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Abstract— In archaeology, typological research methods have long been used as a reliable methodology to estimate the relative ages of 

artifacts and clarify their genealogical relationships. There is, however, a disadvantage to typological research methods—the researcher’s 

subjectivity cannot be eliminated during the analysis process. This study aimed to provide an objective typological index by applying data 

science to typological research. Techniques known as “feature extraction” and “unsupervised learning” were used to recognize the patterns 

and visualize the data. Thereby, the study is expected to help clarify the laws hidden in the iconographic data of tiles. An experiment was 

performed to analyze the patterns on the eaves tiles of ancient Japanese roof tiles (from Fujiwara and Heijo Palace), which are the authors’ 

specialty. Results revealed that matching local features focusing on edges was effective in detecting similarities between tiles and extracting 

differences in the general framework of the pattern structure. Furthermore, the multidimensional scaling method and phylogenetic tree were 

utilized to estimate the age and place of origin of each tile, which is a crucial task in archaeology. In general, the results obtained were in 

accordance with those of previous studies. 
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1. Introduction 

In the field of archaeology, typological analysis has traditionally been employed as a valuable and efficient method 

for establishing the relative ages of artifacts and illuminating their phylogenetic connections. In studies on roof tiles, the 

authors analyzed the pattern alterations in nokimaru (round eaves) and nokihira (flat eaves) tiles through a typological 
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viewpoint, with the aim of recording sequencing and construction methods at specific sites such as temples and palaces. 

Studies based on the antecedent relationship of tiles, the transmission of building construction, handicraft production 

techniques between central and local regions, and their historical significance have been the mainstay of archaeological 

research. 

However, current typological research methods have several limitations, including subjectivity. First, the analysis 

may be subject to divergent interpretations as different investigators focus on distinct parts of an artifact. Moreover, there 

is no clear indicator for determining the process of stylistic degeneration or the formalization of changes in artifacts. 

 
This study seeks to address these issues by employing a data science approach to mechanically extract and categorize 

features, thereby providing a different index of stylistic change rather than relying on manual analysis by researchers. In 

detail, we used the techniques of feature extraction1 and unsupervised learning (which have been explored in the domain 
of data science) to uncover the latent principles concealed within the patterns observed in the data. 

The authors are currently engaged in research on the data-driven classification of archaeological artifacts, with a focus 

on the 3D analysis of Sue pottery and the use of artificial intelligence (AI) to determine type and identify provenance2. 

Additionally, the works of Fujita, Yamamoto, and others3 are also being pursued in this arena. The relationship between 
typological research methods and data science approach is marked by a strong affinity as both disciplines engage in data 

analysis and benefit from mutual feedback regarding findings. Collaboration in this manner may enable the construction 
of a more objective and comprehensive typology. 

However, a challenge that has arisen in the employment of AI in archaeology is the difficulty of differentiating between 

minute variations, such as those caused by burnt distortion, and the maker’s habitual techniques. To address this issue, 

the application of a data-driven approach to the typological analysis of tiles, with a well-defined classification criterion 

for “mold,” holds great promise for yielding more precise and comprehensive results rather than pottery. 

 

2. What is typology? 

In this section, we explain the concept of typology, which serves as a preliminary methodology for the analysis of 

materials in the field of archaeology. 

The Encyclopedia of Japanese Archaeology describes typology as follows4: 

A main method for classifying archaeological materials. Initially, the 

categorization of archaeological materials entails organizing them 

into broader and more specific classifications, with the classification 

unit being determined by style, form, or type. Subsequently, the 

materials are arranged in a chronological order on a vertical timeline 

and a horizontal spatial plane, serving as the initial basis for 

reconstructing past human activities through archaeological 

research. 

In the field of archaeology, a standard approach involves categorizing 

numerous excavated materials from archaeological sites based on their 

distinct characteristics and comparing these classified materials to derive 

important insights such as chronological sequences or phylogenetic 

connections. The methodological correlation between this approach and the 

data science approach (which identifies explicit and latent patterns in data 

and evaluates them for similarities) is considered extremely high. 

