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Abstract 

The ring model of the coupled oscillator has enormously studied from the perspective of quantum 

mechanics. The research efforts on this system contribute to fully grasp the concepts of energy transport, 

dissipation, among others, in mesoscopic and condensed matter systems. In this research, the dynamics 

of the quantum propagator for the ring of oscillators was analyzed anew. White noise analysis was applied 

to derive the quantum mechanical propagator for a ring of four harmonically coupled oscillators. The 

process was done after performing four successive coordinate transformations obtaining four separated 

Lagrangian of a one-dimensional harmonic oscillator. Then, the individual propagator was evaluated via 

white noise path integration where the full propagator is expressed as the product of the individual 

propagators. In particular, the frequencies of the first two propagators correspond to degenerate normal 

mode frequencies, while the other two correspond to non-degenerate normal mode frequencies. The full 

propagator was expressed in its symmetric form to extract the energy spectrum and the wave function.  

Keywords: white noise analysis, path integrals, coupled harmonic oscillators 

 

Penurunan Propagator Kuantum untuk Cincin pada Empat Osilator Harmonik Berpasangan 

 

Abstrak 

Model cincin dari osilator harmonik berpasangan telah banyak dipelajari dalam perspektif mekanika 

kuantum. Penelitian pada sistem ini berkontribusi untuk memahami sepenuhnya konsep perpindahan 

energi, disipasi, antara satu dengan yang lain, pada sistem mesoskopik dan zat mampat. Pada penelitian 

ini, peneliti menganalisis dinamika dari propagator kuantum untuk cincin osilator baru. Penelitian ini 

bertujuan untuk menganalisis propagator mekanika kuantum untuk cincin dari osilator-osilator. Analisis 

white noise telah diaplikasikan untuk menurunkan propagator mekanika kuantum untuk cincin dari empat 

osilator harmonik berpasangan. Proses ini dilakukan setelah melakukan empat transformasi koordinat 

berturut-turut yang memperoleh empat Lagrangian terpisah dari osilator harmonik satu dimensi. 

Kemudian, propagator individual dievaluasi melalui integral jalur white noise yang mana propagator 

penuh dinyatakan sebagai produk dari propagator individual. Secara khusus, frekuensi dari dua 
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propagator pertama berhubungan dengan degenerasi frekuensi mode normal, sedangkan dua lainnya 

berhubungan dengan frekuensi mode normal yang tidak terdegenerasi. Propagator penuh dinyatakan 

dalam bentuk simetrisnya untuk mengekstraksi spektrum energi dan fungsi gelombang. 

Kata Kunci: analisis white noise, path integral, osilator harmonik berpasangan  
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I. INTRODUCTION 

Studying the dynamics of coupled 

harmonic oscillators has been the subject of 

great interest these past decades. This model 

is found in many applications of quantum and 

nonlinear physics [1-4], condensed matter 

physics [5], and biophysics [6-7]. 

Several mathematical explorations 

concerning coupled oscillations, including the 

linear chains and ring geometry, have been 

addressed [8-20]. Researches conducted by 

Hong-Yi [9] and Butanas [19] focus on 

analyzing the dynamics of three coupled 

oscillators by solving the wave function and 

quantum propagator. This three-body system 

became the study of interest because the 

system avoids any “edge effects”, with which 

one can easily employ its symmetrical nature 

when analyzing its dynamics.     

The present work extends the ideas of 

Hong-Yi [9] and Butanas [19] by describing 

first its dynamics in the case of four identical 

masses. The geometry of the system is 

illustrated in Figure 1. The extension of such 

a system posits unique importance especially 

in the field of physics. It can be applied to 

systems of N-coupled oscillators coupled with 

an environment, which can be used to model 

quantum transport of energy excitation in 

solid-state and biological systems [20]. In 

investigating the dynamics of the said system, 

the method of the Feynman path integral is 

utilized. 

Path integration was developed by 

Feynman [21], with the realization of 

summing-over-all possible histories of the 

particle’s path. 

