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ABSTRACT

Measles is a disease in humans that is very contagious. Before the vaccine was known, the in-
cidence of measles was very high, even the measles mortality rate reached 2.6 million every year.
With the introduction of vaccines, the mortality rate in 2000-2016 can be reduced to 20.4 million
deaths. Therefore, vaccination programs are very useful in reducing the incidence of measles.
Unfortunately, we cannot know the optimal conditions for administering vaccines. The study of
optimal control analysis of vaccination is needed in optimizing the prevention of the spread of
measles. In this paper, a mathematical model which is a third-order differential equation system
is constructed based on characteristic information on measles. The existence and locally stability
of the equilibrium point are analyzed here. In addition, optimal control of the vaccination program
also occurred. The results of our analysis suggest that the incidence of measles can decrease as
the effectiveness of vaccination increases. But the effectiveness of vaccination is directly propor-
tional to the costs incurred. If the cost incurred for the vaccination program more significant, the
incidence of measles will decrease.
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1 Introduction

Measles, caused by the paramyxovirus virus of the genus measles virus, is an infectious disease
in humans that can cause serious illness, lifelong complications and death [1]. This Diseases that
can infect the respiratory tract are transmitted through droplets aerosols that contain viral particles.
The symptoms of measles are high fever, reddish patches on the skin accompanied by coughing [2].
Humans are the only host of measles, although monkeys can also be infected but do not play a role in
transmission [2].

Before the vaccination program was known, the incidence of measles was very high, even the
number of measles deaths was approximately 2.6 million every year, mostly children under the age of
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5 years. This has encouraged governments in various parts of the world to plan measles immunization
programs [3, 4]. In Indonesia, in 2010 to 2015, the incidence of measles was estimated at 23,164
cases. However, after the vaccination program, the incidence of measles decreased, reaching 2,949
in 2016. Unfortunately, anemo community to the vaccination program was not as high as the costs
incurred by the government, as a result in the following year, the incidence of measles increased to
15,104 cases [5, 6].

Mathematical models have an important role in analyzing the dynamics of the spread of measles.
Some examples of mathematical models used to analyze and describe the spread of measles can
be found in [7, 8, 9, 10]. In [11], mathematical models is built based on discrete time so that the
analysis carried out is a discrete study. Meanwhile, in [12] a mathematical modeling was carried
out describing the spread of measles by dividing human groups into four groups, namely susceptible,
Exposed, infection and recovery.

This paper is a continuation of the previous paper [12]. But in this paper, the model is built
by ignoring the exposed human group. This is done because the focus of this paper study is on the
optimal aspects of control. In practice, human groups consisting of three groups, namely susceptible,
infection and recovery, can be reduced to just two groups.

The paper is organized as follows. In section 2, we introduce a mathematical model to be
analyzed. In addition, stability analysis of equilibrium points and optimal control formulations carry
out here. In section 3, numerical simulations are represented.

2 Results and Discussion

In the construction of the model, based on the status of infected or not by measles diseases, the
humans are grouped into three groups. The first is a susceptible group that is likely to get measles
diseases. The second is an infected group where the human has been infected and can transmit measles
diseases. The third is a recovery group who recover from an infection. An important note that must
be considered in model construction is the characteristic of measles diseases, i.e. the people who have
recovered from measles diseases cannot be infected for the second time.

2.1 Model Formulation

A flow chart showing transmission of measles can be seen in the figure 2.1. The assumptions
used in this model are as follows: (i) The status of recruitment rate (Λ) is susceptible; (ii) The mortal-
ity rate for each group (µ) is the same; (iii) Total population is constant such that Λ = µN; (iv) The
population that has been vaccinated and recovered from measles diseases never be infected again.

