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ABSTRACT 
 

A numerical method based on modified block pulse functions is proposed for solving the mixed linear 

Volterra-Fredholm integral equations. An integration operational matrix of modified block pulse 

functions is obtained on interval [0, 𝑇). A modified block pulse functions and their operational matrix 

of integration, the mixed linear Volterra-Fredholm integral equations can be reduced to a linear system 

of algebraic equations. The rate of convergence is 𝒪(ℎ) and error analysis of the proposed method are 

discussed. Some examples are provided to show that the proposed method have a good degree of 

accuracy. 
 

Keywords: Integration Operational Matrix, Itô Integral, Mixed Linear Volterra-Fredholm Integral  
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1 Introduction 

An integral equation is an equation in which an unknown function appears under one or 

more integration signs. The integral equations are found in various applied areas including 

mechanics, physics, and engineering. The subject of integral equations are used as 

mathematical models for many and varied physical situations. It also arise as representation 

formulas for the solutions of differential equations.  

The mixed linear Volterra-Fredholm integral equation is a combination of disjoint linear 

Volterra and Fredholm integrals that appear in an integral equation. The mixed linear 

Volterra-Fredholm integral equations arise from parabolic boundary value problems, 

mathematical modelling of the spatio-temporal development of an epidemic, various physical, 

biological, and chemical applications [9, 10]. There are several techniques for approximating 

the solution such as designing neural network [1], linear programming problem [5], Taylor 

expansion method [2], homotopy perturbation method [4], Legendre collocation method [7], 

and Bernstein polynomials method [8]. 

In this paper, the modified block pulse functions is applied for solving the following 

mixed linear Volterra-Fredholm integral equations  

𝑋(𝑡) = 𝑓(𝑡) + ∫ ∫ 𝐾(𝑥, 𝑟)𝑋(𝑟)
𝛽

𝛼

𝑑𝑟𝑑𝑥
𝑡

0

,                                             (1) 

where 𝑋(𝑡) is the unknown function, 𝑓(𝑡) is analytic function and 𝐾(𝑥, 𝑟) is the kernels of  𝐿2 

functions.  
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2 Methodology 

  A set of 𝜀 modified block pulse functions 𝜓𝑖(𝑡), 𝑖 = 0,1, … ,𝑚 on the interval [0, 𝑇) are 

defined as   

𝜓0(𝑡) = { 
1 𝑡 ∈ [0, ℎ − 𝜀) = 𝐼0,
0 otherwise,               

 

𝜓𝑖(𝑡) = { 
1 𝑡 ∈ [𝑖ℎ − 𝜀, (𝑖 + 1)ℎ − 𝜀) = 𝐼𝑖 ,
0 otherwise,                                     

 

for 𝑖 = 1, 2, … ,𝑚 − 1, and 

𝜓𝑚(𝑡) = { 
1 𝑡 ∈ [𝑇 − 𝜀, 𝑇) = 𝐼𝑚,
0 otherwise.                 

 

with a positive integer value for 𝑚 and ℎ =
𝑇

𝑚
 . 

Similar to BPFs, the important properties of 𝜀MBPFs are as follows 

• Disjointness: 

𝜓𝑖(𝑡)𝜓𝑗(𝑡) = { 
𝜓𝑖(𝑡) 𝑖 = 𝑗,
0         𝑖 ≠ 𝑗,

 

where 𝑖, 𝑗 = 0,… ,𝑚. 
• Orthogonality: 

∫𝜓𝑖(𝑡)𝜓𝑗(𝑡)

𝑇

0

𝑑𝑡 = ℎ𝛿𝑖𝑗 

where 𝑖, 𝑗 = 1,… ,𝑚 − 1 and 𝛿𝑖𝑗 is Kronecker delta.  

