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A New Hybrid PRP-MMSIS Conjugate Gradient Method and Its
Application in Portfolio Selection

ABSTRACT

In this paper, we propose a new hybrid coefficient of conjugate gradient method (CG) for
solving unconstrained optimization model. The new coefficient is combination of part the MMSIS
(Malik et.al, 2020) and PRP (Polak, Ribiére & Polyak, 1969) coefficients. Under exact line search,
the search direction of new method satisfies the sufficient descent condition and based on certain
assumption, we establish the global convergence properties. Using some test functions, numerical
results show that the proposed method is more efficient than MMSIS method. Besides, the new
method can be used to solve problem in minimizing portfolio selection risk .

Keywords: Conjugate gradient method, Exact line search, Sufficient descent condition, Global conver-
gence, Portfolio selection

1 Introduction

In this paper, we present a new hybrid coefficient of conjugate gradient (CG) method for solving
unconstrained optimization problem

min f (x), x ∈ Rn, (1)

where f : Rn→R is continuously differentiable function and its gradient is defined by g(x) = ∇ f (x).
CG methods are among the effective methods for solving large-scale problems.

The conjugate gradient method works by constructing sequences {xk} with iterative formula

xk+1 = xk +αkdk, k = 0,1,2, ... (2)

where αk is the step size which in this paper we use the rule of exact line search

f (xk +αkdk) := min
α≥0

f (xk +αkdk) (3)

and dk is the search direction formulated by

dk :=

{
−gk, if k = 0,
−gk +βkdk−1, if k > 0,

(4)

where βk is the gradient conjugation coefficient which the researchers are currently making modi-
fications to as a computational improvement of the existing method [1]. Some of the well-known
conjugate gradient coefficients are the Hestenes-Stiefel (HS) [2], Polak-Ribiére-Polyak (PRP) [3, 4],
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Liu-Storey (LS) [5], Fetcher-Reeves (FR) [6], conjugate descent (CD) [7], and Dai-Yuan (DY) [8].
These coefficients are defined by the following formulas:

β
HS
k =

gT
k yk−1

dT
k−1yk−1

, β
PRP
k =

gT
k yk−1

‖gk−1‖2 , β
LS
k =

gT
k yk−1

−gT
k−1dk−1

,

β
FR
k =

‖gk‖2

‖gk−1‖2 , β
CD
k =

‖gk‖2

−dT
k−1gk−1

, β
DY
k =

‖gk‖2

dT
k−1yk−1

,

where yk−1 = gk−gk−1, gk = g(xk) and ‖ · ‖ is the Euclidean norm.
One of the variants of this CG method is the hybrid CG method, which is defined as the coef-

ficient is a combination of the existing CG coefficients. The popular for hybrid conjugate gradient
method are Touati-Ahmed and Storey (TS) method [9], Hu and Storey (HuS) method [10], Gilbert
and Nocedal (GN) method [11], and Dai and Yuan (hDY and LS-CD) method [12]:

β
T S
k =

{
β PRP

k , if 0≤ β PRP
k ≤ β FR

k

β FR
k , otherwise

,

β
HuS
k = max

{
0,min

{
β

PRP
k ,β FR

k
}}

,

β
GN
k = max

{
−β

FR
k ,min

{
β

PRP
k ,β FR

k
}}

,

β
hDY
k = max

{
0,min

{
β

HS
k ,β DY

k

}}
,

β
LS−CD
k = max

{
0,min

{
β

LS
k ,βCD

k

}}
.

When proposing new methods, the researchers also show the sufficient descent condition and global
convergence properties. This properties are characteristics of good computational. A method is said
to fulfill the sufficient descent condition, if there exists a constant c > 0 such that for all k

gT
k dk ≤−c‖gk‖2, (5)

and satisfies the global convergence properties, if

lim
k→∞

inf ‖gk‖= 0.

