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ABSTRACT 
 

Estes (1992) stated that the set of eigen values from symmetrical matrices of Z is a set of totally real 

algebraic integers. Estes was not able to ensure that eigen values of a symmetrical matrices are integers. 

Mckee and Smyth (2007) observed more about the eigen value of symmetrical integer matrices. James 

and Chris proved that symmetrical integer matrices have eigen value with interval ranging in [-2,2]. 

Contrary to that, Martin and Wong (2009), stated that almost all integer matrices have no integer eigen 

value. Previous studies that could not show the characteristic of the eigen value made Cao and Koyunco 

studied and tried to determine the characteristic of symmetrical integer matrices for rank 2 and rank 3. 

The result shows that they have integer eigen value. In accordance to Cao and Kuyonco study, this article 

elaborates the characteristic of a symmetrical integer matrices for rank 4, and 5 to show the characteristic 

of a symmetrical integer matrices with integer eigen value for rank 1, 2, 3 and for rank 4 and 5. 

 

Keywords: symmetrical matrices, rank, polynomial characteristic, and eigen value. 

 

1. Introduction  

There have been so many studies about matrix that have been conducted by 

mathematicians because the theory of matrix as one of linier algebra branch that has an essential 

role in the study of mathematics. Particularly, those studies are about the nature and 

characteristics of a symmetric matrix 𝐴 ∈ 𝑀𝑛(𝑍). A square matrix 𝐴 = [𝑎𝑖𝑗] is called being 

symmetric if for all 𝑖  and 𝑗 , 𝑎𝑖𝑗 = 𝑎𝑗𝑖 . By considering this formula, it is clearly called a 

symmetric matrix if it is a square matrix and its each element 𝑎𝑖𝑗 = 𝑎𝑗𝑖. In other words, it fulfills 

the condition 𝐴𝑇 = 𝐴.  

The discussion about matrix cannot be separated from dimensions, row spaces, column 

spaces, matrix rank, nullity and characteristic polynomials. The characteristic polynomial will 

lead to find the eigenvalues of a matrix that fulfils the equation: det (λI −  A)  =  0.  
One of the most frequently asked in linier algebra is: if 𝐴 ∈ 𝑀𝑛×𝑛𝐴 is square matrix so 

all the eigenvalues are real. Due to its interesting discussion, many mathematicians’ studies on 

how the characteristics of a symmetric matrix over 𝑍 getting integers in its eigenvalues.  

For several years, the discussion about eigenvalues of a symmetric values keeps being 

studied by many researchers. In 1992, D.R.Estes in his paper entitled “Eigenvalues of 

Symmetric Integer Matrices” has proven that the set of eigenvalues 𝐸(𝑍) of a symmetric matrix 

over 𝑍 is showed as totally real algebraic integers. However, Estes has not been able to ensure 

that the eigenvalues from symmetric matrix 𝐴 ∈ 𝑀𝑛(𝑍) is an integer.  

Then, in 2007, James Mckee dan Chris Smyth studied deeper about the eigenvalues of 

integer symmetric matrix. In their paper, “Integer Symmetric Matrices Having All Their 
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Eigenvalues in the interval [−2,2]”. James and Chris proved that integer symmetric matrices 

that have eigenvalues in the interval [−2,2].  
On the other hand, in 2009, G. Martin and E.B Wong, Amer in their paper entitled 

“Almost All Integer Matrices Have No Integer Eigenvalues” precisely stated that almost all 

integer matrices have no integer eigenvalues.  

Due to its unsureness of the integer eigenvalues from previous related studies, Lei Cao 

and Selcuk Kuyonco in 2016 finally studied and sought to the characteristics of integer 

symmetric matrix in rank two dan three that have eigen integer, that realized on their paper: 

“Symmetric Integer Matrices Having Integer Eigenvalues”. 

2. Literature Review  

The research problem of this research is the characteristics of integer symmetric matrices 

by knowing the matrix rank. Then it will be shown that the matrix has integer eigenvalues. The 

significances of this researchers are as follows.  

1. Investigating how the characteristics of integer symmetric matrices in rank 1,2, and 3 

that have integer eigenvalues.  

2. Investigating whether the characteristics of an integer symmetric matrix in rank 4 and 5 

still fulfills the core theory in point 1.  

