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ABSTRACT  
 

This paper presents the Mean-Variance (MV) portfolio selection using cluster analysis. Stocks are 

categorized into various clusters using K-Means and K-Medoids clustering. Based on the Sharpe ratio, 

a stock from each cluster is chosen to represent that cluster. Stocks with the greatest Sharpe ratio are 

those that are chosen for each cluster. With the guidance of the MV portfolio model, the optimum 

portfolio is identified. When there are many stocks included in the formation of the portfolio, we may 

efficiently create the optimal portfolio using this method. For the empirical study, the daily return of 

stocks traded on the Indonesia Stock Exchange that are part of the LQ-45 index from August 2022 to 

January 2023 was used to establish the weight of the portfolio, while the fundamental data of LQ-45 

stocks for 2022 were used to build clusters. Using K-Means and K-Medoids clustering, this study's 

results show that LQ-45 stocks are divided into six groups. Additionally, it is obtained that for risk 

aversion γ < 15, portfolio performance with K-Means clustering is better than portfolio performance 

with K-Medoids clustering. In contrast, for risk aversion γ ≥ 15, portfolio performance with K-Medoids 

clustering is better than portfolio performance with K-Means clustering. 

Keywords: cluster analysis, portfolio, return, risk, Sharpe ratio 

 

 

1 Introduction  

A fundamental tenet of the design of the mean-variance portfolio model is the use of 

statistical measures derived from historical data returns, specifically the mean, variance, and 

covariance [1]. The portfolio model put out by Markowitz expresses the trade-off between 

portfolio return and risk using the mean and variance of asset returns. This model is described 

as a conflicting objective optimization problem. In other words, while portfolio risk, which is 

represented by the variance of returns from various assets, must be minimized, the expected 

returns of the portfolio must be maximized. 

The Markowitz portfolio model has been solved and developed through a number of 

studies. All of this was done in order to modify the current model to accommodate for changes 

in financial market variables and capital market practitioners' needs [2]. The effectiveness of 

choosing the best portfolio in terms of time is one of the areas of portfolio selection study. This 

makes sense given that there are more conceivable portfolio structures the more stocks that 

make up a portfolio. By employing cluster analysis to categorize stock data, it is possible to 

reduce the enormous number of securities that are involved in portfolio selection [3]. A 

statistical analysis called a cluster analysis seeks to divide items into a number of groups that 

coincide or differ from one another in terms of certain criteria. Objects in one cluster will have 

a closer relationship than those in other clusters [4,5]. 

http://www.jram.com/
mailto:la.gubu@uho.ac.id


105 CLUSTER ANALISIS FOR MEAN-VARIANCE PORTFOLIO SELECTION: A COMPARISSON … 

 

Cluster analysis has been widely used in recent portfolio selection research. Guan and 

Jiang [6] proposed a method for optimizing portfolio selection using clustering approaches. 

This approach uses the clustering technique to separate the stock data into various groups. Then, 

to build an effective portfolio, stocks were chosen from each group. According to the study's 

findings, a portfolio comprised of stocks from each cluster has the lowest risk when compared 

to other portfolios of the same size for a given level of risk. A portfolio optimization approach 

based on average linkage and single linkage clustering was proposed by Tola et al. [7]. 

According to the experimental findings, the clustering method can improve the portfolio's 

dependability in terms of the ratio of predicted to actual risk. 

Using clustering methods and fuzzy optimization models, Chen and Huang [8] proposed 

portfolio optimization. This method divides stock data into groups using clustering techniques, 

and then uses a fuzzy optimization model to establish the best investment composition for each 

group. 

The Markowitz model and clustering algorithms are the foundation of Nanda et. al.’s [9] 

investigation of a portfolio selection model. Stock data is divided into categories using the 

clustering techniques k-means, fuzzy c-means (FCM), and self organizing maps (SOM). Stocks 

are chosen from the clusters that have formed to create the portfolio. The stock that has the best 

performance within a cluster is the stock that is chosen within that cluster. However, situations 

where particular transient macroeconomic factors have an instantaneous impact on market 

performance are also taken into consideration. The purpose of the portfolio that was created 

was to reduce risk and evaluate portfolio results against a benchmark index, the Sensex. 

