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Abstract 

Physical systems in partial differential equations can be interpreted in a visual form using a wave 

simulation. In particular, the interpretation of the differential equations used is in the nonlinear 

hyperbolic model, but in its completion, there are some limitations to the stability requirements found. The 

aim of this study is to investigate the analytical and numerical analysis of a wave equation with a similar 

unit and fractal intervals using the Fourier coefficient. The method in this research is to use the analytical 

solution approach, the spectral method, and the finite difference method. The hyperbolic wave equation's 

analytical solution approach, illustrated in the Fourier analysis, uses a pulse triangle. The spectral 

method minimizes errors when there is the addition of the same sample grid points or the periodic 

domain's expansion with a trigonometric basis. Meanwhile, different ways offer a more efficient solution. 

Based on the research results, the information obtained is that the Fourier analysis illustrates the pulse 

triangle use to solve the solution. These results are also suitable for adding sample points to the same 

spectra. Fourier analysis requires a relatively long time to solve one pulse triangle graph to need another 

solution, namely the finite difference method. However, its use is still limited in terms of stability when 

faced with more complex problems. 
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Eksistensi Koefisien Fourier dan Multiplisitas Berkala Berdasarkan Nilai Awal dan Syarat Batas 

Gelombang Dimensi Satu 

 

Abstrak 

Sistem fisis pada persamaan diferensial parsial dapat diinterpretasi dalam bentuk visual dengan 

menggunakan simulasi gelombang. Secara khusus, interpretasi dari persamaan diferensial yang 

digunakan adalah dalam model hiperbolik nonlinier, namun dalam penyelesainnya, ditemukan beberapa 

keterbatasan syarat kestabilan. Tujuan dari penelitian ini adalah untuk menyelidiki analisis analitik dan 

numerik dari suatu persamaan gelombang dengan interval satuan dan fraktal yang serupa menggunakan 

koefisien fourier. Metode pada penelitian ialah menggunakan pendekatan solusi analitik, metode spektral 

dan metode beda hingga. Pendekatan solusi analitik persamaan gelombang hiperbolik yang dilustrasi 

kedalam analisis fourier menggunakan segitiga pulsa. Metode spektral dengan minimalisasi kesalahan 

ketika ada penambahan titik grid sampel yang sama atau penambahan domain periodik dengan basis 

trigonometri. Sedangkan pada metode beda hingga sebagai tawaran solusi penyelesaian yang lebih 

efisien. Berdasarkan hasil penelitian, menunjukkan bahwa keberadaan analisis fourier dengan ilustrasi 

segitiga pulsa dapat dijadikan sebagai solusi penyelesaian. Hal ini diperkuat kesesuaian hasil yang 

diperoleh ketika ada penambahan titik sampel dalam spektral yang sama. Analisis fourier membutuhkan 

waktu yang relatif lama untuk memecahkan satu grafik segitiga pulsa sehingga membutuhkan solusi lain 

yaitu metode beda hingga, walaupun dalam penggunaannya masih terbatas dalam hal stabilitas jika 

dihadapkan pada masalah yang lebih kompleks. 

Kata Kunci: Persamaan Diferensial Parsial; Analisis Fourier; Beda Hingga; Persamaan Gelombang 
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I. INTRODUCTION 

A partial differential equation (PDE) is 

a form of equation found in many physics 

applications, such as suspension bridges [1,2]. 

Hanging bridge modeling in physical concept 

is closely related to waves in physics [3]. The 

importance of using PDE is to build a model 

mathematically, making it easier to study the 

physical system of a model in physics 

applications [4]. 

The physical system for partial 

differential equations can be interpreted in 

visual form using wave simulation [3-8]. The 

interpretation of differential equations used is 

a nonlinear hyperbolic model [9,10]. An 

example of a phenomenon that applies this 

model is mechanical wave propagation 

[1,2,11], and the solution for this model uses 

the finite difference method [12]. However, in 

its completion, several limitations of stability 

requirements were found. Although this 

problem is not directly related to the classical 

wave problem, it is related to a Fourier 

analysis review [13-15]. 