The Encyclopedia of Japanese Archaeology also stipulates that “the 

acquisition of ‘useful information’ from archaeological materials necessitates 

the selection of suitable attributes, which, in turn, enables the generation of 

useful information through analysis.” It is important to emphasize that 

merely conducting a blind analysis of data does not guarantee the 

attainment of archaeologically relevant “useful information.” It is 

important to determine and refine suitable data analysis techniques based 
 

1 A method for detecting similarity by extracting local features for each of two arbitrary images. 
2 Inoue et al., 2020 
3 Fujita et al., 2021 
4 Morimoto, 2002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An example of type transition. 

(Yokoyama, 1985) 
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on the properties of the materials and the archaeological inferences to be drawn. 

 
3. Research methods 

We employed a formal approach to analyze and discuss the findings. 

1. The nokimaru and nokihira tiles unearthed from the Fujiwara and Heijo palaces served as primary sources of 

information (Figure 2). We used these data for the following reasons: (1) The detailed excavation sites and points 

of excavation were uncovered through excavation surveys. (2) The Nara National Research Institute for Cultural 

Properties in Nara Prefecture and other research institutes have already conducted extensive chronological and 

genealogical studies; for example, the research carried out by Morimitsu and Hanatani5 is particularly valuable 

for comparison with data-driven analysis as it provides a valuable case study for examination and evaluation. 
(3) The Nara National Research Institute for Cultural Properties released a comprehensive catalog of rubbings 
in the form of standardized visual data. 

2. We subjected the image data of all varieties of tiles obtained from the Nara National Research Institute for 

Cultural Properties to data-driven analysis by using feature extraction and unsupervised learning. 

3. Note that the genealogical relationship between tiles should not be based solely on the tile pattern but also on 

the production technique, the set relationship with ordinary round and flat tiles, the excavation site, the 

excavation context, quantity ratios, and other factors. We confirmed these relationships using both analytical 

methods and an aggregate of existing research. 
4. We aimed to improve accuracy by feeding the results back into the data science process. 

 

Figure 2. Round eave title, flat eave tile, and their partial names (Yamamoto, 2001, 198-201, author’s addition). 

 

4. Analysis methods 

Figure 3 outlines the analysis process. Initially, we detected the keypoints of each tile, followed by matching similar 

keypoints based on their features between any two tiles. Subsequently, we computed the distance of any two tiles using 

the information obtained from the feature-matching approach. Finally, we employed multi-dimensional scaling (MDS; 

Kruskal, 1964) and phylogenetic tree (PT; Kitching et al., 1998) to create an overview of the similarities and depict the 

evolutionary links between the tiles, respectively. 
 

Figure 3. Analysis process. MDS is multi-dimensional scaling, and PT is phylogenetic tree. 
 

5 Morimitsu and Hanatani, 1991 
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4.1 Keypoint detection and matching 

The main components of keypoint detection and matching include (1) identifying the interest point or feature point, 

which is the point at which the direction of the boundary of the observation changes abruptly, or it is the intersection 

point between two or more edge segments; (2) describing each feature point using a specific vector, known as a 

descriptor; and (3) identifying similar features by comparing descriptors across any two images. We employed the scale- 

invariant feature transform (SIFT; Lowe, et al., 2004) to detect and describe feature points and develop the fast library 

for approximate nearest neighbors (FLANN) to perform feature matching. 

SIFT is widely utilized for keypoint detection and matching because of its ability to identify distinctive and invariant 

features in images. The final output of keypoint detection and feature extraction is a set of feature vectors that represent 

the keypoints and their descriptors. The steps are as follows: 

1. Scale-space extrema detection: The first step is identifying potential keypoint locations in an image across 

multiple scales. This is achieved by creating a scale space representation of an image using Gaussian blurring at 

different levels. 

2. Key point localization: Once potential key points are identified, representative keypoints are selected by using 

several criteria. Mainly, keypoints located on borders are selected. 

3. Orientation assignment: An orientation is assigned to each key point based on local image gradients. This step 

renders the algorithm invariant to image rotation. 