 

 
Figure 1. System of Ring of Four Harmonically 

Coupled Oscillators of Uniform Mass and 

Frequency 

 

The formulation, however, has been 

known to be mathematically ill-defined due to 

the presence of the infinite-dimensional flat 

“measure”. Various attempts were made in 

providing a rigorous foundation and one of 

these is the white noise analysis.  
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White noise analysis is a mathematical 

framework used to provide the traditional path 

integral method a rigorous formulation   

[22-24]. This method was a joint development 

of Hida and Streit [25] as a novel approach to 

infinite-dimensional analysis. 

Since its extensive development, the 

white noise analysis method became an 

important tool especially in the field of 

theoretical physics in describing the behavior 

of certain systems in quantum and statistical 

mechanics. Studies conducted [18-20, 26-30, 

33-42] explicitly show the promise of white 

noise analysis in investigating both open and 

closed quantum systems due to its 

mathematical ease of use. Therefore, the 

research aims to derive quantum propagator 

for the ring of four harmonically coupled 

oscillators. 

 

II. METHOD 

This section provides the Lagrangian of 

the system which is the primary problem in 

solving the path integral. Moreover, the steps 

in evaluating the quantum mechanical 

propagator are presented. 

 

Four harmonically Coupled Oscillators  

     The Lagrangian of four harmonically 

coupled oscillators as illustrated in Figure 1, 

is defined in Equation (1). 

𝐿 =
1

2𝑚
(𝑝1

2 + 𝑝2
2 + 𝑝3

2 + 𝑝4
2) +

1

2
𝑚𝜔2𝑥1

2  

 +
1

2
𝑚𝜔2𝑥2

2 +
1

2
𝑚𝜔2𝑥3

2 +
1

2
𝑚𝜔2𝑥4

2  

  +𝜆𝑥1𝑥2 + 𝜆𝑥2𝑥3 + 𝜆𝑥3𝑥4 + 𝜆𝑥4𝑥1  (1) 

where 𝑥,  𝑝,  and 𝜔  are the corresponding 

positions, momenta and frequencies of the 

system, while the 𝜆 ’s are the real coupling 

constants of nearest-neighbor interactions. 

 

Coordinate Transformation 

    Systems of coupled harmonic oscillators 

are easier to handle by incorporating first the 

coordinate transformation [17] to decouple 

the system. The transformation matrix, which 

is analogous to obtaining the normal modes of 

the system, is written in Equation (2). 

|
𝑥1

𝑥2
| = (

cos 𝜑 sin 𝜑
− sin 𝜑 cos 𝜑

) |
𝑦1

𝑦2
|    (2) 

where 𝑦1 and 𝑦2  are the new coordinates. 

From this, the following relations can be 

obtained in Equations (3) and (4). 

𝑥1 = 𝑦1 cos 𝜑 + 𝑦2 sin 𝜑       (3) 

𝑥2 = −𝑦1 sin 𝜑 + 𝑦2 cos 𝜑      (4) 

Differentiate Equations (3) and (4), then 

substitute these into the Lagrangian given for 

the system. Finally, by imposing the rotation 

angle in Equation (5). 

𝜑 =
(2𝑛+1)𝜋

4
    (5) 

where 𝑛 = 0, 1, 2, …  helps to eliminate the 

system’s couplings and obtain a newly defined 

Lagrangian. This process is repeated until all 

the couplings are decoupled and a separable 

Lagrangian is obtained. Hence, the quantum 

propagator for the system will be derived 

individually which leads the resulting full 

propagator to be the product of each of the 

propagators. 

 

Feynman Quantum Propagator as a White 

Noise Functional 

The summation-over-all histories as 

derived by Feynman [21] expresses the 

quantum propagator symbolically by 

Equation (6). 

𝐾(𝑥1, 𝑥0; 𝜏) = ∫ 𝑒𝑥𝑝 (
𝑖

ℏ
𝑆) 𝐷[𝑥]     (6) 

where 𝑆 is the classical action and 𝐷[𝑥] is 

the infinite-dimensional flat “measure”. The 

equation can be recast into the framework of 

white noise analysis by first parametrizing the 
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trajectory of the particle containing the 

Brownian fluctuation [22-23] given by 

Equation (7). 