• Completeness: 

∫𝑓2(𝑡)

𝑇

0

𝑑𝑡 =∑𝑓𝑖
2‖𝜓𝑖(𝑡)‖

2

∞

𝑖=0

, 

where 

𝑓𝑖 =
1

∆(𝐼𝑖)
∫𝑓(𝑡)𝜓𝑖(𝑡)

𝑇

0

𝑑𝑡                                                (2) 

and ∆(𝐼𝑖) is length of interval 𝐼𝑖. 
Rewriting Eq. (2) in the vector form we have 

𝑓(𝑡) ≃∑𝑓𝑖𝜓𝑖(𝑡)

𝑚

𝑖=0

= 𝐹𝑇Ψ(𝑡) = Ψ𝑇(𝑡)𝐹, 

in which 

𝐹 = (𝑓0  𝑓1  …  𝑓𝑚)
𝑇     and    Ψ(𝑡) = (𝜓0(𝑡)  𝜓1(𝑡)  …  𝜓𝑚(𝑡))

𝑇
. 

Moreover, any two dimensional function 𝑘(𝑠, 𝑡) ∈ 𝐿2([0, 𝑇1) ×[0, 𝑇2)) can be expanded with 

respect to 𝜀MBPFs such as 

𝑘(𝑠, 𝑡) = Ψ𝑇(𝑠)𝐾Φ(𝑡) = Φ𝑇(𝑡)𝐾𝑇Ψ(𝑠), 
where Ψ(𝑠)  and Φ(𝑡)  are 𝑚1  and 𝑚2  dimensional 𝜀MBPFs vectors respectively, and 𝐾 =

(𝑘𝑖𝑗), 𝑖 = 0,1, … ,𝑚1,  𝑗 = 0,1, … ,𝑚2  is the 𝑚1 ×𝑚2  𝜀  modified block pulse coefficient 

matrix with 

𝑘𝑖𝑗 =
1

∆(𝐼𝑖)∆(𝐼𝑗)
∫ ∫ 𝑘(𝑠, 𝑡)

𝑇2

0

Ψ𝑖(𝑠)Φ𝑗(𝑡)

𝑇1

0

𝑑𝑡𝑑𝑠, 

For convenience, we put 𝑚1 = 𝑚2 = 𝑚. 

With defining Ψ𝑚+1(𝑡) = (𝜓0(𝑡)  𝜓1(𝑡) …  𝜓𝑚(𝑡))
𝑇
, we have  
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Ψ𝑚+1(𝑡)Ψ𝑚+1
𝑇 (𝑡) = (

𝜓0(𝑡)      0     

     0       𝜓1(𝑡)

⋯ 
⋯

0
0

⋮            ⋮ ⋱ ⋮
0           0 ⋯  𝜓𝑚(𝑡)

)

(𝑚+1)×(𝑚+1)

, 

Furthermore, 

Ψ𝑚+1
𝑇 (𝑡)Ψ𝑚+1(𝑡) = 1, 

and 

Ψ𝑚+1(𝑡)Ψ𝑚+1
𝑇 (𝑡)𝐹 = 𝐷𝐹Ψ𝑚+1(𝑡) 

where 𝐷𝐹 usually denotes a diagonal matrix whose diagonal entries are related to a constant 

vector 𝐹 = (𝑓0  𝑓1  …  𝑓𝑚)
𝑇.  

Similar to BPFs, 

∫Ψ𝑚+1(𝑠)

𝑡

0

𝑑𝑠 ≃ 𝑄Ψ𝑚+1(𝑡), 

where the integration operational matrix 𝑄 of 𝜀MBPFs is given by  

𝑄 =

(

 
 
 
 

ℎ − 𝜀

2
ℎ − 𝜀 ⋯ ℎ − 𝜀

0
ℎ

2
⋯ ℎ

⋮ ⋮ ⋱ ⋮

0 0 ⋯
𝜀

2 )

 
 
 
 

(𝑚+1)×(𝑚+1)

. 