From the flow chart in the figure 2.1 and the assumptions, we obtain a three dimensional system
of differential equations as follows:

dS̃
dt

= Λ−β (1−u(t))
S̃Ĩ
N
− (u(t)+µ)S̃

dĨ
dt

= β (1−u(t))
S̃Ĩ
N
− (γ +µ)Ĩ

dR̃
dt

= u(t)S̃+ γ Ĩ−µR̃

N(t) = S̃(t)+ Ĩ(t)+ R̃(t)

(1)

where β is the infection rate, γ is recovery rate and u(t) ∈ [0,1) is a vaccination control rate. Fur-

thermore, for scaling purposes, suppose S =
S̃
N
, I =

Ĩ
N
,R =

R̃
N

such that S+ I +R = 1. The recovery

compartemen R can be searched from R(t) = 1−S(t)− I(t), as a results the model (1) can be reduced
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S̃ Ĩ R̃
Λ

µ S̃ µ Ĩ µR̃

β (1−u)S̃Ĩ
N γ Ĩ

uS̃

Figure 1: Transmission diagram of measles diseases

to two dimensional system of differential equations as follows:
dS
dt

= µ−β (1−u(t))SI− (u(t)+µ)S
dI
dt

= β (1−u(t))SI− (γ +µ)I
(2)

with initial condition S(0) = S0 and I(0) = I0. The feasible set of the system which has biological
meaning is given by

Ω =
{

x = (S, I) ∈ R2
+ : 0 < S+ I < 1

}
that positivity invariant. Therefore the trajectory lies in Ω for initial starting point x ∈ R2

+. By regu-
lating the rate of infection positive in the origin population, from the system (2), we obatain the basic

reproduction number R0 =
β µ(1−u)

(u+µ)(γ +µ)
. That is the average number of secondary infection when

one single infected individual where every one is susceptible [13, 14]. R0 depending on the rate of
infection, the rate of individual recovery and the effectiveness of vaccination. It can be used as a
threshold to see outbreaks or not. if it biger than one, then the outbreak of measles disease occure.
But, if it less than one, the deases is extinction.

2.2 Existence and Stability Analysis

To obtain an equilibrium point, we assume that the vaccination control parameter u is constant.
By making zero the right segment of the system (2), we get two different constant solutions. The first
solution is diseases free equilibrium (DFE) where the infection compartment is zero and the second
solution is endemic equilibrium (EE) that is a solution where all compartments are not zero. The
expressions of diseases free and endemic equilibrium points are given by:

DFE :=
{

S =
µ

(u+µ)
, I = 0

}
(3)

EE :=
{

S =
γ +µ

β (1−u)
, I =

(R0−1)(u+µ)

β (1−u)

}
(4)

The existence and stability of each equilibria are presented in the theorem 2.1.

Theorem 2.1. Existance and stability of equilibria

(i) The existance of DFE is not depand on R0. If R0 < 1 then the DFE is locally asymtotically
stable. If R0 > 1 then the DFE is unstable saddle.
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(ii) The point of EE exist and locally asymtotically stable if R0 > 1. If R0 < 1 the EE is not exist.

PROOF. The following is proof of the theorem 2.1

(i) The Jacobian matrix that is evaluated on the DFE is

J1 =

 −(µ +u) −β µ(1−u)
µ +u

0
β µ(1−u)

µ +u
− (µ + γ)

 (5)

The eigenvalues of J1 are λ1 =−(u+µ) and λ2 = (R0−1)(γ +µ) in term of R0. We can see
that the λ1 always negative and the eigenvalues λ2 < 0 if R0 < 1. Thus the DFE point is locally
asymtotically stable.

(ii) The Jacobian matrix J2 that is evaluated on the point of EE is

(
−(µ +u+(R0−1)(µ +u)) −(γ +µ)

(R0−1)(µ +u) 0

)
(6)

The characteristic polynomials of the Jacobian matrix are evaluated on EE is

P(λ ) = λ
2 +R0(u+µ)λ +(R0−1)(u+µ)(γ +µ) (7)

Suppose R0 > 1. We can see that the coeffisien of P(λ ) are positive. It shows that the sum of
the polynomial roots is negative and the multiplication of the roots is positive. As a result, the
two roots of the polynomial are negative then the equilibrium EE is locally asymtotically stable

.