The FCM algorithm and the multi-objective genetic algorithm were used to create a 

portfolio selection model (MOGA) was proposed by Long et. al. [10]. This method involves 

classifying the stocks into k clusters, selecting m stocks to represent each cluster, and then using 

these stocks to build an effective portfolio using MOGA. The findings demonstrate how 

effective the suggested strategy is at creating an effective portfolio. 

The literature study leads to the conclusion that there are three stages that must be 

completed in order to maximize both time efficiency and the number of stocks that will 

construct the optimum portfolio. Stocks are first divided into various groupings. The second 

step is choosing the stocks that will make the optimal portfolio. The proportion of each stock 

in the optimum portfolio is determined in the third stage. We employ K-Means and K-Medoids 

clustering in this paper as our contribution to group stocks into several clusters. Our second 

contribution is creating an optimum portfolio by choosing representative stocks for each cluster 

according to the Sharpe ratio. 

The rest of the paper is organized as follows. We provide the research methodology in 

Section 2. Results and Discussion are provided in Section 3. Lastly, we provide Conclusions in 

Section 4. 

2 Research Methods  

2.1 Data Source 

There are two kinds of data used in this study. The first is the fundamental data stocks of 
LQ-45 index on 2022 that was obtained through the https://indopremier.com. There are 13 
fundamental data measures for each stock taken, namely:  

1. Share Out.  

2. Market Capital. 

3. Total Aset.  

4. Total Equity.  

5. Revenue.  

6. Net Profit.  

https://indopremier.com/
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7. Earning Before Interest, Taxes, Depreciation, and Amortization (EBITDA).  

8. Earning Per Share (EPS).  

9. Price Earning Ratio (PER),  

10. Book Value Per Share (BVPS). 

11. Price to Book Value Ratio (PBV). 

12. Return on Asset (ROA).  

13. Return on Equipment (ROE)  

These data are used for clustering LQ-45 stocks. 

The second data used in this study is the daily closing price data for LQ-45 stocks for the 

period August 2022 – January 2023. This data is used to determine portfolios weight. 

2.2 Portfolio Mean-Variance  

In the financial world, the term return becomes a very important part because it can be 

used to identify the actual price situation. First, for investors, returns clearly describe price 

changes. Second, for practitioners, returns are theoretically and empirically more attractive in 

describing statistical properties, for example stationarity and events related to price changes 

[11].  

Let 𝑝𝑖𝑡  is the price of the i-th asset at time t and it is assumed that there is no distribution 

of profits (dividends). Return of i-th asset for one period, namely from time 𝑡 − 1 to 𝑡 is [12]:  

𝑟𝑖𝑡 =
𝑝𝑖𝑡 − 𝑝𝑖(𝑡−1)

𝑝𝑖(𝑡−1)
=

𝑝𝑖𝑡
𝑝𝑖(𝑡−1)

− 1 (1) 

Expected return of i-th asset is the average of 𝑟𝑖𝑡 for all 𝑡, that is  

𝐸[𝒓𝑖] =
1

𝑛
∑𝑟𝑖𝑡

𝑛

𝑡=1

= 𝑟𝑖 
(2) 

where 𝑛 is the time period. 

Suppose that an investor wants to invest in m assets, 𝑟𝑖 is the i-th asset return, where  𝑖 =
1, … ,𝑚 , 𝒓′ = (𝑟1, … , 𝑟𝑚)  represents the return of each asset in the portfolio. Furthermore, 

suppose that the stocks return data of portfolio is presented in Table 1.  