Recently, Malik et.al [13] have proposed the new coefficient of CG method, which it is mod-
ification of NPRP coefficient [14]. The new coefficient is symbolized by β MMSIS

k and defined as
follows:

β
MMSIS
k =


‖gk‖2− ‖gk‖

‖gk−1‖
∣∣gT

k gk−1
∣∣− ∣∣gT

k gk−1
∣∣

‖dk−1‖2 , if ‖gk‖2 >
(
‖gk‖
‖gk−1‖ +1

)∣∣gT
k gk−1

∣∣ ,
0 ,otherwise.

(6)

For the MMSIS method, the sufficient descent condition is satisfied under exact and strong line search.
Likewise, the MMSIS method satisfies the global convergence properties under exact line search and
strong Wolfe line search with parameter σ ∈ (0,1/8). Numerical experiments shows that the MMSIS
method efficient than FR, CD, and DY methods. For other references about the CG method can refer
to [15, 16, 17, 18, 19, 20, 21].

Motivated by the MMSIS and GN methods, we propose a new hybrid CG coefficient for solving
problem (1). The new coefficient is a combination of part the MMSIS and PRP coefficients. Fur-
thermore, we will establish the sufficient descent condition and global convergence properties under
exact line search. Numerical experiments is also presented to compare the efficiency computational
and the application of new method is used in minimizing portfolio selection risk. In the next section,
we will present the formula of new coefficient, algorithm, sufficient descent condition, and global
convergence properties. In Section 3, the numerical experiments is provided and in the Section 4, we
show the application in portfolio selection. Finally, the conclusion is presented in Section 5.



A New Hybrid PRP-MMSIS Conjugate Gradient Method ... 3

2 Algorithm and Convergence Analysis

In this section, we formulate the new hybrid coefficient and establish the sufficient descent
condition, and global convergence properties under exact line search. The new coefficient is a com-
bination of part the MMSIS and PRP coefficients which formulated as follows:

β
HDMG
k = max{β PRP

k ,β MMSIS∗
k }, (7)

where β
MMSIS∗
k =

‖gk‖2− ‖gk‖
‖gk−1‖

∣∣gT
k gk−1

∣∣− ∣∣gT
k gk−1

∣∣
‖dk−1‖2 , and HDMG is denotes Hybrid-Devila-Malik-

Giyarti. The following algorithm describe the HDMG method.

Algorithm 1: (HDMG Method)
Step 1: Given initial point x0 ∈ Rn, d0 =−g0, stopping criteria ε , and set k := 0.
Step 2: If ‖gk‖ ≤ ε , then stop. xk is optimal point. Otherwise, go to next step.
Step 3: Compute βk by using (7).
Step 4: Compute the search direction dk by (4).
Step 5: Compute the step size αk by using exact line search (3).
Step 6: Update new point for k := k+1 by formula (2) and go to Step 2.

The following lemma show that the search direction dk under exact line search satisfies the
sufficient descent condition.

Lemma 2.1. Suppose that a CG method with search direction (4), αk is computed by using exact line
search (3), and βk is computed by using (7), then, for all k ≥ 0 the condition (5) is satisfied.

PROOF. According to (4), we have d0 =−g0, furthermore gT
0 d0 =−g0g0 =−‖g0‖2. Thus, for k = 0

the condition (5) fulfill. Now, for k ≥ 1, we will show the condition (5) is satisfied. By multiplying
(4) with gT

k , we obtain

gT
k dk =−gT

k gk +β
HDMG
k gT

k dk−1 =−‖gk‖2 +β
HDMG
k gT

k dk−1.

Since αk is computed by exact line search, it implies gT
k dk−1 = 0. Thus, we have gT

k dk = −‖gk‖2.
Hence, the condition (5) fulfill. The proof is completed.

To establish the global convergence properties, we need to simplify the β HDMG
k . See the follow-

ing lemma.

Lemma 2.2. The value of β HDMG
k must be one of β

HDMG
k ≤ ‖gk‖2

‖dk−1‖2 or β
HDMG
k ≤ ‖gk‖2

‖gk−1‖2 or

β HDMG
k = 0.