This study is limited to the square matrix with size 𝑛 × 𝑛 in rank 1, 2, and 3. Then, the 

matrix used in next discussion is the square matrix with size 𝑛 × 𝑛 in rank 4 and 5.  

 

Theorem 1. If 𝐴 ∈ 𝑀𝑛×𝑛 is symmetric matrix so all the eigenvalues are real. (Zdeněk Dvořák 

2016) 

Proof. 

Given 𝐴 symmetric matrix, means 𝐴 = 𝐴𝑇. If λ ∈  C is a eigenvalues from symmetric matrix 

𝐴. So, 𝐴𝑣 =  λ𝑣, 𝑣 ≠ 0, and  

𝐴𝑣̅̅̅̅ = λ𝑣̅̅ ̅ ⟹ 𝐴𝑣̅ = 𝜆̅𝑣̅ 

Because of 𝐴 is symmetric:  

𝑣̅𝑇𝐴𝑣 = 𝑣̅𝑇(𝐴𝑣) = 𝑣̅𝑇(𝜆𝑣) = 𝜆(𝑣̅ . 𝑣) 

𝑣̅𝑇𝐴𝑣 = (𝐴𝑣̅)𝑇𝑣 = (𝜆̅𝑣̅)
𝑇

𝑣 = 𝜆̅(𝑣̅ . 𝑣) 

As 𝑣 ≠ 0 means 𝑣̅ . 𝑣 ≠ 0. 

Hence, it must be 𝜆 = 𝜆̅. This means 𝜆 ∈ ℛ. 

 

Theorem 2. If 𝐴 ∈ 𝑀𝑛(𝑍) with eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛. Polynomial characteristics of 𝐴 : 

𝑃𝐴(𝜆) = det(𝜆𝐼 − 𝐴)        = 𝜆𝑛 + 𝑐𝑛−1𝜆𝑛−1 + 𝑐𝑛−2𝜆𝑛−2 + ⋯ + 𝑐1𝜆 + 𝑐0 

so : 

𝑐𝑖 = 𝐴[𝑖−𝑛],  𝑖 = 0,1, … ,  𝑛 − 1 

(Denton et al. 2022). 

Proof. 

If 𝐴 ∈ 𝑀𝑛(𝑍) with eigenvalues 𝜆1, 𝜆2, …, 𝜆𝑛. The polynomial characteristics of 𝐴 : 

𝑃𝐴(𝜆) = det(𝜆𝐼 − 𝐴) = 𝜆𝑛 + 𝑐𝑛−1𝜆𝑛−1 + 𝑐𝑛−2𝜆𝑛−2 + ⋯ + 𝑐1𝜆 + 𝑐0. 

The goal is to find the coefficients of every polynomial characteristic.  

Take 𝐴 ∈ 𝑀2(𝑍), 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
] 

So , the polynomial characteristics is: 

𝑃2(𝜆) = 𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) 

With 

𝑎11 + 𝑎22 = 𝑡𝑟𝑎𝑐𝑒(𝐴) 
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(𝑎11𝑎22 − 𝑎12𝑎21) = 𝐴[2] 

Hence, generally: 

𝑃2(𝜆) = 𝜆2 − (𝑎11 + 𝑎22)𝜆 + (𝑎11𝑎22 − 𝑎12𝑎21) = 𝜆2 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆 + 𝐴[2] 

Take  𝐴 ∈ 𝑀3(𝑍), 𝐴 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] 

So, the polynomial characteristics is: 

𝑃3(𝜆) = 𝜆3 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆 + 𝐴[2]𝜆 − 𝐴[3] 

Hence, generally, 𝑃𝐴(𝜆) = 𝜆𝑛 − 𝑐1𝜆𝑛−1 + 𝑐2𝜆𝑛−2 + ⋯ + ⋯ + (−1)𝑛𝑐𝑛 

where 𝑎𝑖 = ∑ 𝑎𝑖𝑖𝑖  is 𝑡𝑟𝑎𝑐𝑒(𝐴) and 𝑐𝑛 = det(𝐴), proves the sum of 𝑛 − 𝑚𝑖𝑛𝑜𝑟. 
 

Lemma 1. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 1. Then 𝐴 has integer eigenvalue. (Akiyama et al. 2006) 

Proof. 

Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 1. Then the characteristic polynomial of 𝐴 is: 

𝜆𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆𝑛−1 = 0 

𝜆𝑛−1(𝜆 − 𝑡𝑟𝑎𝑐𝑒(𝐴)) = 0 

𝜆 − 𝑡𝑟𝑎𝑐𝑒(𝐴) = 0 

𝜆 = 𝑡𝑟𝑎𝑐𝑒(𝐴) 

Because 𝐴 ∈ 𝑀𝑛(𝑍), so 𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝑘 ∈ 𝑍. Hence, eigenvalue 𝜆 is integers. 

The main theorem to be proved is. 

3. Result 

Theorem 3. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 2, so A has integer eigenvalue if and only if there exist 

two integers 𝑚, 𝑛 ∈ 𝑍 such that  𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝑚 + 𝑛 dan 𝐴[2] = 𝑚 ∗ 𝑛, where 𝐴[2] is the sum 

of determinants of all 2nd order principal minors of 𝐴. 

Proof. 

Since 𝐴 has rank 2, the characteristic polynomial of 𝐴 has the form: 

𝜆𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆𝑛−1 + 𝐴[2]𝜆
𝑛−2 

Based on the formula to solve the quadratic equation, it is obtained: 

𝜆1,2 =
𝑡𝑟𝑎𝑐𝑒(𝐴) ± √𝑡𝑟𝑎𝑐𝑒(𝐴)2 − 4𝐴[2]

2
 

(⇒) If there exist two integers 𝑚, 𝑛 ∈ 𝑍 such that 𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝑚 + 𝑛 dan 𝐴[2] = 𝑚 ∗ 𝑛. This 

means is 𝜆1 = 𝑚, and 𝜆2 = 𝑛. 
(⇐) If 𝐴 has integer eigenvalue, so there exists 𝑘 ∈ 𝑍 such that: 

                                                       𝑡𝑟𝑎𝑐𝑒(𝐴)2 − 4𝐴[2] = 𝑘2    (∗) 

Let 𝑚 =
𝑡𝑟𝑎𝑐𝑒(𝐴)+𝑘

2
, 𝑛 =

𝑡𝑟𝑎𝑐𝑒(𝐴)−𝑘

2
 

Look at (∗), 𝑡𝑟𝑎𝑐𝑒(𝐴)2 − 𝑘2 = 4𝐴[2] is even, so 𝑡𝑟𝑎𝑐𝑒(𝐴) dan 𝑘 are both even or odd. That 

means, 𝑚 and 𝑛 are integers. 

 

Theorem 4. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 3. If one of the following cases hold, then 𝐴 has integer 

eigenvalues. 

(𝑖) One of the eigenvalues of 𝐴 is 1 or  −1 and there exists a positive integer 𝑘 ∈ 𝑍 such that: 

[𝐴[3] − 𝐴[2]]
2

− 4𝐴[3] = 𝑘2 

(𝑖𝑖) All nonzero eigenvalues of 𝐴 are the same and 

𝐴[2] =
𝑡𝑟𝑎𝑐𝑒(𝐴)2

3
,        𝐴[3] =

𝑡𝑟𝑎𝑐𝑒(𝐴)3

27
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(𝑖𝑖𝑖) One of the nonzero eigenvalues of 𝐴 has multiplicity two and there exists a positive integer 

𝑘 ∈ 𝑍+such that: 𝑡𝑟𝑎𝑐𝑒(𝐴)2 − 3𝐴[2] = 𝑘2 

(𝑖𝑣) 𝑇𝑟𝑎𝑐𝑒(𝐴) = 0 and there exists a positive integer 𝑘 ∈ 𝑍+ and 𝑚, 𝑛 ∈ 𝑍 such that:  

𝑘 = √(𝐴[3])
2

4
+

(𝐴[2])
3

27
 

𝑚3 =
𝐴[3]

2
+ 𝑘,   𝑛3 =

𝐴[3]

2
− 𝑘 

In fact, one of eigenvalues 𝑚 + 𝑛. 
Proof. 

Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 3, so the characteristics polynomial of 𝐴 can be written as 

𝑃𝐴(𝜆) = 𝜆𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆𝑛−1 + 𝐴[2]𝜆
𝑛−2 − 𝐴[3]𝜆

𝑛−3  

= 𝜆𝑛−3(𝜆3 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆2 + 𝐴[2]𝜆 − 𝐴[3]) (∗) 

(𝑖) Suppose one of the eigenvalues of 𝐴 is 1, then: 

(1)3 − 𝑡𝑟𝑎𝑐𝑒(𝐴)(1)2 + 𝐴[2] − 𝐴[3] = 0 

1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝐴[3] − 𝐴[2] 

Look at (∗) , it can be factored into: 

𝑃𝐴(𝜆) = 𝜆𝑛−3(𝜆 − 1)[𝜆2 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆 + 𝐴[3]] 

By theorem 1, the quadratic factor has integer roots if and only if there exists a positive integer 

𝑘 ∈ 𝑍+ such that:  

(1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[3] = 𝑘2 

In other hands:  

 
1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝐴[3] − 𝐴[2] 

so:  

(𝐴[3] − 𝐴[2])
2

− 4𝐴[3] = 𝑘2 

Then the other eigenvalues are: 

𝜆2 =
−(1 − 𝑡𝑟𝑎𝑐𝑒(𝐴)) + 𝑘

2
 

𝜆3 =
−(1 − 𝑡𝑟𝑎𝑐𝑒(𝐴)) − 𝑘

2
 

Because (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 𝑘2 = 4𝐴[3] is even, hence 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) and 𝑘 are both even or 

odd. Hence, 𝜆2, 𝜆3 are integers.  

(𝑖𝑖) The non-zero eigenvalues of 𝐴 are equal and 

𝐴[2] =
𝑡𝑟𝑎𝑐𝑒(𝐴)2

3
,        𝐴[3] =

𝑡𝑟𝑎𝑐𝑒(𝐴)3

27
 

Let 𝜆̃ the only non-zero eigenvalue of 𝐴, so: 

𝑃𝐴(𝜆) = 𝜆𝑛−3(𝜆 − 𝜆̅)
3
 

(𝜆3 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆2 + 𝐴[2]𝜆 − 𝐴[3]) = (𝜆 − 𝜆̅)
3
 

Hence it is obtained:  

𝑡𝑟𝑎𝑐𝑒(𝐴) = 3𝜆̅ 

𝐴[2] = 3𝜆̅2 

𝐴[3] = 𝜆̅3 

Because 𝑡𝑟𝑎𝑐𝑒(𝐴) = 3𝜆̃, maka 𝜆̃ =
𝑡𝑟𝑎𝑐𝑒(𝐴)

3
, such that 
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𝐴[2] =
𝑡𝑟𝑎𝑐𝑒(𝐴)2

3
,        𝐴[3] =

𝑡𝑟𝑎𝑐𝑒(𝐴)3

27
 

Due to rank 1 case, 𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝑘, 𝑘 ∈ 𝑍, so 

𝐴[2] =
(𝑡𝑟𝑎𝑐𝑒(𝐴))

2

3
=

𝑘2

3
 

and  

𝐴[3] =
(𝑡𝑟𝑎𝑐𝑒(𝐴))

3

27
=

𝑘3

27
 

(𝑖𝑖𝑖) One of the nonzero eigenvalues of 𝐴 has multiplicity two and there exists a positive integer 

𝑘 ∈ 𝑍+such that: 𝑡𝑟𝑎𝑐𝑒(𝐴)2 − 3𝐴[2] = 𝑘2. 

For example, 𝐴 has non-zero eigenvalues, namely 𝜆1 and 𝜆2 with a multiplicity two. This can 

be written as: 

𝑃𝐴(𝜆) = 𝜆𝑛−3(𝜆 − 𝜆1)2(𝜆 − 𝜆2). 
so:  

𝜆3 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆2 + 𝐴[2]𝜆 − 𝐴[3] = (𝜆 − 𝜆1)2(𝜆 − 𝜆2) 

Hence, it is obtained:  

𝑡𝑟𝑎𝑐𝑒(𝐴) = 2𝜆1 + 𝜆2 

𝐴[2] = 𝜆1
2 + 2𝜆1𝜆2 

𝐴[3] = 𝜆1
2𝜆2 

Because 𝜆1 has a multiplicity two, so 𝑃𝐴(𝜆1) = 0 and 𝑃𝐴′(𝜆1) = 0, as: 

3𝜆1
2 − 2 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆1

2 + 𝐴[2] = 0 

Such that: 

3𝜆1
2 − 2 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆1

2 + 𝐴[2] = (𝜆 − 𝜆1)2 + 2(𝜆 − 𝜆1)(𝜆 − 𝜆2). 