Table 1: Portfolio Return Data 

 𝑡1 𝑡2 … 𝑡𝑗  … 𝑡𝑛 

𝒓1 𝑟11 𝑟12 … 𝑟1𝑗 … 𝑟1𝑛 

𝒓2 𝑟21 𝑟22 … 𝑟2𝑗 … 𝑟2𝑛 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝒓𝑘 𝑟𝑘1 𝑟𝑘2 … 𝑟𝑘𝑗 … 𝑟𝑘𝑛 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
𝒓𝑚 𝑟𝑚1 𝑟𝑚2 … 𝑟𝑚𝑗  … 𝑟𝑚𝑛 

or in the form of a matrix that table can be presented as  

𝒓 =

(

  
 

𝒓1
𝒓2
⋮
𝒓𝑘
⋮
𝒓𝑚)

  
 
=

(

 
 
 

𝑟11 𝑟12 ⋯ 𝑟1𝑗 ⋯ 𝑟1𝑛
𝑟21 𝑟22 ⋯ 𝑟2𝑗 ⋯ 𝑟2𝑛
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
𝑟𝑘1 𝑟𝑘2 ⋯ 𝑟𝑘𝑗 ⋯ 𝑟𝑘𝑛
⋮ ⋮ ⋮ ⋮ ⋯ ⋮
𝑟𝑚1 𝑟𝑚2 ⋯ 𝑟𝑚𝑗 ⋯ 𝑟𝑚𝑛)

 
 
 

 

The expected value of 𝒓 is: 
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𝐸(𝒓) = [
𝐸(𝒓1)
⋮

𝐸(𝒓𝑚)
] = [

𝜇1
⋮
𝜇𝑚
] = 𝝁 (3) 

and the covariance matrix is  

Σ = E[(𝒓 − 𝝁)(𝒓 − 𝝁)′] = 𝐸([

(𝑟1 − 𝜇1)
⋮

(𝑟𝑝 − 𝜇𝑚)
] [(𝑟1 − 𝜇1) ⋯ (𝑟𝑚 − 𝜇𝑚)])  

 

            = [

𝜎11 𝜎12 … 𝜎1𝑚
𝜎21 𝜎22 … 𝜎2𝑚
⋮ ⋮ ⋱ ⋮
𝜎𝑚1 𝜎𝑚2 … 𝜎𝑚𝑚

] (4) 

The portfolio return is the weighted average of the return of each asset in the portfolio [13], that 

is:  

𝑅𝑝 = 𝑤1𝑟1 +⋯+𝑤𝑚𝑟𝑚 = 𝒘′𝒓 (5) 

where 𝑤𝑖 , 𝑖 = 1, 2, … ,𝑚 states the proportion (weight) of capital invested in the i-th asset 

which are formulated as   

𝒘′ = (𝑤1, … , 𝑤𝑚) and 𝒓 = (𝑟1, … , 𝑟𝑚) (6) 

In investing on financial assets, investors are assumed to invest all of their capital in assets, 

so that ∑ 𝑤𝑖
𝑚
𝑖=1 = 1 . In addition, investors are also faced with an element of uncertainty, 

therefore investors can only estimate the amount of expected return and the probability that the 

actual results will deviate from the expected results (risk). The expected return rate of a portfolio 

is the expected value of the portfolio return, namely:  

𝝁𝑝 = 𝐸(𝑅𝑝) = 𝐸(𝒘′𝒓 ) = 𝒘
′𝝁 = ∑ 𝑤𝑖

𝑚
𝑖=1 𝜇𝑖  (7) 

While the portfolio variance is: 

𝝈𝑝
2 = 𝑉𝑎𝑟 (𝑅𝑝) = 𝑉𝑎𝑟 (𝒘′𝒓) = 𝒘

′Σ 𝒘 =∑∑𝑤𝑖𝑤𝑗

𝑚

𝑗=1

𝑚

𝑖=1

𝜎𝑖𝑗 
(8) 

where 𝜎𝑖𝑗 is the covariance of asset i and asset j. 

The mean and variance approach are the cornerstone of Markowitz's portfolio theory, 

where mean denotes expected return level and variance denotes the risk level. Markowitz's 

portfolio theory is hence also referred to as the mean-variance (MV) model. In order to choose 

and create the best portfolios, this approach stresses efforts to maximize expected return and 

minimize risk (variance). By resolving the following optimization issue, the mean-variance 

portfolio can be created [3]:   

max
𝑤
𝒘′𝝁 −

𝛾

2
𝒘′Σ𝒘 (9) 

and satisfy the condition  

𝒘′𝒆 = 1 (10) 

where w stands for portfolio weight, 𝝁 is the mean vector, Σ is the covariance matrix, e is the 

column matrix where all elements are 1 and 𝛾 ≥ 0  is the risk aversion parameter, which is a 

relative measure of risk aversion. According to [3], the solution of issue (9) and satisfy 

condition (10) is  

𝒘(𝝁, Σ) =
1

𝛾
(Σ−1 − Σ−1𝒆(𝒆′Σ−1𝒆)−1𝒆′Σ−1)𝝁 + Σ−1𝒆(𝒆′Σ−1𝒆)−1 (11) 
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Equation (11) shows that the optimal portfolio (𝒘) is determined by the inputs of 𝝁 and Σ. 