So, the integral of every function 𝑓(𝑡) can be approximated as follows 

∫𝑓(𝑠)

𝑡

0

𝑑𝑠 ≃ ∫𝐹𝑇Ψ𝑚+1(𝑠)

𝑡

0

𝑑𝑠 ≃ 𝐹𝑇𝑄Ψ𝑚+1(𝑡). 

3 Results 

3.1 Solving Mixed Linear Volterra-Fredholm Integral Equations by Using 

𝜺 Modified Block Pulse Functions 

         We consider following mixed linear Volterra-Fredholm integral equation 

𝑋(𝑡) = 𝑓(𝑡) + ∫ ∫ 𝐾(𝑥, 𝑟)𝑋(𝑟)
𝛽

𝛼

𝑑𝑟𝑑𝑥
𝑡

0

,                                          (3) 

We approximate functions 𝑋(𝑡), 𝑓(𝑡), and 𝐾(𝑥, 𝑟) by 𝜺MBPFs: 

𝑋(𝑡) ≃ 𝑊𝑇Φ(𝑡) = Φ𝑇(𝑡)𝑊, 

𝑓(𝑡) ≃ 𝐹𝑇Φ(𝑡) = Φ𝑇(𝑡)𝐹, 

𝐾(𝑥, 𝑟) ≃ Φ𝑇(𝑥)𝐾Φ(𝑟) = Φ𝑇(𝑟)𝐾𝑇Φ(𝑥). 

In the above approximates, 𝑊 and 𝐹 are modified block pulse coefficients vector, and 𝐾 are 

modified block pulse coefficients matrix. 

 Substituting above approximation in Eq. (3), we get 

𝑊𝑇Φ(𝑡) ≃ 𝐹𝑇Φ(𝑡) + ∫ ∫ Φ𝑇(𝑥)𝐾Φ(𝑟)Φ𝑇(𝑟)𝑊
𝛽

𝛼

𝑑𝑟𝑑𝑥
𝑡

0
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𝑊𝑇Φ(𝑡) ≃ 𝐹𝑇Φ(𝑡) + ∫ Φ𝑇(𝑥)𝐾 (∫ Φ(𝑟)Φ𝑇(𝑟)
𝛽

𝛼

𝑑𝑟)𝑊𝑑𝑥
𝑡

0

 

𝑊𝑇Φ(𝑡) ≃ 𝐹𝑇Φ(𝑡) + ∫ Φ𝑇(𝑥)𝐾ℎ𝐼𝑊𝑑𝑥
𝑡

0

 

𝑊𝑇Φ(𝑡) ≃ 𝐹𝑇Φ(𝑡) + ∫ Φ𝑇(𝑥)ℎ𝐾𝑊𝑑𝑥
𝑡

0

 

𝑊𝑇Φ(𝑡) ≃ 𝐹𝑇Φ(𝑡) +𝑊𝑇(ℎ𝐾)𝑇∫ Φ(𝑥)𝑑𝑥
𝑡

0

 

𝑊𝑇Φ(𝑡) ≃ 𝐹𝑇Φ(𝑡) +𝑊𝑇(ℎ𝐾)𝑇𝑄Φ(𝑡) 

𝑊𝑇 ≃ 𝐹𝑇 +𝑊𝑇(ℎ𝐾)𝑇𝑄 

𝑊𝑇 −𝑊𝑇(ℎ𝐾)𝑇𝑄 ≃ 𝐹𝑇 

𝑊𝑇(𝐼 − (ℎ𝐾)𝑇𝑄) ≃ 𝐹𝑇 

So, by setting 𝑁 = (𝐼 − (ℎ𝐾)𝑇𝑄)𝑇 and replacing ≃ by =, we have 

𝑁𝑊 = 𝐹. 

Which is a linear system of equations with upper triangular coefficients matrix that gives the 

approximate modified block pulse coefficient of the unknown 𝑋(𝑡). 

3.2 Error Analysis 

 In the following theorems, for simplicity we assume 𝑇 = 1 and ℎ =
1

𝑚
 . 