Since the above form is a quadratic form and has one round root, 𝜆1, then the others must be 

rational. Note that when the quadratic form is solved, there are 𝑘 ∈ 𝑍+ such that: 

4(𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 12𝐴[2] = (2𝑘)2 

When divided by 4 it becomes: 

(𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 3𝐴[2] = 𝑘2 

(𝑖𝑣)  Suppose the non-zero eigenvalues of 𝐴  are denoted by 𝜆1, 𝜆2, 𝜆3.  Since 𝑡𝑟𝑎𝑐𝑒(𝐴) =
0, then 𝜆1 + 𝜆2 + 𝜆3 = 0 , so 𝜆3 = −(𝜆1 + 𝜆2). 
Note that: 

𝜆1
2 + 𝜆1𝜆2 + 𝜆2

2 = −𝐴[2] 

𝜆1
2𝜆2 + 𝜆1𝜆2

2 = −𝐴[3] 

By performing the multiplication operation 𝜆1 on the above equation, we get: 

𝜆1
3 + 𝜆1

2𝜆2 + 𝜆1𝜆2
2 = −𝐴[2]𝜆1 

In other hands 

𝜆1
2𝜆2 + 𝜆1𝜆2

2 = −𝐴[3] 

So, it is obtained, 

𝜆1
3 + 𝐴[2]𝜆1 − 𝐴[3] = 0 

To solve the above equation in cubic form, the Cardano formula is used, in order to obtain 

√𝐴[3]

2
+ √(𝐴[3])

2

4
+

(𝐴[3])
3

27

3

+ √𝐴[3]

2
− √(𝐴[3])

2

4
+

(𝐴[3])
3

27

3

= √
𝐴[3]

2
+ 𝑘

3

+ √
𝐴[3]

2
− 𝑘

3

= 𝑚 + 𝑛 

Note that:  
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𝑚 ∙ 𝑛 = √
𝐴[3]

2
+ 𝑘

3

∙ √
𝐴[3]

2
− 𝑘

3

= √(𝐴[3])
2

4
− 𝑘2

3

= √
(𝐴[3])

2

4
− (

(𝐴[3])
2

4
−

(𝐴[3])
3

27
)

3

= −
𝐴[2]

3
 

(𝑚 + 𝑛)3 = 𝑚3 + 3𝑚2𝑛 + 3𝑚𝑛2 + 𝑛3 = (
𝐴[3]

2
+ 𝑘) + 3𝑚𝑛(𝑚 + 𝑛) + (

𝐴[3]

2
− 𝑘)

= (
𝐴[3]

2
+ 𝑘) −

𝐴[2]

3
∙ (𝑚 + 𝑛) + (

𝐴[3]

2
− 𝑘) = −

𝐴[2]

3
∙ (𝑚 + 𝑛) + 𝐴[3]. 

Theorem 5. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 4. If eigenvalues are given by 𝜆1, 𝜆2 = 1, and there 

exists 𝑘 ∈ 𝑍 such that: 

(2 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[4] = 𝑘2 

then the other eigenvalues are integers. 

Proof. 

Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 4, then the characteristic polynomial: 

𝑃𝐴(𝜆) = 𝜆𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆𝑛−1 + 𝐴[2]𝜆
𝑛−2 − 𝐴[3]𝜆

𝑛−3 + 𝐴[4]

= 𝜆𝑛−4(𝜆4 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆3 + 𝐴[2]𝜆
2 − 𝐴[3]𝜆 + 𝐴[4]) 

Since 𝜆1, 𝜆2 = 1 

so, for 𝜆1 = 1, it is obtained: 

1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[2] − 𝐴[3] + 𝐴[4] = 0 

𝑃𝐴(𝜆) = 𝜆𝑛−4(𝜆4 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆3 + 𝐴[2]𝜆
2 − 𝐴[3]𝜆 + 𝐴[4]) 

When it is factored, then it will be obtained,  

𝑃𝐴(𝜆) = 𝜆𝑛−4(𝜆 − 1)(𝜆3 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆3 + (𝐴[4] − 𝐴[3])𝜆2 − 𝐴[4]) 

The form above still contains the power of three, it is difficult to find the eigenvalues, because 

one more eigenvalue is given, so we substitute it into: 