2.3 Optimal Control Problem

Our goal in this model is to minimize the number of individuals infected with measles virus. We
define the objective function of an optimal control problem as follows:

Z= min
u

∫ Tf

0
I(t)+

1
2

αu2(t)dt (8)

subject to system (2) where α is relative weight associated with the cost of vaccination. While control
u is the proportion of individuals susceptible that is vaccinated per unit time. To obtain the optimal
condition, we use Pontraigan’s maximum principle [15, 16].

Theorem 2.2. If u∗ is an optimal control corresponding to state S∗ and I∗ which minimize the objec-
tive functional (8), then there exist an adjoint variables λ1 and λ2 which satisfy:{

λ ′1 = β (λ1−λ2)(1−u)I +λ1(µ +u)
λ ′2 = β (λ1−λ2)(1−u)S+λ2(γ +µ)−1 (9)

and the transversality conditions λ1(Tf ) = λ2(Tf ) = 0. Furthermore, we obtain the optimal control
as

u∗ = min
{

max
(

0,
Sλ1−β (λ1−λ2)SI

α

)
,umax

}
(10)
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PROOF. We define the Hamiltonian function H which contains the integration of the objective func-
tion and the inner product between the adjoin variables and the right hand side of the system (2) as
follows:

H = I +
1
2

αu2 +λ1(µ−β (1−u)SI− (u+µ)S)+λ2(β (1−u)SI− (γ +µ)) (11)

by using Pontriagin’s maximum principle [16], we obtain an adjoint equation (9) corresponding to
the system (2) that is taken from partial derivative of the Hamiltonian

λ
′
1 =−

∂H

∂S
, λ

′
2 =−

∂H

∂ I
(12)

where the transversality conditions are λ1(Tf ) = λ2(Tf ) = 0. The optimality condition is obtained
from differentiate Hamiltonian H with respect to u, such that we have

∂H

∂u
= αu−Sλ1 +β (λ1−λ2)SI = 0 (13)

and solving (13), we obtain that

u∗ =
Sλ1−β (λ1−λ2)SI

α
(14)

We consider that 0≤ u≤ umax on the control to yield (10) as required .
We obtain the optimal system as follows:

dS
dt

= µ−β (1−u∗)SI− (u∗+µ)S
dI
dt

= β (1−u∗)SI− (γ +µ)I

S(0) = S0, I(0) = I0
λ ′1 = β (λ1−λ2)(1−u∗)I +λ1(µ +u∗)
λ ′2 = β (λ1−λ2)(1−u∗)S+λ2(γ +µ)−1
λ1(Tf ) = λ2(Tf ) = 0

(15)

Parameters Description Unit Value
R0 < 1 R0 > 1

µ natural mortality rate time−1 0.01 0.01
β infection rate time−1 0.2 0.3
γ natural recovery rate time−1 0.03 0.01
u vaccination rate time−1 0.06 0.05
α vaccination cost - [0,1] [0,1]

Table 1: The description and value of parameters

3 Numerical Simulation

In this section, we represent a numerical simulation of the infection dynamics of the spread of
measles with constant control and with optimal control on vaccination (u∗) by using the 4th order
Runge Kutta scheme. Note that the optimal control simulation on vaccination uses data and initial
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conditions in the table 2.3 that satisfy R0 > 1. The meaning is the infection population and susceptible
are not going to zero. The performance of optimal control is presented with a variety of costs.

In figure 2(a), we can see the extinction of infected humans. Infection rate β = 0.2 per unit time
and the effectiveness of vaccination is given any value. Figure 2(a) confirm the theorem 2.1-(i) which
states that if the basic reproduction number is less than one (R0 < 1), then the infected population goes
to zero, while the susceptible population is heading towards its equilibrium. However, in figure 2(b)
we change the value of the infection rate parameter β = 0.3 and the rate of disease recovery γ = 0.01.
In addition, the effectiveness of vaccination dropped to u = 0.05 per unit time. This parameter change
is conducted to confirm the outbreak of measles when the rate of infection increases and the rate
of recovery and vaccination decreases such that the basic reproduction number is bigger than one
(R0 > 1) . The result we can see in the figure 2(b) that the proportion of humans infected is higher
than susceptible. It should be noted that the proportion of susceptible will never be zero because
humans who recover from measles will not be re-infected. This condition confirms the theorem 2.1-
(ii) which states that if the basic reproduction number is greater than one, which is equivalent to a high
infection rate while vaccine effectiveness is low, the endemic equilibrium is stable that equivalent with
the infected population is increasingly large.
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0.2