𝑥(𝑡) = 𝑥0 + √
ℏ

𝑚
∫ 𝜔(𝜏)𝑑𝜏

𝑡

0
    (7) 

where ℏ as the Planck’s constant divided by 

2𝜋 , 𝑚  is the mass of the particle being 

considered, and 𝜔(𝜏) as the Gaussian white 

noise variable representing the “velocity” of 

the Brownian motion. Taking the 

correspondence between the Lebesgue 

measure 𝐷[𝑥]  and the Gaussian measure 

𝑑𝜇(𝜔) gives in Equation (8). 

𝐷[𝑥] = lim
𝑁→∞

∏(𝐴𝑗) ∏(𝑑𝑥𝑗) = 𝑁𝑑∞𝑥

𝑁−1

𝑗=1

𝑁

𝑗=1

 

(8) 

with  

𝑁𝑑∞𝑥 → 𝑁𝑑∞𝜔  

     = 𝑁𝑒𝑥𝑝 [
1

2
∫ 𝜔(𝜏)2𝑑𝜏

𝑡

0
] 𝑑𝜇(𝜔)    (9) 

with 𝑁  as some normalization constant. 

Furthermore, the endpoints the particle may 

take is fixed by introducing the Donsker delta 

function 𝛿(𝑥(𝑡) − 𝑥1) , with its Fourier 

decomposition defined as Equation (10). 

𝛿(𝑥(𝑡) − 𝑥1) =
1

2𝜋
∫ [𝑖𝜆(𝑥(𝑡) − 𝑥1)]𝑑𝜆

∞

−∞
 

(10) 

such that at time 𝑡 the particle is located at 

𝑥1 . Lastly, with the previous equations, the 

Feynman propagator is written in the context 

of white noise analysis as Equation (11). 

𝐾(𝑥1, 𝑥0; 𝜏) = 𝑁 ∫ 𝑒𝑥𝑝 [
𝑖+1

2
∫ 𝜔(𝜏)2𝑑𝜏

𝑡

0
]  

           × 𝑒𝑥𝑝 [−
𝑖

ℏ
∫ 𝑉(𝑥)𝑑𝜏

𝑡

0
]  

           × 𝛿(𝑥(𝑡) − 𝑥1)𝑑𝜇(𝜔)    (11) 

The recasting of the Feynman path integration 

into the language of white noise analysis is 

summarized in Figure 2. 

 

 

After evaluating the propagator of the 

system, one could then calculate the 

corresponding time-independent wave 

function by the symmetrization of the 

obtained propagator given by Equation (12). 

𝐾 = ∑ 𝜓∗(𝑥)𝜓(0)𝑒−
𝑖𝐸𝑡

ℏ      (12) 

where 𝜓(𝑥)  is the time-independent wave 

function, 𝜓∗(0) is its conjugate and E is the 

energy spectrum. 

 

 

Figure 2. Schematic Diagram of the Recasting of 

Feynman Propagator in the Context of White Noise 

Analysis 
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III. RESULTS AND DISCUSSION  

Quantum propagator derivation starts 

with defining the Lagrangian of the system 

being considered. For the circular system in 

Figure 1, the Lagrangian is formally written in 

the Equation (13). 

𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2 + �̇�3

2 + �̇�4
2) −

1

2
𝑚𝜔2𝑥1

2  

 −
1

2
𝑚𝜔2𝑥2

2 −
1

2
𝑚𝜔2𝑥3

2 −
1

2
𝑚𝜔2𝑥4

2  

−𝜆𝑥1𝑥2 − 𝜆𝑥2𝑥3 − 𝜆𝑥3𝑥4 − 𝜆𝑥4𝑥1  (13) 

where 𝜆′𝑠 are the real coupling constants of 

the nearest-neighbor interactions. Notice that 

Equation (13) contain coupling coordinates 

which are easier to handle with the aid of 

coordinate transformation [17], that is, by 

decoupling the coordinates one at a time. 

Considering first the decoupling of 

coordinates 𝑥1  and 𝑥2  with the matrix 

given by Equation (14). 

|
𝑥1

𝑥2
| = (

cos 𝜑 sin 𝜑
− sin 𝜑 cos 𝜑

) |
𝑞1

𝑞2
|  (14) 

yields the new Lagrangian of the form given 

by Equation (15). 

𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2 + �̇�3

2 + �̇�4
2) − 𝛼𝑞1

2 − 𝛽𝑞2
2  

  −𝛾𝑞1𝑞2 + 𝜈𝑞1𝑥3 − 𝜇𝑞2𝑥3 − 𝜇𝑞1𝑥4       

 −𝜈𝑞2𝑞4 − 𝜆𝑥3𝑥4                  (15) 

where  

   𝛼 =
1

2
𝑚𝜔2 − 𝜆 cos 𝜑 sin 𝜑  (16) 

   𝛽 =
1

2
𝑚𝜔2 + 𝜆 cos 𝜑 sin 𝜑  (17) 

   𝛾 = 𝜆 cos 2𝜑  (18) 

   𝜇 = 𝜆 cos 𝜑  (19) 

   𝜈 = 𝜆 sin 𝜑  (20) 

To eliminate the system-system coupling, 𝛾 

must vanish which is effective when the 

condition, 𝜑 =
(2𝑛+1)𝜋

4
,  with 𝑛 = 0, 1, 2, …, 

is imposed thereby obtaining a newly 

defined Lagrangian written in Equation (21). 

𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2 + �̇�3

2 + �̇�4
2) −

1

2
𝑚Ω1

2𝑞1
2  

−
1

2
𝑚Ω2

2𝑞2
2 −

1

2
𝑚ω3

2𝑞3
2 −

1

2
𝑚ω4

2𝑞4
2  

    +
√2

2
𝑞1𝑥3 −

√2

2
𝑞2𝑥3 −

√2

2
𝑞1𝑥4  

−
√2

2
𝑞2𝑥4 − 𝜆𝑥3𝑥4              (21) 

where the new frequencies are defined as 

Ω1
2 = 𝜔2 −

𝜆

𝑚
  and Ω2

2 = 𝜔2 +
𝜆

𝑚
 . The 

Lagrangian in Equation (21) seems unlikely 

for another set of coupling arise, however, the 

situation can be handled by decoupling the 

original coordinates left through the 

coordinate transformation given by the 

relations in Equations (22) and (23). 

𝑥3 = 𝑞3 cos 𝜃 + 𝑞4 sin 𝜃     (22) 

𝑥4 = −𝑞3 sin 𝜃 + 𝑞4 cos 𝜃   (23) 

Differentiating Equations (22) and (23) and 

substitute into Equation (21) yields the new 

Lagrangian given by Equation (24). 

𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2 + �̇�3

2 + �̇�4
2) −

1

2
𝑚Ω1

2𝑞1
2  

 −
1

2
𝑚Ω2

2𝑞2
2 − 𝐴𝑞3

2 − 𝐵𝑞4
2 + 𝐶𝑞1𝑞3  

−𝐶𝑞2𝑞4 − 𝐷𝑞3𝑞4               (24)   

where 

𝐴 =
1

2
𝑚Ω3

2 − 𝜆 cos 𝜃 sin 𝜃  (25) 

𝐵 =
1

2
𝑚Ω4

2 + 𝜆 cos 𝜃 sin 𝜃  (26) 

𝐶 =
√2𝜆

2
(cos 𝜃 + sin 𝜃)  (27) 

   𝐷 = 𝜆 cos 2𝜃  (28) 

Furthermore, variable 𝐷  must vanish by 

imposing the condition 𝜃 =
(2𝑛+1)𝜋

4
 , with 

𝑛 = 0, 1, 2, … . Simplifying the Equations 

yield given by Equation (29). 
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𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2 + �̇�3

2 + �̇�4
2) −

1

2
𝑚Ω1

2𝑞1
2  

−
1

2
𝑚Ω2

2𝑞2
2 −

1

2
𝑚Ω3

2𝑞3
2 −

1

2
𝑚Ω4

2𝑞4
2  

+𝜆𝑞1𝑞3−𝜆𝑞2𝑞4               (29) 

with the frequencies written as Ω3
2 = 𝜔2 −

𝜆

𝑚
 

and Ω4
2 = 𝜔2 +

𝜆

𝑚
.  Notice in Equation (29), 

there are only two couplings left and by 

decoupling the coordinates further using the 

relations in Equations (30) and (31). 