PROOF. From (7), we have three cases.

• Case 1: if β PRP
k < β MMSIS∗

k , we obtain

β
HDMG
k = β

MMSIS∗
k =

‖gk‖2− ‖gk‖
‖gk−1‖

∣∣gT
k gk−1

∣∣− ∣∣gT
k gk−1

∣∣
‖dk−1‖2 ≤ ‖gk‖2

‖dk−1‖2 .

• Case 2: if β PRP
k > β MMSIS∗

k , we obtain

β
HDMG
k = β

PRP
k =

gT
k (gk−gk−1)

‖gk−1‖2 =
‖gk‖2−gT

k gk−1

‖gk−1‖2 ≤ ‖gk‖2

‖gk−1‖2 .
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• Case 3: if β PRP
k = β MMSIS∗

k = 0, we obtain

β
HDMG
k = 0.

The proof is finished.
The following assumption is needed to establish the convergence properties of HDMG method.

Assumption 2.3. (A1) The level set Y = {x ∈ Rn : f (x) ≤ f (x0)} at x0 is bounded. (A2) In any
neighborhood H0 of H, the objective function f is differentiable and continuous, and its gradient
g(x) is Lipschitz continuous in H0, so, there exist a constant L > 0 such that ‖g(x)−g(y)‖ ≤ L‖x−
y‖, for all x,y ∈H0.

Based on this assumption, Zoutendjik [22] has proven the following lemma which is necessary
to prove the global convergence.

Lemma 2.4. Suppose that Assumption 2.3 hold. Consider any conjugate gradient method of the
form (2) and (4), where αk satisfy the exact line search (3). Then the following conditions so called
Zoutendjik conditions hold:

∞

∑
k=0

(gT
k dk)

2

‖dk‖2 < ∞.

The following theorem is global convergence theorem for HDMG method.

Theorem 2.5. Suppose that the sequence {xk} is generated by Algorithm 1. Assume that Assumption
2.3 hold. Then we have

lim
k→∞

inf‖gk‖= 0. (8)

PROOF. Assume the opposite, i.e (8) is not true, hence there exists a constant z > 0 such that

‖gk‖ ≥ z, ∀k ≥ 0,

it means that
1
‖gk‖2 ≤

1
z2 , ∀k ≥ 0, ‖gk‖ 6= 0. (9)

From (4), we know that
dk +gk = β

HDMG
k dk−1.

By squaring both sides of the equation, we have

‖dk‖2 =
(

β
HDMG
k

)2
‖dk−1‖2−2β

HDMG
k gT

k dk−‖gk‖2. (10)

Dividing both sides of (10) by (gT
k dk)

2, we obtain

‖dk‖2

(gT
k dk)2 =

(
β HDMG

k

)2 ‖dk−1‖2

(gT
k dk)2 − 2

gT
k dk
− ‖gk‖2

(gT
k dk)2

=

(
β HDMG

k

)2 ‖dk−1‖2

(gT
k dk)2 −

(
1
‖gk‖

− ‖gk‖
gT

k dk

)2

+
1
‖gk‖2

≤
(
β HDMG

k

)2 ‖dk−1‖2

(gT
k dk)2 +

1
‖gk‖2 . (11)

According to Lemma 2.2, we have three cases:
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• Case 1. if β
HDMG
k ≤ ‖gk‖2

‖dk−1‖2 , then from (11) and Lemma 2.1, we obtain

‖dk‖2

(gT
k dk)2 ≤

‖gk‖4

‖dk−1‖4
‖dk−1‖2

(gT
k dk)2 +

1
‖gk‖2 =

1
‖dk−1‖2 +

1
‖gk‖2 .

We know that
1
‖dk‖2 ≤

1
‖gk‖2 (see Lemma 3 in [?]), then we get

‖dk‖2

(gT
k dk)2 ≤

1
‖gk−1‖2 +

1
‖gk‖2 .