Theorem 3.2.1 If 𝑓𝑚(𝑡) = ∑ 𝑓𝑖
𝑚
𝑖=0 𝜓𝑖(𝑡) and 𝑓𝑖 =

1

∆(𝐼𝑖)
∫ 𝑓(𝑡)
1

0
𝜓𝑖(𝑡)𝑑𝑡, 𝑖 = 0,… ,𝑚 then: 

i. 𝛿 = ∫ (𝑓(𝑡) − ∑ 𝑓𝑖
𝑚
𝑖=0 𝜓𝑖(𝑡))

21

0
𝑑𝑡, achieves its minimum value. 

ii. {𝑓𝑚(𝑡)} approaches 𝑓(𝑡) pointwise. 

iii. ∫ 𝑓2(𝑡)
1

0
𝑑𝑡 = ∑ 𝑓𝑖

2∞
𝑖=0 ‖𝜓𝑖‖

2 

PROOF. Proof is like similar theorem in [3] but intervals of integration have to redefine as 

𝐼𝑖, 𝑖 = 0,… ,𝑚 in (3.1).   ∎ 

Theorem 3.2.2 Assume: 

i. 𝑓(𝑡) is continuous and differentiable in [−ℎ, 1 + ℎ] with bounded derivative, that is 
|𝑓′(𝑡)| < 𝑀. 

ii. 𝑓𝑖ℎ
𝑘

(𝑡), 𝑖 = 0,… , 𝑘 − 1 , are correspondingly BPFs,  
ℎ

𝑘
 MBPFs ..., 

(𝑘−1)ℎ

𝑘
 MBPFs 

expansions of 𝑓(𝑡) base on 𝑚 + 1 𝜀MBPFs over interval [0,1). 

iii. 𝑓(̅𝑡) =
1

𝑘
∑ 𝑓𝑖ℎ

𝑘

(𝑡)𝑘−1
𝑖=0 . 

Then  

‖𝑓(𝑡) − 𝑓𝑖ℎ
𝑘

(𝑡)‖ = 𝒪(ℎ),           and          ‖𝑓(𝑡) − 𝑓(̅𝑡)‖ = 𝒪 (
ℎ

𝑘
)  in [ℎ, 1 − ℎ]. 

PROOF. Trapezoidal rule for integral is 
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∫𝑓(𝑡)

𝑏

𝑎

𝑑𝑡 =
𝑏 − 𝑎

2
(𝑓(𝑎) + 𝑓(𝑏)) −

(𝑏 − 𝑎)3𝑓′′(𝜂)

12
              

  =
𝑏 − 𝑎

2
(𝑓(𝑎) + 𝑓(𝑏)) + 𝐸,     𝜂 ∈ [𝑎, 𝑏],                                      (4) 

where 𝐸 is error of integration. Suppose 𝑡𝑖 =
𝑖

𝑚
= 𝑖ℎ and 𝐼𝑖 = [𝑡𝑖−1, 𝑡𝑖]. The representation 

error when 𝑓(𝑡) is represented by a series of BPFs over every subinterval [𝑡𝑖 , 𝑡𝑖 +
ℎ

𝑘
], 𝑖 =

0, … ,𝑚 − 1 is 

𝑒𝑖(𝑡) = 𝑓(𝑡) − 𝑓𝑖𝜓𝑖(𝑡) = 𝑓(𝑡) − 𝑓𝑖, 

where 𝑓𝑖 =
1

ℎ
∫ 𝑓(𝑡)
(𝑖+1)ℎ

𝑖ℎ
𝑑𝑡. From (4),  

𝑓𝑖 =
1

2
(𝑓(𝑡𝑖) + 𝑓(𝑡𝑖 + ℎ)) + 𝐸. 

It is obvious that if 𝑓(𝑡) = 𝐶 (constant), then 𝑒𝑖(𝑡) = 0. So, this error is computed for 

𝑓(𝑡) = 𝑡 in interval [𝑡𝑖, 𝑡𝑖 +
ℎ

𝑘
] , 𝑖 = 1, … ,𝑚 − 1. 