𝑞1 = 𝑄1 cos 𝜙 + 𝑄3 sin 𝜙    (30) 

  𝑞3 = −𝑄1 sin 𝜙 + 𝑄3 cos 𝜙   (31) 

yields the new Lagrangian written in Equation 

(32). 

𝐿 =
1

2
𝑚(�̇�1

2 + �̇�2
2 + �̇�3

2 + �̇�4
2) −

1

2
𝑚Φ1

2𝑄1
2  

−
1

2
𝑚Ω2

2𝑞2
2 −

1

2
𝑚Φ3

2𝑄3
2 −

1

2
𝑚Ω4

2𝑞4
2  

−𝜆𝑞2𝑞4                       (32) 

Lastly, the transformation for coordinates 𝑞2 

and 𝑞4 is performed with Equations (33) and 

(34). 

𝑞2 = 𝑄2 cos 𝜗 + 𝑄4 sin 𝜗    (33) 

𝑞4 = −𝑄2 sin 𝜗 + 𝑄4 cos 𝜗   (34) 

and simplification now gives a separable 

Lagrangian of the form:  

𝐿1 =
1

2
𝑚�̇�1

2 −
1

2
𝑚Φ1

2𝑄1
2     (35) 

𝐿2 =
1

2
𝑚�̇�2

2 −
1

2
𝑚Φ2

2𝑄2
2     (36) 

𝐿3 =
1

2
𝑚�̇�3

2 −
1

2
𝑚Φ3

2𝑄3
2     (37) 

𝐿4 =
1

2
𝑚�̇�4

2 −
1

2
𝑚Φ4

2𝑄4
2     (38) 

where the newly defined frequencies are 

Φ1 = 𝜔 , Φ2 = 𝜔 , Φ3 = √𝜔2 − (2𝜆 𝑚⁄ ) , 

and Φ4 = √𝜔2 + (2𝜆 𝑚⁄ ) . Evidently, the 

total Lagrangian is seen to be separable into 

propagators of four independent harmonic 

oscillators which can now be evaluated with 

more ease. Moreover, the classical action in 

Equation (6) can be written as            

𝑆 = 𝑆1 + 𝑆2 + 𝑆3 + 𝑆4 , with the value   

𝑆𝑖 = ∫ 𝐿𝑖𝑑𝜏
𝑡

0
 , where 𝑖 = 1,2,3,4 . The full 

propagator is written as 

𝐾(𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄1𝑜 , 𝑄2𝑜 , 𝑄3𝑜 , 𝑄4𝑜; 𝜏) =

𝐾(𝑄1, 𝑄1𝑜; 𝜏)𝐾(𝑄2, 𝑄2𝑜; 𝜏)𝐾(𝑄3, 𝑄3𝑜; 𝜏) × 

𝐾(𝑄4, 𝑄4𝑜; 𝜏), where 

𝐾(𝑄1, 𝑄1𝑜; 𝜏) = 𝐾𝑄1
= ∫ 𝑒𝑥𝑝 (

𝑖

ℏ
𝑆1) 𝐷[𝑄1] 

(39) 

𝐾(𝑄2, 𝑄2𝑜; 𝜏) = 𝐾𝑄2
= ∫ 𝑒𝑥𝑝 (

𝑖

ℏ
𝑆2) 𝐷[𝑄2] 

(40) 

𝐾(𝑄3, 𝑄3𝑜; 𝜏) = 𝐾𝑄3
= ∫ 𝑒𝑥𝑝 (

𝑖

ℏ
𝑆3) 𝐷[𝑄3] 

(41) 

𝐾(𝑄4, 𝑄4𝑜; 𝜏) = 𝐾𝑄4
= ∫ 𝑒𝑥𝑝 (

𝑖

ℏ
𝑆4) 𝐷[𝑄4] 

(42) 

The next step is to evaluate the individual 

propagators using the path integral in the 

language of white noise analysis. 

 

The Evaluation of 𝐾𝑄1
 

Using the evaluation of the propagator 

in Equation (11), the classical action     

𝑆1 = ∫ 𝐿1𝑑𝜏  can be substituted yielding in 

Equation (43). 