In general, the mechanical wave 

propagation equation has a complicated 

solution. This is because the equation is 

nonlinear [16-19]. Several other studies 

[20-24] also stated that this phenomenon is 

diverse, so that it has many possibilities in its 

http://creativecommons.org/licenses/by-nc/4.0/
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resolution. Based on these characteristics, the 

solutions offered also vary. One of the 

methods provided in solving is by utilizing 

Fourier analysis.  

Blomker [25] states that a solution using 

Fourier can be used as a predictor to 

generalize the waves discussed. However, 

Gourevitch [26] said that the use of the new 

Fourier is limited to determining the Fourier 

coefficient at certain intervals only by 

integration. Relatively long and complex 

integrations often result in relatively simple 

formulas for the Fourier coefficients and bn 

[24]. This raises the question of whether to 

obtain the Fourier coefficient at any point. 

This is only determined by the extraordinary 

coefficient to determine the Fourier 

coefficient in the case of one-dimensional 

waves.  

This study focuses more on propagating 

the pulse triangle as an illustration of the 

Fourier coefficient's existence with the 

addition of the periodic domain mechanism so 

that the solution used is the analytic iteration 

model or the n step. As mentioned, this study 

aims to examine the analytic and numerical 

analysis of wave equations with similar 

fractal and interval units. 

 

II. METHOD 

Hyperbolic Wave Equation Analytic 

Solution 

Analytical solution of wave equations 

can be solved by using the Laplacian 

approach [27], wherewith this approach a 

one-dimensional wave equation can be 

defined as Equation (1). 

 

2
2

2 2

1 u
u

c t


 =


 (1) 

In mechanical waves, a one-dimensional 

wave can be illustrated by a wave vibrating 

against the periodic axis so that the net force 

on the horizontal axis is zero, which results in 

the resultant force being 

 ( ) 2 1sin siny xx x
F T T 

+
= −  (2) 

with value 1tan
x

u

x



=
 ( )

2tan
x x

u

x


+


=


and the amount of force obtained is 

 
( )

y

x x x

u u
F T

x x+

  
= − 

   
  (3) 

Based on Newton's second law, it is obtained, 

 
( )

2

2

x x x

u u

x xu
T

t x


+

  
− 

    =
 

 (4) 

and to illustrate Fourier's analysis based on 

Equation (4), it can be modeled in Figure 1. 

 

Figure 1. Pulse Triangle at t = 0 s 

where t is 0, u0 is 

 

( )
0

2
;0

2

2
;
2

hx l
x

l
u

h l
x l x l

l


 


 −  


 (5) 

 

Spectral Method 

The calculation of the convergence of 

the solution using more grid points is used to 

estimate the derivative of a function. One of 

the methods used is the periodic method, 

which is known to be accurate, where n is the 

order of the point size of the grid for each 

sample [28]. The goal is to formulate the 

periodic domain using trigonometric bases 

with equal distances. As the sample size 

increases, the error should decrease so that 

solutions can be distinguished. If solved by 

the Fourier approach, this will be 
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 ( ) ( )
( )

2
j

ik i n x
k lN

j nk
n N

d U
x in b e

dx

 
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 



=   (6) 

where k is the order of the derivative, n is the 

Fourier mode, l is the length of the spatial 

domain, and bn is the Fourier coefficient. 