For this function 𝐸 = 0, so 

𝑒𝑖(𝑡)[𝑡𝑖,𝑡𝑖+
ℎ

𝑘
]
= |𝑡 − 𝑓𝑖| = |𝑡 −

𝑡𝑖 + 𝑡𝑖+1
2

| = |𝑡 − (𝑡𝑖 +
ℎ

2
)| ≤

ℎ

2
. 

Then this error with BPFs is 
ℎ

2
𝑀. 

Similarly, the error when 𝑓(𝑡)  is represented in a series of 𝜀 MBPFs over every 

subinterval [𝑡𝑖, 𝑡𝑖 +
ℎ

𝑘
] is  

𝑒𝑖(𝑡)[𝑡𝑖,𝑡𝑖+
ℎ

𝑘
]
= |𝑡 − (

∑ (𝑡𝑖 − (
𝑗ℎ

𝑘
) + 𝑡𝑖+1 − (

𝑗ℎ

𝑘
))𝑘−1

𝑗=0

2𝑘
)|          

                 = |𝑡 − (
∑ (𝑡𝑖 − (

𝑗ℎ

𝑘
) + 𝑡𝑖 + ℎ − (

𝑗ℎ

𝑘
))𝑘−1

𝑗=0

2𝑘
)| 

  = |𝑡 − (𝑡𝑖 +
ℎ

2
) −

(𝑘 − 1)ℎ

2𝑘
|                

≤
ℎ

2𝑘
.                                                       

So, the error with 𝜀MBPFs is 
ℎ

2𝑘
𝑀.  

For 𝐼0 in [0,
ℎ

𝑘
] we have 

𝑒𝑖(𝑡)[0,ℎ
𝑘
]
= |𝑡 −∑

ℎ − (
𝑗ℎ

𝑘
)

2𝑘

𝑘−1

𝑗=0

|               

         = |𝑡 − (
ℎ

2
−
(𝑘 − 1)ℎ

4𝑘
)| 

= |𝑡 − (
ℎ

4
+
ℎ

4𝑘
)|    

= 𝒪 (
ℎ

4
).                    

So, the error is 𝒪 (
ℎ

4
) also for 𝐼𝑛.  
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Now,  

‖𝑒𝑖(𝑡)‖
2 = ∫ |𝑒𝑖(𝑡)|

2

𝑡𝑖+
ℎ

𝑘

𝑡𝑖

𝑑𝑡       

           = ∫
ℎ2

4𝑘2
𝑀2

𝑡𝑖+
ℎ

𝑘

𝑡𝑖

𝑑𝑡 

=
ℎ3

4𝑘3
𝑀2, 

‖𝑒‖2 = ∫𝑒2(𝑡)

1

0

𝑑𝑡       

                         = ∫(∑∑𝑒𝑖(𝑡)

𝑘−1

𝑗=0

𝑚

𝑖=1

)

21

0

𝑑𝑡 

                 = ∑∑∫𝑒𝑖
2(𝑡)

1

0

𝑘−1

𝑗=0

𝑚

𝑖=1

𝑑𝑡 

             = ∑∑‖𝑒𝑖(𝑡)‖
2

𝑘−1

𝑗=0

𝑚

𝑖=1

 

        =
1

ℎ
. 𝑘.

ℎ3

4𝑘3
𝑀2 

=
ℎ2

4𝑘2
𝑀2. 

We define the representation error between 𝑓(𝑠, 𝑡) and its 2D-𝜀MBPFs expansion 𝑓𝑖𝑗  over 

every subregion 𝐷𝑖𝑗, is defined as  

𝑒𝑖𝑗(𝑠, 𝑡) = 𝑓(𝑠, 𝑡) − 𝑓𝑖𝑗 , 

where 𝐷𝑖𝑗 ≔ {(𝑠, 𝑡) |𝑡𝑖 ≤ 𝑠 ≤ 𝑡𝑖 +
ℎ

𝑘
, 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗 +

ℎ

𝑘
} . 