2.2 Stocks Clustering  

Because there are so many stocks on the market, determining the investment proportion 

of each share is difficult. Data mining techniques must be used to address this. One of the data 

mining techniques available is cluster analysis. Cluster analysis is a statistical technique that 

attempts to classify objects into groups with similar or dissimilar properties. Each group in this 

analysis is homogeneous among members, or the variation of objects in the formed group is as 

small as possible. Objects in one cluster are more similar to those in another.  

In the literature, there are numerous cluster techniques. In this study, K-Means and K-

Medoids clustering will be used. The two clustering methods will be discussed briefly in the 

following sections. 

2.2.1 K-Means Clustering  

K-Means cluster analysis is a cluster partition analysis method that aims to group data 

into two or more groups. In accordance with the characteristics of cluster partition analysis, in 

this method, each data must enter into one of the clusters, and it is possible for each object 

belonging to a certain cluster at one stage of the process to move to another cluster at the next 

stage. 

K-Means cluster analysis partitions n objects into k groups or clusters. The value of k is 

predetermined where k < n. Each cluster has a mean (average) of the objects in a cluster which 

is called the centroid (cluster center). The allocation of objects into a cluster is based on the 

distance between the object and the closest cluster mean. The K-Means clustering method starts 

with determining the desired k value, then generating the k centroid (mean) of the initial cluster 

that is chosen randomly. Then the objects are allocated to the cluster with the nearest centroid 

where in the new cluster formed the new centroid is iteratively calculated. According to Jain 

and Dubes [14], cluster analysis using the K-Means method is generally carried out with the K-

Means algorithm as follows: 

1. Choose the desired k number of clusters. 

2. Set the initial k centroids (𝑐1, … , 𝑐𝑘 ) randomly.   

3. Calculate the distance between each object (𝑥𝑗) and each centroid (𝑐𝑖).  

4. Group objects by closest distance to centroid (𝑐𝑖). 
5. Calculate the new centroid point, namely the mean of each cluster that has been formed. 

6. If the centroid changes, return to step 3. The iteration continues until the centroid does not 

change or until the objects do not move clusters anymore. The final centroid is obtained 
(𝑐1, … , 𝑐𝑘 ) where each object has been grouped into k clusters based on the closest distance 

to the centroid of each cluster. 

The K-Means algorithm attempts to find the cluster's center, namely the centroid 

(𝑐1, … , 𝑐𝑘 ) so that the sum of the squares of the distances between objects (𝑥𝑗)   and each 

centroid (𝑐𝑖) in the cluster is minimum (within-cluster sum of squares, WSS).  

𝑑 =∑[ min
𝑗=1,…,𝑛

𝐷(𝑋𝑗 , 𝐶𝑗)]
2

𝑘

𝑖=1

 (12) 

The distance function D in this case is used to measure the object's distance to the centroid. 

Thus, function D can be written as follows: 

𝑟𝑖 = 𝐸[𝑟𝑖𝑡] =
1

𝑛
∑𝑟𝑖𝑡

𝑛

𝑡=1

 (13) 

where   
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𝑋𝑗 is the j-th object, 𝑗 = 1,… , 𝑛 

n denotes the number of variables. 