𝐾𝑄1
= 𝑁 ∫ 𝑒𝑥𝑝 [

𝑖+1

2
∫ 𝜔(𝜏)2𝑑𝜏

𝑡

0
]   

× 𝑒𝑥𝑝 [−
𝑖

ℏ
∫ 𝑆𝑉(𝑄1)𝑑𝜏

𝑡

0
] 𝛿(𝑥(𝑡) − 𝑥1)𝑑𝜇(𝜔)          

(43)      

where 𝑆𝑉(𝑄1)  is the effective action for the 

harmonic oscillator potential. The form of 

parametrization in Equation (7) is used and is 

substituted into the Donsker delta function in 

Equation (10) as follows in Equation (44). 
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𝛿(𝑥(𝑡) − 𝑥1) =
1

2𝜋
∫ 𝑒𝑥𝑝[𝑖𝜆(𝑄1𝑜 − 𝑄1)]

∞

−∞

 

× 𝑒𝑥𝑝 [𝑖𝜆 ∫ 𝜔(𝜏)𝑑𝜏
𝑡

0
] 𝑑𝜆  (44) 

The second exponential expression 

containing the potential in Equation (43) is 

then parametrized yielding to 

𝑒𝑥𝑝 [−
𝑖

ℏ
∫

1

2
𝑚Φ1

2 (𝑄1𝑜 + ∫ 𝜔(𝜏)𝑑𝜏
𝑡

0
)

2𝑡

0
]. 

This expression is found to be second degree 

in white noise and to make it easier to deal 

with, the Taylor series expansion [25] is used, 

that in Equation (45). 

𝑆𝑉(𝑄1) ≈ 𝑆𝑉(𝑄1𝑜) +
1

1!
∫ 𝑑𝜏𝜔(𝜏)

𝜕𝑆𝑉(𝑄1𝑜)

𝜕𝜔(𝜏)
  

+
1

2!
∫ 𝑑𝜏1𝑑𝜏2𝜔(𝜏1)

𝜕2𝑆𝑉(𝑄1𝑜)

𝜕𝜔(𝜏1)𝜕𝜔(𝜏2)
𝜔(𝜏1) (45) 

Choosing the initial point 𝑄1𝑜 = 0  leads to 

𝑆𝑉(𝑄1𝑜) = 0 and Equation (46) and (47). 

𝑆′ =
𝜕𝑆𝑉(0)

𝜕𝜔(𝜏)
=

ℏ

𝑚
∫ 𝑉′(0)𝑑𝜏 ⇒ 0    (46) 

𝑆" =
𝜕2𝑆𝑉(0)

𝜕𝜔(𝜏1)𝜕𝜔(𝜏2)
=

ℏ

𝑚
∫ 𝑉"(0)𝑑𝜏

𝑡

𝜏1∨𝜏2
  

  ⇒ ℏΦ1
2(𝑡 − 𝜏1 ∨ 𝜏2)           (47) 

Utilizing Equations (44), (46), and (47) 

transforms the propagator into Equation (48). 

𝐾𝑄1
= ∫

𝑒𝑥𝑝[−𝑖𝜆𝑄1]

2𝜋
[𝑇. 𝐼. (√

ℏ

𝑚
𝜆)] 𝑑𝜆

∞

−∞
  (48)          

where 𝐼  is the white noise functional given 

by Equation (49). 

𝐼 = 𝑁𝑒𝑥𝑝 [−
1

2
〈𝜔, −(𝑖 + 1)𝜔〉] 

 × 𝑒𝑥𝑝 [−
1

2
〈𝜔,

𝑖

ℏ
𝑆"𝜔〉]         (49) 

with the notation 〈, 〉 as an integral over 𝑑𝜏. 

The evaluation of the Feynman path 

integral is carried by the T-transform given by 

Equation (50). 

 

 

 

 

𝑇. 𝐼. (𝜉 = √ℏ 𝑚⁄ 𝜆)  

= ∫ 𝐼𝑒𝑥𝑝 [𝑖 〈𝜔, √ℏ 𝑚⁄ 𝜆〉] 𝑑𝜇(𝜔) (50) 

which can be simplified to Equation (51). 