For  𝜆2 = 1 , it is obtained: 

1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[4] − 𝐴[3] − 𝐴[4] = 0 

𝑃𝐴(𝜆) = 𝜆𝑛−4(𝜆 − 1)(𝜆3 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆3 + (𝐴[4] − 𝐴[3])𝜆2 − 𝐴[4]) 

When it is factored, then it will be obtained,  

𝑃𝐴(𝜆) = 𝜆𝑛−4(𝜆 − 1)(𝜆 − 1)(𝜆2 + (1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆3 + 𝐴[4]) 

Because the above form produces a quadratic form, then with the 𝑎𝑏𝑐 formula, we get: 

𝜆3,4 =
−(2 − 𝑡𝑟𝑎𝑐𝑒(𝐴)) ± √(2 − 𝑡𝑟𝑎𝑐𝑒(𝐴))

2
− 4𝐴[4]

2
 

Based on the rank 2 case, there are 𝑘 ∈ 𝑍 such that: 

(2 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[4] = 𝑘2 

Because of the difference is (2 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 𝑘2 = 4𝐴[4] 

So, since 𝜆3,4 =
−(2−𝑡𝑟𝑎𝑐𝑒(𝐴))±𝑘

2
 such that 2 − 𝑡𝑟𝑎𝑐𝑒(𝐴) and 𝑘 are both of even and odd, it 

means 𝜆3,4 ∈ 𝑍. 

Theorem 6. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 5. If eigenvalues are given by 𝜆1, 𝜆2, 𝜆3 = 1, and there 

exists 𝑘 ∈ 𝑍 such that: 

(3 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[5] = 𝑘2 

then the other eigenvalues are integers. 

Proof. 

Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 5, then the characteristic polynomial 
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𝑃𝐴(𝜆) = 𝜆𝑛 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆𝑛−1 + 𝐴[2]𝜆
𝑛−2 − 𝐴[3]𝜆

𝑛−3 + 𝐴[4]𝜆
𝑛−4 − 𝐴[5]𝜆

𝑛−5

= 𝜆𝑛−5(𝜆5 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆4 + 𝐴[2]𝜆
3 − 𝐴[3]𝜆

2 + 𝐴[4]𝜆 − 𝐴[5]) 

Since 𝜆1, 𝜆2, 𝜆3 = 1 

So, for 𝜆1 = 1, it is obtained: 

1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[2] − 𝐴[3] + 𝐴[4] − 𝐴[5] = 0 

𝑃𝐴(𝜆) = 𝜆𝑛−5(𝜆5 − 𝑡𝑟𝑎𝑐𝑒(𝐴)𝜆4 + 𝐴[2]𝜆
3 − 𝐴[3]𝜆

2 + 𝐴[4]𝜆 − 𝐴[5]) 

When it is factored, then it will be obtained,  

𝑃𝐴(𝜆) = 𝜆𝑛−4(𝜆 − 1)(𝜆4 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆3 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[2])𝜆2 + (𝐴[5] − 𝐴[4])𝜆

+ 𝐴[5] 

The form above still contains the fourth power, it is difficult to find the eigenvalues, because 

one more eigenvalue is given, so we substitute it into: 

For 𝜆2 = 1 , it is obtained: 

1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[2] + 𝐴[5] − 𝐴[4] + 𝐴[5] = 0 

𝑃𝐴(𝜆) = 𝜆𝑛−5(𝜆 − 1)(𝜆4 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆3 + (1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[2])𝜆2 + (𝐴[5] − 𝐴[4])𝜆

+ 𝐴[5] 

When it is factored, then it will be obtained,  

𝑃𝐴(𝜆) = 𝜆𝑛−5(𝜆 − 1)(𝜆 − 1)(𝜆3 + (1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆2 + (𝐴[4] − 2𝐴[5])𝜆 − 𝐴[5]) 

The form above still contains the power of three, it is difficult to find the eigenvalues, because 

one more eigenvalue is given, so we substitute it into: 

For 𝜆3 = 1 , it is obtained: 

1 + 1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴) + 𝐴[4]−2𝐴[5] − 𝐴[5] = 0 

𝑃𝐴(𝜆) = 𝜆𝑛−5(𝜆 − 1)(𝜆 − 1)(𝜆3 + (1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆2 + (𝐴[4] − 2𝐴[5])𝜆 − 𝐴[5]) 