4. Feature description: Finally, a feature descriptor for each keypoint that describes the local image gradients and 

their distributions around that keypoint is computed. The descriptor is robust to changes in illumination, rotation, 

and scale. 

After obtaining the feature vectors of the keypoints, FLANN was used to find the nearest neighbors in the feature 

space. Although FLANN supports various algorithms to approximate the nearest-neighbor search, we employed 

commonly used randomized k-d trees based on the Euclidean distance. For each query keypoint, we found top two 

closest keypoints. We matched each query to the first nearest keypoint, and considered a match as good match if the 

ratio 𝑟 = 𝑑1/𝑑2 of distance 𝑑1 of the first nearest keypoint to the distance 𝑑2 of the second nearest keypoint is 

smaller than 0.7. 
4.2 Distance computation between images 

We then define a distance metric for computing distances to all images for each image. The metric consists of three 

metrics: 1) average distance 𝑚1 of matched keypoints 𝑑1, 2) averaged ratio 𝑚2 of the distances of the first nearest 

keypoint 𝑑1 to the second nearest keypoint 𝑑2, 3) good match ratio 𝑚3 of the number of good matches to the number 

of total matches. Let 𝑑𝑥𝑦 represents the distance between x and y as 

𝑑𝑥𝑦 = 𝑚1 ∗ 𝑚2 / 𝑚3 . (1) 

The smaller 𝑑𝑥𝑦 is, the more similar x and y are to each other. 

As the outcome of the FLANN is affected by the pre-specified target observation, 𝑑𝑥𝑦 is generally different from 

𝑑𝑦𝑥. For computing a symmetric distance between x and y, we re-describe the feature of a sample x by using distances 

to the rest images other than x and y. We used symmetrical chi-square distance (SChi). The symmetrical chi-square 

distances of images x and y are computed as 

𝑑𝑥𝑧−𝑑𝑦𝑧 
2 

SChi(x, y) = √2 ∑𝑧∈𝑋¥{𝑥,𝑦} ( 
𝑥𝑧 

 

+𝑑𝑦𝑧 
) , (2) 

where 𝑋¥{𝑥, 𝑦} is a set of images except the input x and y. By computing this between all the pairs of images, we 

obtained a distance matrix for the given images. 

4.3 MDS 

MDS is a well-known technique used in statistics and data visualization to analyze the similarity or dissimilarity of 

observations in a high-dimensional space and to represent them in a lower-dimensional space. Observations that are 

more similar are closer in the graph than are those that are less similar. 

Let D be the similarity matrix, where 𝑑𝑥𝑦 denotes the similarity between observations x and y. The inner product 

matrix B is computed as follows: 

B = − 
1 

2 
𝑯𝑫𝑯 , (3) 

 

where H is the centering matrix, which is an n×n matrix with all elements ℎ = 𝛿 − 
1
, and 𝛿 is the Kronecker’s 

delta. 

𝑥𝑦 𝑥𝑦 𝑛 𝑥𝑦 

𝑑 
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𝒌 

𝑖=1 

Then, decompose B using B = 𝑽𝚲𝑽𝑻, where 𝜦 is a diagonal matrix whose diagonal elements are eigenvalues and 

𝑽 is a matrix consisting of the corresponding eigenvectors. The eigenvectors corresponding to the k largest eigenvalues 

are then used to determine the coordinates of the observations in the lower-dimensional space using X= 𝑽𝒌 𝜦
𝟏/𝟐

. 

 

4.4 PT 

A PT represents the evolutionary relationships among a group of organisms. The branches of the tree represent the 

lineages of the organisms, and the points where the branches split (nodes) indicate common ancestors. 

The construction of a PT consists of two steps: (1) building a distance matrix by calculating the pairwise distances 

between observations, and (2) determining the distance between sets of observations using a proper linkage criterion. 

We applied the “ward.D2” criterion. The “D2” in “ward.D2” refers to the squared Euclidean distance, which is presented 

in Equation 4. The algorithm calculates the increase in the sum of the squared differences that would result from merging 

two clusters compared to merging all other possible pairs of clusters, and the decision to merge two clusters is based on 

minimizing the sum of the squared differences within all clusters. Ward.D2 is reported to be capable of producing 

compact spherical clusters. Moreover, it is sensitive to cluster shape and size and is less likely to produce clusters of 

unequal variance than other linkage criteria. 