𝑇. 𝐼 = [𝑑𝑒𝑡(1 + 𝐿(𝐾 + 1)−1)]−
1
2 

× 𝑒𝑥𝑝 [−
1

2
(𝐾 + 𝐿 + 1)−1 ∫ (√

ℏ

𝑚
𝜆)

2

𝑑𝜏
𝑡

0

] 

(51) 

where 𝐾 = −(𝑖 + 1)  and 𝐿 = 𝑖ℏ−1𝑆". 

Substituting Equation (50) into Equation (48) 

yields in Equation (52). 

𝐾𝑄1
=

1

2𝜋
[𝑑𝑒𝑡(1 − ℏ−1𝑆")]

1

2  

× ∫ 𝑑𝜆𝑒𝑥𝑝 [
−𝑖ℏ𝑡(1−ℏ−1𝑆")

−1

2𝑚
𝜆2 − 𝑖𝑄1𝜆]

∞

−∞
 .  

(52) 

The kernel in Equation (52) obeys the 

Gaussian integration over the variable 𝜆 

which gives the expression in Equation (53). 

𝐾𝑄1
=

1

2𝜋
[𝑑𝑒𝑡(1 − ℏ−1𝑆")]

1

2  

× √
2𝜋𝑚

𝑖ℏ𝑡〈𝑒,(𝑖ℏ−1𝑆")𝑒〉
𝑒𝑥𝑝 [

𝑖𝑚𝑄1
2

2ℏ𝑡〈𝑒,(𝑖ℏ−1𝑆")𝑒〉
] (53) 

with the unit vector defined as 𝑒 = 𝑡−
1

2𝜒[0,𝑡]. 

Further simplification [31] yields in Equation 

(54) and (55). 

𝑑𝑒𝑡(1 − ℏ−1𝑆") = cos Φ1𝑡    (54) 

〈𝑒, (𝑖ℏ−1𝑆")𝑒〉 =
1

Φ1𝑡
tan Φ1𝑡   (55) 

Finally, employing Equations (54) and (55) to 

Equation (53) gives the 𝑄1 − dimension 

propagator into Equation (56). 

𝐾𝑄1
= √

𝑚Φ1

2𝜋𝑖ℏ𝑡 sin Φ1𝑡
𝑒𝑥𝑝 [

𝑖𝑚Φ1

2ℏ
𝑄1

2 cot Φ1𝑡] 

(56) 
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Propagators of 𝐾𝑄2
, 𝐾𝑄3

 and 𝐾𝑄4
 

Notice that the Lagrangians 𝐿2 , 𝐿3 

and 𝐿4  are just the same with that of 

Lagrangian 𝐿1. Thus, by following the same 

procedure of evaluation in 𝑄1-dimension, we 

obtain the propagators in Equation (57), (58), 

and (59). 

𝐾𝑄2
= √

𝑚Φ2

2𝜋𝑖ℏ𝑡 sin Φ2𝑡
𝑒𝑥𝑝 [

𝑖𝑚Φ2

2ℏ
𝑄2

2 cot Φ2𝑡]  

(57) 

𝐾𝑄3
= √

𝑚Φ3

2𝜋𝑖ℏ𝑡 sin Φ3𝑡
𝑒𝑥𝑝 [

𝑖𝑚Φ3

2ℏ
𝑄3

2 cot Φ3𝑡]  

(58) 

𝐾𝑄4
= √

𝑚Φ4

2𝜋𝑖ℏ𝑡 sin Φ4𝑡
𝑒𝑥𝑝 [

𝑖𝑚Φ4

2ℏ
𝑄4

2 cot Φ4𝑡]  

(59) 

The total propagator of the system can now be 

evaluated. 

 

Full Propagator 

The full propagator for the system is just 

the product of the individual propagators. For 

a four-coupled system, the Feynman quantum 

propagator is given by Equation (60). 

𝐾(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥1𝑜 , 𝑥2𝑜 , 𝑥3𝑜 , 𝑥4𝑜; 𝜏) = ∫ 𝐷𝑥1  

× 𝐷𝑥2𝐷𝑥3𝐷𝑥4𝑒𝑥𝑝 [
𝑖

ℏ
(𝑆1 + 𝑆2 + 𝑆3 + 𝑆4)] 

(60) 

where 𝐷𝑥1 , 𝐷𝑥2 , 𝐷𝑥3 , and 𝐷𝑥4  are the 

functional measures. Notice from Equation 

(60) that it is a product of four functional 

measures given by Equation (61). 