From (9) and the inequality above, we have

‖dk‖2

(gT
k dk)2 ≤

1
z2 +

1
z2 =

2
z2 .

Furthermore,

n

∑
k=0

(gT
k dk)

2

‖dk‖2 ≥
n

∑
k=0

z2

2
=

n+1
2

z2.

By Taking n→ ∞, we get

∞

∑
k=0

(gT
k dk)

2

‖dk‖2 ≥ lim
n→∞

n+1
2

z2 =+∞.

This contradicts the Zoutendjik condition in Lemma 2.4. Hence, the HDMG method is global
convergence.

• Case 2. if β
HDMG
k ≤ ‖gk‖2

‖gk−1‖2 , then from (11) and Lemma 2.1, we obtain

‖dk‖2

(gT
k dk)2 ≤

‖gk‖4

‖gk−1‖4
‖dk−1‖2

(gT
k dk)2 +

1
‖gk‖2 =

‖dk−1‖2

‖gk−1‖4 +
1
‖gk‖2 . (12)

By utilizing (12) recursively, we get

‖dk‖2

(gT
k dk)2 ≤

k

∑
i=0

1
‖gi‖2 .

Furthermore, from (9), we have
(gT

k dk)
2

‖dk‖2 ≥
z2

k+1
.

By taking summation of both sides, we obtain

n

∑
k=0

(gT
k dk)

2

‖dk‖2 ≥
n

∑
k=0

z2

k+1
= z2

n

∑
k=0

1
k+1

.

This implies,
∞

∑
k=0

(gT
k dk)

2

‖dk‖2 ≥+∞.

This contradicts the Zoutendjik condition in Lemma 2.4. Hence, the HDMG method is global
convergence.
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• Case 3. if β
HDMG
k = 0, then from (11) and (9), we obtain

‖dk‖2

(gT
k dk)2 ≤

1
‖gk‖2 ≤

1
z2 .

Therefore,
(gT

k dk)
2

‖dk‖2 ≥ z2.

Thus,
∞

∑
k=0

(gT
k dk)

2

‖dk‖2 ≥+∞.

This contradicts the Zoutendjik condition in Lemma 2.4. Hence, the HDMG method is global
convergence.

3 Numerical Experiments

In this section, we report the numerical experiments of HDMG method to compare with MMSIS
method. The comparing done by using some test functions considered by Andrei [23], and Jamil and
Yang [24]. Every test function, we use several initial points, and dimensions from 2 until 10,000. Most
of the starting points used were considered by Andrei [23] and the rest were randomly. The numerical
results are presented in Table 1 and obtained with the MATLAB code R2019a, and run using personal
laptop; Intel Core i7 processor, 16 GB RAM, 64 bit Windows 10 Pro operating system. The stopping
criterion ‖gk‖2 ≤ ε , where ε = 10−6.

According to the numerical results in Table 1, we can compare between methods by illustrating
the performance profile curves, in this paper we will use the performance profile proposed by Dolan
and Moré [25]. We plot the performance profile curve using the formula as follows:

rp,s =
ap,s

min{ap,s : p ∈ P and s ∈ S}
, ρs(τ) =

1
np

size{p ∈ P : log2 rp,s ≤ τ},

Table 1: Numerical results for the MMSIS and HDMG methods.

Test Function Dimension Initial Point MMSIS HDMG
NOI CPU NOI CPU

Ext White & Holst 1000 (-1.2, 1,...,-1.2,1) 16 0.4396 11 0.2952
Ext White & Holst 1000 (10,..,10) 30 0.804 37 1.0595
Ext White & Holst 10000 (-1.2,1,..,-1.2,1) 17 4.363 12 3.0189
Ext White & Holst 10000 (5,...,5) 25 6.3978 18 4.561

Ext Rosenbrock 1000 (-1.2, 1,...,-1.2,1) 16 0.0754 21 0.0827
Extended Rosenbrock 1000 (10,...,10) 30 0.1338 21 0.0716