𝑥𝑗𝑧 is the z-th observation in the j-th object, where 𝑧 = 1,… , 𝑙 

𝑙 indicates the number of observations in each object. 

and 

𝐶𝑖 is the centroid of the i-th cluster, 𝑖 = 1, … , 𝑘  

k indicates the number of clusters. 𝐶𝑖 = {𝑐𝑖1, … , 𝑐𝑖𝑙 }  
𝑐𝑖𝑧 is the centroid (mean) of the z-th observation of all cluster members in the i-th cluster, 

𝑖 = 1,… , 𝑙.  
𝑐𝑖𝑧  is calculated using the following formula:  

𝑐𝑖𝑧 =
∑ 𝑥𝑗𝑧
𝑛𝑖
𝑗=1

𝑛𝑖
 (14) 

𝑛𝑖 is the number of objects located in the i-th cluster. 

In step 4, the K-Means method allocates objects to each cluster based on the distance between 

the object and the centroid of each existing cluster. Objects are included in the cluster with the 

centroid that is closest to the object. Allocation can be expressed as follows:  

𝑎𝑗𝑖 = {
1, 𝑖𝑓 𝑑 = min{𝑑(𝑋𝑗, 𝐶𝑖)}

0,                                 others 
 (15) 

where 𝐷(𝑋𝑗 , 𝐶𝑖) is the Euclidean distance of the j-th object to the i-th cluster centroid. 𝑎𝑗𝑖 is the 

membership value of the j-th object in the i-th cluster. If a j-th object is a member of an i-th 

cluster, then the value 𝑎𝑗𝑖 = 1, otherwise 𝑎𝑗𝑖 = 0.  

2.2.2 Clustering K-Medoids  

K-Medoids cluster analysis, like K-Means cluster analysis, divides a data set into k groups 

or clusters [15]. Each cluster in the K-Medoids clustering is represented by a cluster data point. 

These points are referred to as cluster medoids. A medoid is a cluster entity with the smallest 

average difference between it and all other cluster members. This is the cluster's epicenter. 

These entities can be viewed as representative examples of cluster members that may be useful 

in certain situations. Remember that the center of a cluster is determined by the average value 

of all cluster data points when using k-means cluster analysis. K-Medoid is a reliable substitute 

for K-Means cluster analysis. Because the medoid is used as the cluster's center, the algorithm 

is less sensitive to outliers than K-Means. The most common cluster analysis approach for K-

Medoids is Partitioning Around Medoids (PAM) [15]. 

The PAM algorithm searches a data set of observations for k representative objects or 

medoids. After locating a collection of k medoids, clusters are formed by assigning each 

observation to the closest medoid. The objective function is then calculated by swapping each 

selected medoid and non-medoid data point. The sum of all object dissimilarities to their nearest 

medoid is the objective function. The exchange phase tries to improve cluster analysis 

efficiency by swapping selected (medoids) and unselected objects. If the objective function can 

be reduced by swapping selected objects with unselected objects, a swap is performed. This 

process is repeated until the objective function can no longer be deduced. The goal is to find k 

representative objects that have the fewest observable differences from their nearest 

representative objects. 

Kaufman and Rousseeuw [15] describe the steps of the PAM cluster analysis algorithm 

in detail as follows: 

1. Choose k objects to be medoids, or use these objects as medoids if they are provided;  

2. If the dissimilarity matrix is not available, calculate it;  
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3. Assign each object to the medoid closest to it;  

4. Determine whether one of the cluster objects reduces the average dissimilarity value; if so, 

choose the entity that reduces the most as the medoid for this cluster;  

5. Return to step 3 if at least one medoid has changed; otherwise, stop the algorithm.  

2.3 Sharpe Ratio  

Following the formation of the clusters, the performance of each stock in each cluster is 

evaluated using the Sharpe ratio (SR). The Sharpe ratio, also known as the Sharpe index, is a 

measure of the excess return in assets per unit of risk. The Sharpe ratio measures how well 

investors are compensated by the return on assets for the risk they are taking. The Sharpe ratio 

is calculated by dividing the difference between the stock return r and the risk return free rate 

(𝑟𝑓) by the standard deviation of stock returns (𝜎), or it can be written as [16]:  

𝑆𝑅 =
𝑟 − 𝑟𝑓

𝜎
 

(16) 

The higher a stock's Sharpe ratio, the better its performance. 

By replacing stock return r with portfolio return (𝑟𝑝) and standard deviation of stock (𝜎) 

portfolio risk (𝜎𝑝), the Sharpe ratio can also be used to measure portfolio performance.  

