑑𝑡 

  =
𝛼𝜃

𝛼 − 1
 

 

 

 

(21) 

 

By calculating data of lung cancer patients, the result of parameter estimations under 

Bayesian self, lelf and gelf from formulas (11), (14) and (17) are presented in table 1, 

 

Table 1.Value of parameter estimation under Bayesian self, lelf and gelf 

𝜃 𝜃𝐵𝑆 𝜃𝐵𝐿 𝜃𝐵𝐺  

3.90 3.79 3.78 3.90 

 

From equation (20), we can extent the MSE of each estimators of parameter beneath the three 

Bayseian approaches. MSE values of estimator under Bayesian self, lelf and gelf approaches 

can be calculated as follow, 

 

𝑀𝑆𝐸(𝜃𝐵𝑆) = 𝐸[𝜃𝐵𝑆 − 𝜃]
2
= 𝐸[3.79 − 3.90]2 = 1.3x10−2 (22) 

𝑀𝑆𝐸(𝜃𝐵𝐿) = 𝐸[𝜃𝐵𝐿 − 𝜃]
2
= 𝐸[3.78 − 3.90]2 = 1.2x10−2 (23) 

𝑀𝑆𝐸(𝜃𝐵𝐺) = 𝐸[𝜃𝐵𝐺 − 𝜃]
2
= 𝐸[3.90 − 3.90]2 = 0.00 (24) 

 

From equations (22) and (23), the results  show that estimator 𝜃𝐵𝑆  and 𝜃𝐵𝐿  are biased 

estimators. In other hand, equation (24) indicates that 𝜃𝐵𝐺 is an unbiased estimator. By 

considering the MSE,  it concludes that Bayesian gelf approach is better than both of 

Bayesian self and gelf. From table 1,  we can use the estimator values to find survival 

estimator values under Bayesian self, lelf and gelf. The outcome of survival estimations under 

Bayesian self, lelf and gelf are existed in table 2, 
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Table 2.Value of survival estimation under Bayesian self, lelf and gelf 

𝑡 𝑠(𝑡) �̂�(𝑡)𝐵𝑆 �̂�(𝑡)𝐵𝐿 �̂�(𝑡)𝐵𝐺 

4 

7 

8 

10 

11 

12 

13 

15 

16 

18 

19 

20 

. 

. 

. 

999 

0.98 

0.32 

0.25 

0.16 

0.13 

0.11 

0.09 

0.07 

0.06 

0.05 

0.04 

0.04 

. 

. 

. 

1.58x10-5 

0.90 

0.29 

0.22 

0.14 

0.12 

0.10 

0.08 

0.06 

0.05 

0.04 

0.04 

0.03 

. 

. 

. 

1.44x10-5 

0.89 

0.29 

0.22 

0.14 

0.12 

0.10 

0.08 

0.06 

0.05 

0.04 

0.04 

0.03 

. 

. 

. 

1.43x10-5 

0.98 

0.32 

0.25 

0.16 

0.13 

0.11 

0.09 

0.07 

0.06 

0.05 

0.04 

0.04 

. 

. 

. 

1.58x10-5 

 

By referring to equation (20), the MSE of each estimators of survival underneath Bayseian 

approches. Calculation of the MSE values of survival estimator under Bayesian self, lelf and 

gelf approaces can be counted as follow, 

 

𝑀𝑆𝐸(�̂�(𝑡)𝐵𝑆) = 𝐸[�̂�(𝑡)𝐵𝑆 − 𝑠(𝑡)]2 = 1.0x10−4 (25) 

𝑀𝑆𝐸(�̂�(𝑡)𝐵𝐿) = 𝐸[�̂�(𝑡)𝐵𝐿 − 𝑠(𝑡)]2 = 1.1x10−4 (26) 

𝑀𝑆𝐸(�̂�(𝑡)𝐵𝐺) = 𝐸[�̂�(𝑡)𝐵𝐺 − 𝑠(𝑡)]2 = 0.00 (27) 

 

The result of survival estimation can be described on a graphic like as graph 1 following, 

 
Graph 1 Survival probability estimation graph under Bayesian approaches 

 

The table 2 and graph 1 give us information about different results of survival chance of lung 

cancer patients under Bayesian approaches. The three survival estimator curves coincide with 

the survival value curve. This is because the biased level of  estimators are very small and 

there are even unbiased estimator. The graph shows there is an extremely decreasing result 

after first data then getting smoother after second data. It happens because the Pareto 

distribution is a heavy-tailed distribution. 
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4 Conclusion 

In brief, the Bayesian gelf gives an unbiased estimator  of parameter of survival model. 

It is disclosed by giving a same value of both of parameter and estimator. The results of 

estimating survival values using the Bayesian self and linex approximation tends to being 

smaller than the real survival value and Bayesian gelf estimator . It is caused by influence of 

prior and the type of approach. By means of considering the MSE values, we can conclude 

that Bayesian gelf approach is better than the other two methods.  
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