Ext Rosenbrock 10000 (-1.2,1,...,-1.2,1) 16 0.2979 21 0.3561
Ext Rosenbrock 10000 (5,...,5) 26 0.4768 11 0.2092

Ext Freudenstein & Roth 4 (0.5,-2,0.5,-2) 9 0.0502 8 0.0277
Ext Freudenstein & Roth 4 (-5,-5,-5,-5) 7 0.0348 5 0.0164

Ext Beale 1000 (1,0.8,...,1,0.8) 13 0.4102 10 0.2804
Ext Beale 1000 (0.5,...,0.5) 12 0.3768 10 0.2736
Ext Beale 10000 (-1,...,-1) 14 3.8664 9 2.5379
Ext Beale 10000 (0.5,...,0.5) 12 3.3274 10 2.844

(Continued on next page)
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Table 1 – Continued
Test Function Dimension Initial Point MMSIS HDMG

NOI CPU NOI CPU
Ext Wood 4 (-3,-1,-3,-1) 203 0.4727 158 0.3283
Ext Wood 4 (5,5,5,5) 272 0.6224 278 0.5681
Raydan 1 10 (1,...,1) 21 0.0777 17 0.0435
Raydan 1 10 (10,...,10) 75 0.2111 39 0.101
Raydan 1 100 (-1,...,-1) 118 0.4247 73 0.2121
Raydan 1 100 (-10,...,-10) 194 0.6187 170 0.4862

Ext Tridiagonal 1 500 (2,...,2) 12 0.215 13 0.2004
Ext Tridiagonal 1 500 (10,...,10) 139 2.0098 16 0.2573
Ext Tridiagonal 1 1000 (1,...,1) 12 0.3666 13 0.3797
Ext Tridiagonal 1 1000 (-10,...,-10) 198 5.2889 15 0.4877

Diagonal 4 500 (1,...,1) 5 0.04 3 0.0185
Diagonal 4 500 (-20,...,-20) 5 0.0293 4 0.0273
Diagonal 4 1000 (1,...,1) 5 0.0347 3 0.0183
Diagonal 4 1000 (-30,...,-30) 5 0.0386 4 0.0303

Ext Himmelblau 1000 (1,...,1) 9 0.0654 7 0.0453
Ext Himmelblau 1000 (20,...,20) 6 0.0429 6 0.0452
Ext Himmelblau 10000 (-1,...,-1) 10 0.227 9 0.1886
Ext Himmelblau 10000 (50,...,50) 7 0.173 6 0.1399

FLETCHCR 10 (0,...,0) 80 0.2188 56 0.1301
FLETCHCR 10 (10,...,10) 39 0.1233 30 0.083
Ext Powel 100 (3,-1,0,1,...) 810 3.7825 3307 14.6059
Ext Powel 100 (5,...,5) 264 1.3266 3088 14.4368

NONSCOMP 2 (3,3) 8 0.0442 9 0.0238
NONSCOMP 2 (10,10) 15 0.0628 14 0.0405

Extended DENSCHNB 10 (1,...,1) 7 0.0368 5 0.0143
Extended DENSCHNB 10 (10,...,10) 10 0.0489 9 0.0264
Extended DENSCHNB 100 (10,...,10) 11 0.0461 9 0.0292
Extended DENSCHNB 100 (-50,...,-50) 11 0.0564 8 0.027

Extended Penalty 10 (1,2,...,10) 22 0.0824 27 0.0687
Extended Penalty 10 (-10,...,-10) 8 0.0377 7 0.0228
Extended Penalty 100 (5,...,5) 13 0.0613 7 0.0246
Extended Penalty 100 (-10,...,-10) 10 0.0401 9 0.0442

Hager 10 (1,...,1) 13 0.0552 12 0.0353
Hager 10 (-10,...,-10) 18 0.0746 18 0.051

Extended Maratos 10 (1.1, 0.1,...,1.1,0.1 ) 53 0.1465 35 0.1071
Extended Maratos 10 (-1,...,-1) 22 0.0764 12 0.0537
Six Hump Camel 2 (-1,2) 7 0.0247 6 0.0284
Six Hump Camel 2 (-5,10) 6 0.0207 6 0.0314