Susceptible
Infection

(a)

0 200 400 600
0
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0.1

0.15
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0.3
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Infection
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Figure 2: The dynamic of susceptible and infection with the different condition (a) R0 < 1 with initial
condition S(0) = 0.05, I(0) = 0.2; (b) R0 > 1 with initial condition S(0) = 0.05, I(0) = 0.01.

In figure 3(a), we can see that the cost of the vaccination program is directly proportional to
the effectiveness of the vaccine. If the cost of a vaccination program is high, the effectiveness of
vaccination is also high, but if the cost of the vaccination program is low, then the effectiveness of
the control will also be low. For example, the lowest cost proportion in the figure 3(a) is α = 0.5
corresponds to low effectiveness of vaccination (blue line), but the proportion of costs is high α = 1
corresponds to the effectiveness of high vaccination rates (black line). The highest effectiveness of
vaccination in the figure 3(a) is around t = 10, as a result the proportion of humans infected has
declined, 3(c), while the proportion of susceptible humans is increasing 3(b). When the proportion
of vaccination effectiveness runs out, at t = 100, the infected human population rises and goes to
its equilibrium (see figure 3(c)). But even though the effectiveness of vaccination has run out, the
proportion of humans recovering will still rise to its equilibrium (see 3(b)). This is because humans
who have been exposed to measles cannot be re-infected.

Our simulation results indicate that initial vaccination with lower costs is very effective in reduc-
ing the proportion of humans infected. We can see a comparison between the proportion of humans
infected with optimum vaccination control and with constant vaccination in figure 2. At t = 80 the
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proportion of infected humans who use constant vaccination (see 2(b)) is higher than the proportion
of infected humans who use the optimum vaccination control (see figure 3(c)). The results of this
simulation suggest that vaccination does not need to be continuous provided the initial immunization
is carried out with low effectiveness. Regarding the effectiveness of vaccination, we can see that opti-
mum control u∗ depends on the proportion of humans infected and humans susceptible (see equation
(10)). This implies a biological meaning that the optimal vaccination must pay attention to the pro-
portion of humans infected and susceptible in the field. The vaccination cannot be equated in each
region, sometimes vaccination cost is high enough if the number of patients and the rate of infection
is high. There are also areas that are given vaccinations at a low cost, or even not vaccinated at all.
This needs to be a concern for policy makers to determine the cost of vaccination programs in areas
that will be given vaccines.

(a) (b) (c)

Figure 3: The simulation with various of cost; (a) control performance; (b) susceptible dynamics with
initial condition S(0) = 0.02; (c) infected dynamics with initial condition I(0) = 0.1

4 Conclusion

The deterministic mathematical model that describes the spread of measles diseases involving
the control factor of vaccination has been introduced here. This model can explain well the phe-
nomenon of the measles spread and its relationship to vaccination programs. The correlation between
disease outbreak and the basic reproduction number is discussed in the theorem 2.1 which states that
disease can spread if the infection rate is higher than the effectiveness of vaccination and recovery
rate (R0 > 1). Conversely, if the effectiveness of vaccination and recovery rate is higher than the rate
of infection (imply (R0 < 1)), then the proportion of infected will go to zero such that the spread
of the disease can be stopped. But the high effectiveness of vaccination is directly proportional to
the costs used. Theorem 2.2 recommends optimal control in dealing with the spread of measles by
vaccination. From the equation (10) we can see optimal control formulations that depend on the cost
of the vaccination program, the vaccinated individuals and the rate of infection. When the infection
rate is high, we suggest that immunization be carried out more intensively even though the program
can cost a lot. The more susceptible individuals who are vaccinated will be able to reduce infected
individuals so that the outbreak does not occur.
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