The solution chosen uses the 

interpolation function so that 

 ( ) ( )
0

N

N n n

n

U x b x
=

=  (7) 

with ( )
1

0

1
j

N
inx

n j

j

b U x e
N

−

=

=   (8) 

If approximated by the square of the Fourier 

mode sequence, the second-order spatial 

derivative can be formulated 

 
2 ˆ

xx nU n a= −  (9) 

The order of the Fourier modes is arranged to 

be evenly uniform across the spatial grid with 

 1 1 ,0, 1
2 2

N N
n i

    
= − + −    

    
 (10) 

 

When applied to a hyperbolic wave, the 

spatial Fourier transform on both sides is 

obtained 
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2 2

2 2
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u
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u u
e dx e dx
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 
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    
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 (11) 

 

Finite Difference Method (FDM) 

Classical numerical techniques can be 

used to estimate some solutions to the 

problem of the initial equation of the wave 

value written as a function with the amplitude 

u(x,t), which states that x is a function of 

position and t as a function of time according 

to Equation (12) [29].  

 
2

xx ttc u u=  (12) 

with 

 
0

0

fx x

t T

 

 
 (13) 

with a hyperbolic scheme, as shown in Figure 

2. 

  

Figure 2. Hyperbolic Scheme 

 

Figure 2 can be seen in [30,31]. To solve 

Equation (12), it must be accompanied by 

initial conditions and boundary conditions, 

initial conditions 

 ( ) ( ) ( ) ( )0 0,0 ,  ,0 1
u

u x i x x i x
t


= =


  (14) 

and boundary conditions 

 ( ) ( ) ( ) ( )00, ,  ,
ff xu t b t u x t b t= =  (15) 

III. RESULTS AND DISCUSSION 

One dimensional wave can be solved by 

assuming u(x,t)=X(x)T(t), this solution is used 

to explain the behavior of the system 

presented in Equation (1) [32,33]. Based on 

Equation (1), it is known that the right and left 

side segments only have t as a function of time 

and x as a function of distance. So, to solve the 

two systems, an example is carried out with a 
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certain constant (-k2) for each segment, where 

k is the number of waves. 

 
2

2 2

2
0

d T
k c T

dt
+ =  (16) 

 
2

2

2
0

d X
k X

dx
+ =  (17) 

Equation (16) produces the characteristic 

equation [30], for the right-hand side system 

is 

 1,2D kci=   (18) 

while on the left side, Equation (17) yields 

 1,2D ki=   (19) 

So that Equation (16) produces a solution, 

 ( ) 1 2sin cosT t A kct A kct= +  (20) 

If A1 and A2 are constants determined by the 

initial condition dT/dt(0) = 0, then it is 

obtained, 

 ( ) 1 cosT t A kct=  (21) 

while Equation (17) produces a solution, 

 ( ) 1 2sin cosX x B kx B kx= +  (22) 

If B1 and B2 are constants that are determined 

by the boundary conditions X(0)=0, then B2=0 

is obtained, 

 ( ) 1 sinX x B kx=  (23) 

To obtain the complete solution as follows, 

 
( ) ( ) ( )

1 1

,

sin cos

u x t X x T t

A B kx kct

=

=
 (24) 

A1 and B1 are constants, so they can be written 

as a new constant C, so Equation (24) can be 

written, 

 ( ), sin cosu x t C kx kct=  (25) 

The boundary conditions of Equation (20) and 

Equation (22) apply to the condition 

u=(0,t)=u(l,t)=0 and have an initial condition 

in idle state du/dt(0)=0 [34,35] so that, 

 
n

k
l


=  (26) 

Giving initial conditions and boundary 

conditions causes Equation (25) to be 

 ( ), sin cos
n n c

u x t C x t
l l

 
=  (27) 

So u0 is obtained 

 0 sin
n

u C x
l


=  (28) 

If continued using the Fourier series [36], it is 

obtained 

 0 sinn

n
u b x

l


=  (29) 

where bn is an odd function shown in 

Equation (30) 
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(30) 

was obtained, 
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Equation (31) can be simplified into 

 
2

8 4
sin

2
n

h n h
b

l n




= −  (32) 

If substituted, the value of n = 1, 2, 3, ... is 

obtained 
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Figure 3. Fourier Coefficients Based on Equation (34) 
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The results of the equation graph (34) are 

shown in Figure 3, while Equation (12) is 

solved by the formula [36-38], 

 

1 1

1 1

2 2 2

2 21

,  

k k k k k k

t t t t t t

f

x

u u u u u u

x c t

x T
x t

m n

+ −

+ −− + − +
=

 

 =  =

(35) 

where xf is the final boundary condition, mx is 

the number of parts of the x-axis, T is the end 

time iteration, and n is the number of time 

parts t.  