2.4 Procedures  

The following procedures were used to conduct this study: 

1. Collect fundamental data stocks of LQ-45 index for 2022 through https://indopremier.com.  

2. Collect daily closing price data stocks of LQ-45 index for the period August 2022 - 

January 2023 through https://finance.yahoo.com.  

3. Collect data Bank Indonesia rate for 2022 through https://www.bi.go.id  

Bank Indonesia rate data is used as the risk return free rate. 

4. Calculate the return, risk and Sharpe ratio for each stock based on the data obtained in step 

2.  

5. Clustering LQ-45 stocks using K-Means and K-Medoids clustering based on the data 

obtained in step 1. 

The number of clusters in the study was 6 clusters for each clustering method. 

6. Choose a representative stock for each cluster for both clustering methods. 

Stocks with the highest Sharp ratio were chosen to represent the clusters.  

7. Determine the covariance matrix of the portfolio's stocks for two clustering methods. 

8. Determine the return and risk of portfolios.  

9. Determine weight of the portfolios formed  

10. Determine the performance of the portfolio constructed using both clustering methods.  

The performance of the two formed portfolios is measured using the Sharpe ratio 

3 Results and Discussion  

1.1. Clustering Results 

The cluster analysis used in this study was K-Means and K-Medoids clustering. Using 

cluster package in R 3.6.1, it was found that LQ-45 stocks were clustered into 6 clusters using 

K-Means and K-Medoids clustering, as shown in Table 2 and Table 3. 

 

 

 

 
 

Table 2: Cluster of Stocks with K-Means    

https://indopremier.com/
https://finance.yahoo.com/
https://www.bi.go.id/
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Cluster  Stocks 

1 BBTN BFIN BMRI BRIS BRPT BUKA CPIN  

2 ADRO AMRT ANTM ARTO ASII BBCA BBNI BBRI 

3 INCO INDF INDY INKP INTP ITMG JPFA  

4 EMTK ERAA EXCL GOTO HMSP HRUM ICBP  

5 TBIG TINS TLKM TOWR TPIA UNTR UNVR WIKA 

6 KLBF MDKA MEDC MIKA MNCN PGAS PTBA SMGR 

Table 3: Cluster of Stocks with K-Medoids   

Cluster  Stocks 

1 ADRO AMRT ANTM ARTO ASII BBCA BBNI BBRI BBTN 

2 BFIN BMRI BRIS BRPT BUKA CPIN EMTK ERAA EXCL 

3 GOTO HMSP HRUM ICBP INCO INDF INDY INKP  

4 INTP ITMG JPFA KLBF MDKA MEDC MIKA   

5 MNCN PGAS PTBA SMGR TBIG TINS      

6 TLKM TOWR TPIA UNTR UNVR WIKA      

Following the formation of these clusters, the Sharpe ratio is computed for each stock in 

each cluster produced by the two clustering methods. The risk return free rate used in the Sharpe 

ratio calculation is the Bank Indonesia rate for 2022, which is 4.0% per year. 

Using K-Means clustering, in cluster 1, when compared to the other stocks in the cluster, 

BMRI has the best performance, as indicated by the cluster's highest Sharpe ratio of 0.09566. 

As a result, BMRI stock was chosen to represent Cluster 1. Then, in cluster 2, AMRT stock  

with Sharpe ratio of 0.12326 represent the cluster. And so on, MEDC shares with a Sharpe ratio 

of 0.17017 represent Cluster 6.  

Clustering using K-Medoids, on the other hand, discovered that in cluster 1, AMRT stock 

has outperformed the other stocks in the cluster, as indicated by the highest Sharpe ratio in the 

cluster, which is 0.12326. As a result, AMRT stock is used to represent Cluster 1. Then, in 

cluster 2, BMRI stock represents cluster 2 with a Sharpe ratio of 0.09566. And so forth, UNVR 

stock with a Sharpe ratio of 0.00133 belongs to Cluster 6. 

If we pay further attention, it turns out that there are four stocks which besides being cluster 

representation in the K-Mean clustering are also cluster representative in the K-Medoids 

clustering. These stocks are BMRI, AMRT, UNVR, and MEDC. 