With Taylor’s expansion and similarity to the above discussion,  

‖𝑒(𝑠, 𝑡)‖ =
ℎ

2𝑘
𝑀.   ∎ 

Theorem 3.2.3 Assume that 

𝑃(𝜔 ∈ 𝛺 ∶ ‖𝑢(𝜔, 𝑡)‖ < 𝐶) = 1. 

‖𝑘𝑖‖ < 𝐶, 𝑖 = 1,2. 

Then 

𝑠𝑢𝑝(𝐸(‖(𝑢 − �̅�)‖)2)
1

2 = 𝒪 (
ℎ

𝑘
) ,     𝑡 ∈ [ℎ, 1 − ℎ].

0 ≤ 𝑡 ≤ 𝑇                                                                                    
 

PROOF. For a complete proof see [6].   ∎ 
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3.3 Numerical Examples 

Example 3.3.1 Consider the following mixed linear Volterra-Fredholm integral equation,  

𝑋(𝑡) = cos 𝑡 − 2𝑡 + ∫ ∫ (𝑠 − 𝑟)𝑋(𝑟)𝑑𝑟𝑑𝑠
𝜋

0

𝑡

0

, 

where the exact solution is 𝑓(𝑡) = cos 𝑡. 
 

Table 1: The Exact and Approximation Solutions of Example 1 

𝒕 
𝒎 = 𝟏𝟎𝟐𝟓 

Exact Approximation 

0 1 1 

0.6 0.8253 0.8224 

1.2 0.3626 0.3612 

1.8 -0.2276 -0.2272 

2.4 -0.7372 -0.5052 

3 -0.99 -0.9948 

 
Figure 1: The Trajectory of The Exact and Approximation Solution of Example 1 

 

Based on the graph above, it can be seen that the approximate and exact results coincide 

with each other at the interval [0, 𝜋). At the beginning and end that if the number of partitions 

we take is getting bigger and 𝜀 getting smaller, it will produce an approximation result that is 

closer to the exact. 

 

Example 3.3.2 Consider the following mixed linear Volterra-Fredholm integral equation, 

𝑋(𝑡) = cos 𝑡 + sin 𝑡 − 𝑡2 +
𝜋

2
𝑡 + ∫ ∫ (𝑠 − 𝑟)𝑋(𝑟)𝑑𝑟𝑑𝑠

𝜋

2

0

𝑡

0

, 

where the exact solution is 𝑓(𝑡) = cos 𝑡. 
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Table 2: The Exact and Approximation Solutions of Example 2 

𝒕 
𝒎 = 𝟏𝟎𝟐𝟓 

Exact Approximation 

0 1 1.001 

0.3 1.251 1.254 

0.6 1.39 1.391 

0.9 1.405 1.406 

1.2 1.294 1.295 

1.5 1.068 1.068 

 
Figure 2: The Trajectory of The Exact and Approximation Solution of Example 2 

 

Based on the graph above, it can be seen that the approximate and exact results coincide 

with each other at the interval [0,
𝜋

2
). At the beginning and end that if the number of partitions 

we take is getting bigger and 𝜀 getting smaller, it will produce an approximation result that is 

closer to the exact. 

 

4 Conclusions 

The modified block pulse functions have better results by taking the partition size (𝑚) 

and 𝜀 =
1

𝑎
 (provided 𝑎 > 𝑚 so that 

1

𝑎
< ℎ) than block pulse functions. The modified block 

pulse functions and their integration operational matrix are used to obtain the solution of mixed 

linear Volterra-Fredholm integral equations. Its applicability and accuracy of the proposed 

method was checked on some numerical examples. The results show that the value at any 

point of approximate and exact solutions has very little margin. We also illustrate both results 

to demonstrate of the proposed method have a good of efficiency and accuracy. 
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