The results of the translation of Equation (35) 

are obtained as follows, 

 

( ) ( )1 1

1 1

2
2

2

2 1k k k k k

t t t t tu r u u r u u

t
r c

x

+ −

+ −= + + − −


=



(36) 

Because ( )1

t tu u x t− = − will not be 

obtained when k=0, then the initial condition 

forecast through the formula Equation (37) 

for order-1 as follows, 

 ( )
1 1

'

0
2

t t
t

u u
i x

t

−−
=


 (37) 

Equation (37) causes ( )1 1 '

02t t tu u i x t− = − 

thus for k=0 to be obtained, 
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 (38) 

The values for k are 1, 2, 3,… which can 

easily be obtained from the previous iteration 

equation. If the stability value can be 

guaranteed with accuracy, then the 

approximate fix solution according to Gerd 

[39] is the value of r1, or reduced so that 

the iteration results are shown in Figures 4 

and Figure 5. 

 

 

Figure 4. One-Dimensional Wave Equation for t=1 s 

 

When compared to other methods, this 

method is relatively simple [40]. Then 

confirmed by [32,33] who need Cauchy's 

data to describe the expansion of the wave 

equation. 

Figure 4 is obtained based on equation 

(1) when t=1 s, with the parameter wave 

velocity c of 1 m/s, xf =1 m, mx=20, T=2 s, 

n=50 s, at 0t2 s and the boundary 

condition 0x 1 m. To see the whole wave, 

it is necessary to increase the time interval 

0t15 s and the boundary condition 0x4 

m so that Figure 5 can be obtained. If further 

extrapolation is carried out in equation (38), 

a visualization of a wave that is moving 

sloping will be obtained, which is the same 
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as the results of Fourier equation (34) and as 

shown in Figure 5. This is also in line with 

research conducted by Jufriansah et al [41] 

and Peng et al [42]. 

 

 

Figure 5. Equity Wave Dimension One for t=15 s 

 

The analysis results noted that that 

1-dimensional waves could be solved using 

the Fourier approach in terms of the 

systematic multiplicity method and finite 

difference methods at similar fractals. 

 However, if applied to an irregular 

function domain such as the 

multidimensional case or a conservative 

problem such as weakly damped waves, see 

[6], it requires a different method. 

The constraints in the Fourier method 

are limited to hyperbolic equations. In 

contrast, FDM is limited to the initial 

conditions and limitations given. If given 

outside this equation, FDM cannot maintain 

system stability. The advantage of using 

Fourier is that it does not require iteration, but 

Fourier's disadvantage is that it takes a 

relatively long time to complete one wave. In 

FDM, the advantage is that it is easy and 

efficient to solve the wave equation, but the 

disadvantage is that it does not apply to 

unstructured functions u (x, t). 

This research can be applied to relevant 

research studies such as mechanical wave 

propagation based on the research results. 

This study also provides an opportunity to 

develop different fractal case methods to 

answer other processes' efficiency. 

 

IV. CONCLUSION 

The periodic function using the Fourier 

series is more complicated than previously 

thought. The simplest interpretation of the 

Fourier series is a singularity isolated from the 

function at a particular point, which might 

differ at another point. If the mesh point is 

extended to n iterations, it will take a long 

time to solve the problem. In the same fractal 

problem, there is a Fourier series conformity 

and an explicit finite difference pattern. So 

that the explicit pattern that occurs in the 

Fourier series can be approached using finite 

difference and simpler methods. The finite 

difference method can be used as a predictor 

no matter how much iteration is carried out, 

even though its use is still limited in terms of 

stability when faced with more complex 

problems such as dissimilar fractal problems. 
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