Table 4 and Table 5 show the representation of each cluster in the two clustering methods in 

full detail. 
 

Table 4: Stock Representation of Cluster with K-Means Clustering   

Cluster Representation Return Risk Sharpe Ratio 

1 BMRI 0.00184 0.01607 0.09566 

2 AMRT 0.00351 0.02596 0.12326 

3 INCO 0.00147 0.02263 0.05118 

4 EXCL 0.06468 0.82019 0.07849 

5 UNVR 0.00033 0.01690 0.00113 

6 MEDC 0.00698 0.03922 0.17017 

Table 5: Stock Representation of Cluster with K-Medoids Clustering   

Cluster Representation Return Risk Sharpe Ratio 

1 AMRT 0.00351 0.02596 0.12326 

2 BMRI 0.00184 0.01607 0.09566 

3 ICBP 0.00108 0.01411 0.05471 

4 MEDC 0.00698 0.03922 0.17017 

5 SMGR 0.00125 0.01915 0.04907 

7 UNVR 0.00033 0.01690 0.00113 

3.2 The Comparison of Portfolios Performance 
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The MV portfolio model is used in this study to determine the optimal portfolio. The 

initial step is to calculate portfolio weightings for different levels of risk aversion 𝛾. Stocks that 

represent each cluster for the two clustering methods are used, as shown in Table 2 and 3. Table 

6 and Tables 7 show the portfolio weights that resulted from the two clustering methods. 

Table 6: Portfolio Weight with K-Means Clustering 

𝜸 BMRI AMRT INCO EXCL UNVR MEDC 

0.5 -1.97841 6.11290 -1.81195 0.17791 -8.04430 6.54386 

1 -0.81753 3.10331 -0.84211 0.08891 -3.83737 3.30478 

2 -0.23708 1.59852 -0.35720 0.04441 -1.73390 1.68524 

5 0.11118 0.69565 -0.06625 0.01771 -0.47181 0.71352 

10 0.22727 0.39469 0.03074 0.00881 -0.05112 0.38961 

15 0.26597 0.29437 0.06307 0.00585 0.08911 0.28164 

20 0.28531 0.24421 0.07923 0.00437 0.15923 0.22766 

25 0.29692 0.21411 0.08893 0.00348 0.20130 0.19527 

30 0.30466 0.19405 0.09539 0.00288 0.22934 0.17367 

Table 7: Portfolio Weight with K-Medoids Clustering   

𝜸 AMRT BMRI ICBP MEDC SMGR UNVR 

0.5 5.87584 -1.00589 -3.72310 6.96901 -0.76188 -6.35397 

1 2.99140 -0.41307 -1.68873 3.49734 -0.28993 -3.09701 

2 1.54918 -0.11665 -0.67154 1.76150 -0.05395 -1.46854 

5 0.68384 0.06119 -0.06123 0.72000 0.08764 -0.49145 

10 0.39540 0.12048 0.14221 0.37283 0.13483 -0.16575 

15 0.29925 0.14024 0.21002 0.25711 0.15057 -0.05719 

20 0.25118 0.15012 0.24393 0.19925 0.15843 -0.00291 

25 0.22233 0.15605 0.26427 0.16453 0.16315 0.02966 

30 0.20310 0.16000 0.27784 0.14139 0.16630 0.05138 

In the portfolio weighting using the K-Mean clustering results as presented in Table 6, it 

can be seen that for risk aversion 𝛾 = 0.5, the stock weight with the highest Sharpe ratio, 

namely AMRT stock has the largest weight, which is 6.11290, while the stock weight with the 

lowest Sharpe ratio, namely UNVR stocks has the smallest weight of -8.04430 (short selling). 

When 𝛾 < 15, as the value of risk aversion rises 𝛾, so will the weight of each stock in the 

portfolio and the weight of all stocks making up the portfolio becomes positive when 𝛾 = 15. 

The portfolio weighting using the K-Medoids clustering results received the same fate, as 

shown in Table 7. 

Based on weights, mean vector, and covariance matrix of the stocks that construct the 

portfolio, then return, risk, and Sharpe ratio of the two portfolios can be determined as presented 

in Table 8 and Table 9. 