 
 

Euclidean(x, y) = √∑𝑛 |𝑥𝑖 − 𝑦𝑖|2 (4) 

 

5. Results 

5.1 Results of the overall trend 

Figure 4 depicts the outcomes of MDS. The upper portion of the figure shows the nokimaru tiles, whereas the lower 

portion depicts the nokihira tiles. For the nokimaru tiles, the distribution of the concentric circle patterns (6009–6018) 

was distinct from that of the other groups, and a fundamental dissimilarity in pattern composition between the concentric 

circle and lotus patterns was evident. Furthermore, the group of double-petaled lotus patterns (6200–6369) comprised 

three distinct categories of tiles: those with a bare edge (6200–6229), those with bare edges and an outer beads band 

(6231–6249), and those with serrated edges and an outer beads band (6269–6320). We confirmed the validity of the data 

pertaining to the pattern structures of the edges and outer areas. 

In contrast, the distribution of single-petaled lotus patterns (6129–6162) almost overlapped with that of double-petaled 

lotus patterns. The specific distinctions noted by archaeologists through their observations were not effectively 

distinguished based on the features we used. 

Furthermore, despite the similarities in their serrated edges, beads bands, and double-petaled lotus patterns, we 

successfully distinguished the tiles excavated at Fujiwara Palace (6269–6281) and those used at Heijo Palace (6282– 

6320). Given the absence of any conspicuous stylistic variations between the serrated edges of the two groups, 

particularly with respect to the presence of convex or linear serrations, it is intriguing to observe the characteristics of 

the data science approach identified as significant as well as the criteria employed for pairing these features in the 

classification process. 

The nokihira tiles featured a group of multiple contour patterns (6572–6575) that could be considered as a separate 

and distinct classification from the others. Furthermore, the inner area group was clearly distinguished into two unique 

categories: (1) the one-way arabesque group (6640-6654) and (2) the symmetrical arabesque group (6655–6775). 

However, the extraction of the outer area pattern from the nokihira tiles was unsatisfactory, indicating that the method 

we employed was insufficient for accurately identifying the outer distinct pattern. Furthermore, similar to the nokimaru 

tiles, we were unable to differentiate minor variations in the design within the overall Arabidopsis pattern. 

These findings suggest that although the fundamental design elements of the patterns—such as concentrated circles, 

lotus motifs, multiple contours, one-way arabesques, and symmetrical arabesques—can be discerned, the subtle 

variations typically used by archaeologists to distinguish between different patterns are not readily apparent. In particular, 

the pattern structures of the edge and outer areas of the nokimaru tiles were distinctively recognizable. 

The ramifications of these results extend to the cognitive aspects of tile patterns, particularly areas of focus among 

individuals. In his examination of nokimaru tiles, Fujisawa6 discovered that the configurations of the edges and outer 

areas, rather than the inner areas, changed with age. He referred to this phenomenon as the chronological category and 

utilized it to determine the age of the tiles. In fact, the design of the edge and outer area patterns of nokimaru tiles has 

undergone transformations throughout various historical periods, from a rudimentary configuration to the bare edge, 
 

6 
Fujisawa,1941 



The Indonesia Journal of Social Studies, Volume 7 (2) (2024): 262-270 

267 

 

 

then to concentrated circles, to the sawtooth pattern, and finally to the development of an outer beads band. This implies 

that people’s understanding of the pattern of nokimaru tiles was primarily influenced by the outer edge, rather than the 

inner area. Thus, the application of data science techniques can be considered indicative of the significance of individuals 

by focusing on the arrangement of the tile patterns. 

 

5.2 Analysis of individual tile types 

This section attempted to classify a group of archaeologically studied tiles using data science methods that match both 

established archaeological classifications and the corresponding phenomena. 