Three Hump Camel 2 (-1,2) 9 0.0293 9 0.0433
Three Hump Camel 2 (2,-1) 11 0.0325 12 0.059

Booth 2 (5,5) 4 0.0135 3 0.0145
Booth 2 (10,10) 4 0.0155 3 0.0164

Trecanni 2 (-1,0.5) 1 0.0064 1 0.0056
Trecanni 2 (-5,10) 5 0.0175 5 0.0264

Zettl 2 (-1,2) 11 0.0375 10 0.0457
Zettl 2 (10,10) 11 0.0303 8 0.0382

(Continued on next page)
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Table 1 – Continued
Test Function Dimension Initial Point MMSIS HDMG

NOI CPU NOI CPU
Shallow 1000 (0,...,0) 8 0.042 7 0.0453
Shallow 1000 (10,...,10) 11 0.0525 9 0.0613
Shallow 10000 (-1,...,-1) 9 0.1707 8 0.2012
Shallow 10000 (-10,...,-10) 9 0.194 9 0.1779

Generalized Quartic 1000 (1,...,1) 5 0.0231 6 0.0342
Generalized Quartic 1000 (20,...,20) 6 0.0365 10 0.0409

Quadratic QF2 50 (0.5,...,0.5) 87 0.1943 71 0.1626
Quadratic QF2 50 (30,...,30) 78 0.1845 64 0.1541

Leon 2 (2,2) 25 0.0608 11 0.0294
Leon 2 (8,8) 18 0.0446 33 0.0812

Generalized Tridiagonal 1 10 (2,...,2) 24 0.0679 22 0.0868
Generalized Tridiagonal 1 10 (10,...,10) 29 0.0829 27 0.108
Generlized Tridiagonal 2 4 (1,...,1) 4 0.013 4 0.0182
Generalized Tridiagonal 2 4 (10,...,10) 11 0.0363 10 0.0432

POWER 10 (1,...,1) 102 0.2045 21 0.0867
POWER 10 (10,...,10) 129 0.2674 25 0.0855

Quadratic QF1 50 (1,...,1) 69 0.1599 38 0.094
Quadratic QF1 50 (10,...,10) 85 0.1955 41 0.1126
Quadratic QF1 500 (1,...,1) 240 1.3077 131 0.585
Quadratic QF1 500 (-5,...,-5) 424 2.4118 137 0.6383

Ext Quad Penalty QP2 100 (1,...,1) 41 0.1438 26 0.0882
Ext Quad Penalty QP2 100 (10,...,10) 36 0.1196 26 0.0958
Ext Quad Penalty QP2 500 (10,...,10) 94 0.7527 33 0.2865
Ext Quad Penalty QP2 500 (50,...,50) 96 0.8037 26 0.2048
Ext Quad Penalty QP1 4 (1,1,1,1) 9 0.0251 6 0.0191
Ext Quad Penalty QP1 4 (10,10,10,10) 9 0.0354 9 0.0259

Quartic 4 (10,10,10,10) 114 0.2794 365 0.9105
Quartic 4 (15,15,15,15) 118 0.3283 197 0.4841
Matyas 2 (1, 1) 1 0.0039 1 0.0065
Matyas 2 (20, 20) 1 0.006 1 0.0049
Colville 4 (2,2,2,2) 357 0.6761 204 0.4159
Colville 4 (10,10,10,10) 58 0.1358 98 0.2037

Dixon and Price 3 (1, 1, 1) 15 0.0403 13 0.042
Dixon and Price 3 (10, 10, 10) 18 0.0482 49 0.116

Sphere 5000 (1,...,1) 1 0.0169 1 0.0114
Sphere 5000 (10,...,10) 1 0.0164 1 0.013

Sum Squares 50 (0,1,...,0,1) 49 0.1473 26 0.0694
Sum Squares 50 (10,...,10) 80 0.2309 42 0.1037

where rp,s is the performance profile ratio used to compare the s solver performance method
with the best performance for any p problem solver. ρs(τ) is the probability that the best possible
ratio is a consideration for solvers. Generally, the best method is represented on the top right curve.