Table 8: Return, Risk, and Sharpe Ratio of Portofolio with K-Means Clustering  

𝜸 Return Risk  Sharpe Ratio 

0.5 0.06971 0.36891 0.18814 
1 0.03572 0.18469 0.19173 
2 0.01872 0.09281 0.19840 
5 0.00852 0.03840 0.21391 

10 0.00512 0.02133 0.22578 
15 0.00399 0.01631 0.22577 
20 0.00342 0.01414 0.22037 
25 0.00308 0.01301 0.21333 
30 0.00286 0.01235 0.20630 
50 0.00240 0.01133 0.18488 
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100 0.00206 0.01087 0.16143 
1000 0.00176 0.01072 0.13523 

Table 9: Return, Risk, and Sharpe Ratio of Portfolio with K-Medoids Clustering 

𝜸 Return Risk  Sharpe Ratio 

0.5 0.06037 0.34313 0.17505 

1 0.03096 0.17172 0.17848 

2 0.01625 0.08616 0.18500 

5 0.00742 0.03529 0.20160 

10 0.00448 0.01905 0.21905 

15 0.00350 0.01412 0.22605 

20 0.00301 0.01192 0.22657 

25 0.00272 0.01076 0.22381 

30 0.00252 0.01007 0.21968 

50 0.00213 0.00897 0.20287 

100 0.00183 0.00846 0.18024 

1000 0.00157 0.00829 0.15207 

Portfolio performance with K-Mean clustering as presented in Table 8 can be seen that 

for 𝛾 = 0.5  the Sharpe ratio is 0.18814, then increases to 0.19173 for 𝛾 = 1, increases to 

0.19840 for 𝛾 = 2, continues to increase to 0.22578 for 𝛾 = 10. Sharpe ratio starts to decrease 

for 𝛾 = 15, namely to 0.22577, decreases again to 0.22037 for 𝛾 = 20, decreases to 0.20630 

for 𝛾 = 30, continues to decrease to 0.18488 for 𝛾 = 50, decreases to 0.16143 for 𝛾 = 100 and 

finally becomes 0.13523 for 𝛾 = 1000. 

On the other hand, the resulting portfolio performance with K-Medoids clustering is as 

presented in Table 9, for 𝛾 = 0.5 the Sharpe ratio is 0.17505, then increases to 0.17848 for 𝛾 =
1, increases to 0.18500 for 𝛾 = 2, continues to increase to 0.22657 for 𝛾 = 20. The Sharpe 

ratio starts to decrease for 𝛾 = 25, becomes 0.22381, decreases again to 0.21968 for 𝛾 = 30, 

continues to decrease to 0.20287 for 𝛾 = 50, decreases to 0.18024 for 𝛾 = 100 and finally 

becomes 0.15207 for 𝛾 = 1000. In general, it can be concluded that risk aversion 𝛾 < 15, 

portfolio performance with K-Means clustering is better than portfolio performance with K-

Medoids clustering. In contrast, for risk aversion 𝛾 ≥ 15 , portfolio performance with K-

Medoids clustering is better than portfolio performance with K-Means clustering. 

4 Conclusions 

This paper shows how to integrate clustering techniques into portfolio management and 

develop a system for obtaining the best portfolio. By using clustering techniques, Stocks in 

similar categories can be easily grouped together to form a cluster. When choosing stocks, this 

can save a significant amount of time. To build the portfolio, the best performing stocks from 

each cluster are chosen as cluster representatives. The findings revealed that 45 stocks on the 

Indonesia Stock Exchange included in the LQ-45 index were grouped into six clusters using K-

Means and K-Medoids clustering. Using the MV portfolio model, the stocks representing each 

cluster are then combined to form a portfolio. Portfolio performance is compared by combining 

both clustering techniques and the MV portfolio model. 

The research results show that for risk aversion 𝛾 < 15, portfolio performance with K-

Means clustering is better than portfolio performance with K-Medoids clustering. In contrast, 

for risk aversion 𝛾 ≥ 15 , portfolio performance with K-Medoids clustering is better than 

portfolio performance with K-Means clustering. 
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