Tiles excavated at Fujiwara Palace were provided by multiple places in the workshop. During the early phase of the 

construction of Fujiwara Palace, tiles were provided from local kilns situated in distant provinces, such as Omi and 

Sanuki, as well as the Hidakayama kilns, which is located in close proximity to the palace. These tiles were primarily 

used for the outer mud walls around the palace. Later, the supply from local kilns was disrupted, and tile production was 

relocated to kilns in the Yamato Basin. The production site moved from the Hidakayama kilns to the Kodai kilns, which 

was situated near Fujiwara Palace. These tiles were specifically used in the inner-central region of the palace. Figure 5 

illustrates the correlation of the tiles used at Fujiwara Palace, which indicates the potential of employing data science 

techniques to discern variations in production sites and supply stages. 
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Figure 4. Results of MDS of nokimaru and nokihira tiles from Fujiwara and Heijo Palace. 
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Figure 5. Correlation of the tiles used at Fujiwara Palace. 

Figure 5 demonstrates that both the nokimaru and nokihira tiles are slightly mixed, but there are tiles from local kilns 

(e.g., the 6274 and 6278 series of the nokimaru tiles, and the 6646 and 6647 series of the nokihira tiles) and tiles from 

the Hidakayama kilns (e.g., the 6233 and 6274 series of the nokimaru tiles), which are from the early phase of 

construction of Fujiwara Palace. We recognized the late-phase tiles from the Yamato Basin (e.g., the 6281 series of the 

nokimaru tiles and the 6641 series of the nokihira tiles) and those from the Kodai kilns (e.g., the 6273, 6275, and 6279 

series of the nokimaru tiles and the 6642 and 6643 series of the nokihira tiles) as approximate categories. Furthermore, 

we classified the nokihira tiles from the Motoyakushiji and Makidai kilns—which are considered to be the progenitors 

of these tiles—into two groups (series 6641 and 6647), whereas we did not observe a distinct pattern for the nokimaru 

tiles. 

These results indicate that data science techniques can be employed to discern the provenance and production period 

of the Fujiwara Palace tiles with considerable accuracy. The application of data science techniques has proven highly 

effective in classifying nokihira tiles into two easily comprehensible patterns: one-way palmet arabesque and one-way 

normal arabesque. Furthermore, data science methods can clearly classify multiple patterns on nokimaru tiles, which are 

so similar that even researchers cannot distinguish them. It is intriguing  to observe the manner in which the data science 

methodology discerns and arranges patterns. 

6. Conclusions 

This study demonstrates the potential of employing data science methods, specifically image similarity detection and 

edge feature matching, to differentiate patterns within the broader framework of the nokimaru tile configuration. 

Moreover, MDS and tree diagrams facilitated the identification of the age of each artifact and its place of origin to a 

certain extent. Notwithstanding, the data science methods we employed were insufficient to determine the typological 

transitions of tiles, a feature that has been achieved by archaeologists through meticulous analysis of minute alterations 

in the patterns. Figure 6 depicts a hierarchical representation of the approximate connections among the various types of 

Todaiji-style nokihira tiles, including the 6732 series. The diagram illustrates the relationships between these tile types in 

a structured and organized manner, providing a clear overview of their interconnections. Although it is commonly 

accepted that Todaiji-style plain tiles can be categorized into four distinct groups (Todaiji, Kofukuji, Saidaiji, and Heijo 

Palace) based on their intricate design variations and the locations from which they were excavated, we failed to separate 

them. 
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Although we were unable to attain the level of pattern 

subdivision typically pursued by archaeologists, one cannot say 

with certainty that the data science approach is ineffective for 

archaeology. Owing to the inherent relationship between data 

and methods, and the fact that no single method is consistently 

effective, a data science approach tailored to a specific pattern 

can be developed by implementing various techniques in the 

future. 

This methodology can be broadly applied to diverse patterns 

and images including tile designs. Given that the potential 

application of data science techniques to the analysis of non- 

literary textual materials holds promise for uncovering 

objective and accurate chronological and genealogical 

relationships on a larger scale, we anticipate significant 

advancements in this area of research in the coming years. 
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