From Fig. 1 and Fig. 2 we can see that the HDMG method on the top right, so the HDMG
method performs efficient than the MMSIS method both in terms of number of iterations and CPU
time.
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Figure 1: Performance Profile Based on Number of Iterations

Figure 2: Performance Profile Based on CPU Time

4 Application in Portfolio Selection

In this section, we present the application of CG method for solving portfolio selection problem.
Consider there are M assets with return r1, ...,rM. Assume that expected return of asset denotes
as µT = (µ1, ...,µM) with µi = E[ri], i = 1, ...,M, and covariance matrix denotes as V = (σi j) with
σi j = Cov(ri,r j), i, j = 1, ...,M. If proportional of asset is symbolized by XT = (x1,x2, ...,xm), with
subject to ∑

M
i=1 = 1, then,

the expected return of portfolio is defined as follows:

µp = E[rp] = µ
T X ,

and variance of portfolio is formulated by

σ
2
p =Var(rp) = XTV X .

In portfolio theory many investors want maximum returns or minimal risk or even both. There are also
extreme investors who only care about maximizing return (ignoring risk) or minimizing risk (ignoring
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expected returns) [26]. In this article we only consider minimizing the risks and using only two stocks
from the database http://finance.yahoo.com, over a period of 3 years (Jan 1, 2018 - Dec 31, 2020)., i.e
PT Bank Rakyat Indonesia (Persero) Tbk (BBRI), and PT Telekomunikasi Indonesia Tbk (TLKM).
We just take the weekly closing price data and the return is defined as follows:

Rt =
Pt−Pt−1

Pt−1
,

where Pt is the stock prices at time t and Pt−1 is the stock prices at time t−1. According to the data
of return, we can plot the movement price as in Figure 3.

Figure 3: Closing Price of BBRI and TLKM in Currency IDR

The risk of our portfolio is defined as variance of the portfolio’s return [26], so that the our
problem can be written as: {

minimize : σ2
p = XTV X ,

subject to : ∑
2
j=1 x j = 1.

(13)

We need to change the problem (13) into an unconstrained optimization problem. Suppose that x2 =
1− x1, then the problem (13) is an unconstrained problem as follows:

min
x1∈R

(x1 1− x1)
TV (x1 1− x1). (14)

The value of mean, variance, and covariance for BBRI and TLKM stocks are presented in Table 2.

Table 2: Mean, Variance and Covariance

Stocks Mean Variance Covariance BBRI TLKM
BBRI 0.00033 0.00273 BBRI 0.00273 0.00091
TLKM 0.00247 0.00166 TLKM 0.00091 0.00166

Based on Table 2, we can be compute the objective function of (14) as follows:

f (x1) = (0.00182x1 +0.00091)x1 +(−0.00075x1 +0.00166)(1− x1)

Now, we solve this function by using HDMG CG method with any initial points, then, we obtain
x1 = 0.2916. Furthermore, the value of risk is σ2

p = 0.00144. Finally, We found that minimizing the
risk we had to invest x1 = 29.16% of the BBRI stock, and x2 = 70.84% of the TLKM stock. The
portfolio risk is 0.00144 and the expected portfolio return is 0.0018.
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5 Conclusion

In this article, we presented a new hybrid CG method which combination of PRP and part of
MMSIS coefficients. The new method satisfies sufficient descent condition and the gloabal conver-
gence result is established under exact line search. Based on the numerical experiments, the new
hybrid method is more efficient and robust than MMSIS method. Finally, the practical applicability
of the hybrid method is also explored in risk optimization in portfolio selection.
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