When it is factored, then it will be obtained,  

𝑃𝐴(𝜆) = 𝜆𝑛−5(𝜆 − 1)(𝜆 − 1)(𝜆 − 1)(𝜆2 + (1 + 1 + 1 − 𝑡𝑟𝑎𝑐𝑒(𝐴))𝜆 + 𝐴[5]) 

Because the above form produces a quadratic form, then with the 𝑎𝑏𝑐 formula, we get: 

𝜆4,5 =
−(3 − 𝑡𝑟𝑎𝑐𝑒(𝐴)) ± √(3 − 𝑡𝑟𝑎𝑐𝑒(𝐴))

2
− 4𝐴[5]

2
 

Based on the rank 2 case, there are 𝑘 ∈ 𝑍 such that: 

(3 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[5] = 𝑘2 

Because of the difference is (3 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 𝑘2 = 4𝐴[5] 

Then 𝜆4,5 =
−(3−𝑡𝑟𝑎𝑐𝑒(𝐴))±𝑘

2
 so 3 − 𝑡𝑟𝑎𝑐𝑒(𝐴) and 𝑘 are both of even and odd, it means 𝜆4,5 ∈

𝑍. 

 

4. Conclusion 

Based on the results of the research described in the previous chapter, it was obtained the 

following conclusions. 

Characteristics of an integer symmetric matrix: 

1. If 𝐴 ∈ 𝑀𝑛(𝑍) with rank 1, so 𝐴 has integer eigenvalue. 

2. If 𝐴 ∈ 𝑀𝑛(𝑍) with rank 2, so A has integer eigenvalue if and only if there exist two 

integers 𝑚, 𝑛 ∈ 𝑍  such that  𝑡𝑟𝑎𝑐𝑒(𝐴) = 𝑚 + 𝑛  dan 𝐴[2] = 𝑚 ∗ 𝑛, where 𝐴[2]  is the 

sum of determinants of all 2nd order principal minors of 𝐴. 



 TULIS “PENULIS PERTAMA, DKK” DISINI 

 102 

 

3. Let 𝐴 ∈ 𝑀𝑛(𝑍)  with rank 3. If one of the following cases hold, then 𝐴  has integer 

eigenvalues. 

(𝑖) One of the eigenvalues of 𝐴 is 1 or  −1 and there exists a positive integer 𝑘 ∈ 𝑍 

such that: 

[𝐴[3] − 𝐴[2]]
2

− 4𝐴[3] = 𝑘2 

(𝑖𝑖) All nonzero eigenvalues of 𝐴 are the same and 

𝐴[2] =
𝑡𝑟𝑎𝑐𝑒(𝐴)2

3
,        𝐴[3] =

𝑡𝑟𝑎𝑐𝑒(𝐴)3

27
 

(𝑖𝑖𝑖) One of the nonzero eigenvalues of 𝐴 has multiplicity two and there exists a positive 

integer 𝑘 ∈ 𝑍+such that: 𝑡𝑟𝑎𝑐𝑒(𝐴)2 − 3𝐴[2] = 𝑘2 

(𝑖𝑣) 𝑇𝑟𝑎𝑐𝑒(𝐴) = 0 and there exists a positive integer 𝑘 ∈ 𝑍+ and 𝑚, 𝑛 ∈ 𝑍 such that:  

𝑘 = √(𝐴[3])
2

4
+

(𝐴[2])
3

27
 

𝑚3 =
𝐴[3]

2
+ 𝑘,   𝑛3 =

𝐴[3]

2
− 𝑘 

In fact, one of eigenvalues 𝑚 + 𝑛. 
4. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 4. If eigenvalues are given by 𝜆1, 𝜆2 = 1, and there exists 

𝑘 ∈ 𝑍 such that: 

(2 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[4] = 𝑘2 

then the other eigenvalues are integers. 

5. Let 𝐴 ∈ 𝑀𝑛(𝑍) with rank 5. If eigenvalues are given by 𝜆1, 𝜆2, 𝜆3 = 1, and there exists 

𝑘 ∈ 𝑍 such that: 

(3 − 𝑡𝑟𝑎𝑐𝑒(𝐴))
2

− 4𝐴[5] = 𝑘2 

then the other eigenvalues are integers. 
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