𝐷𝑥1𝐷𝑥2𝐷𝑥3𝐷𝑥4 = 𝐽𝐷𝑄1𝐷𝑄2𝐷𝑄3𝐷𝑄4 (61) 

where 𝐽  is the Jacobian for the 

transformation. Since the system we deal with 

is of equal masses, Equation (61) is rewritten 

in Equation (62). 

𝐷𝑥1𝐷𝑥2𝐷𝑥3𝐷𝑥4 = 𝐷𝑄1𝐷𝑄2𝐷𝑄3𝐷𝑄4 (62) 

 

 

 

making the propagator in Equation (63). 

𝐾(𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄1𝑜 , 𝑄2𝑜 , 𝑄3𝑜 , 𝑄4𝑜; 𝜏) 

= 𝐾(𝑄1, 𝑄1𝑜; 𝜏)𝐾(𝑄2, 𝑄2𝑜; 𝜏)𝐾(𝑄3, 𝑄3𝑜; 𝜏) 

   × 𝐾(𝑄4, 𝑄4𝑜; 𝜏)               (63) 

In determining the full propagator, each 

coordinate must be transformed to its original 

form, and by doing so, the following 

relationships are obtained in Equation (64) 

and (65). 

𝑄1 = 𝑞1 cos 𝜙 − 𝑞3 sin 𝜙     (64) 

𝑄3 = 𝑞1 sin 𝜙 + 𝑞3 cos 𝜙     (65) 

The expressions in Equations (64) and (65) 

being substituted in Equations (56) and (58) 

respectively, yields Equation (66) and (67). 

𝐾𝑄1
= √

𝑚Φ1

2𝜋𝑖ℏ𝑡 sin Φ1𝑡
  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ1

2ℏ
(𝑞1 − 𝑞3)2 cot Φ1𝑡]   (66) 

𝐾𝑄3
= √

𝑚Φ3

2𝜋𝑖ℏ𝑡 sin Φ3𝑡
  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ3

2ℏ
(𝑞1 + 𝑞3)2 cot Φ3𝑡]   (67) 

Using the same method utilized above through 

the relations in Equations (68) and (69). 

𝑄2 = 𝑞2 cos 𝜗 − 𝑞4 sin 𝜗    (68) 

𝑄4 = 𝑞2 sin 𝜗 + 𝑞4 cos 𝜗    (69) 

Yields Equation (70) and (71). 

𝐾𝑄2
= √

𝑚Φ2

2𝜋𝑖ℏ𝑡 sin Φ2𝑡
     

× 𝑒𝑥𝑝 [
𝑖𝑚Φ2

2ℏ
(𝑞2 − 𝑞4)2 cot Φ2𝑡]   (70) 

𝐾𝑄4
= √

𝑚Φ4

2𝜋𝑖ℏ𝑡 sin Φ4𝑡
  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ4

2ℏ
(𝑞2 + 𝑞4)2 cot Φ4𝑡]   (71) 

Finally, transforming the 𝑞1, 𝑞2, 𝑞3, and 𝑞4 

coordinates into 𝑥1 , 𝑥2 , 𝑥3 , and 𝑥4 , 

coordinates give us the expression for the full 

propagator of the system in Equation (72).  
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𝐾𝐹 = (
𝑚

2𝜋𝑖ℏ𝑡
)

2

  

× [
Φ1Φ2Φ3Φ4

sin Φ1𝑡 sin Φ2𝑡 sin Φ3𝑡 sin Φ4𝑡
]

1

2
  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ1

4ℏ
[

√2

2
(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4)]

2

  

× cot Φ1𝑡]  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ2

4ℏ
[

√2

2
(𝑥1 + 𝑥2 − 𝑥3 − 𝑥4)]

2

  

× cot Φ2𝑡]  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ3

4ℏ
[

√2

2
(𝑥1 − 𝑥2 + 𝑥3 − 𝑥4)]

2

  

× cot Φ3𝑡]  

× 𝑒𝑥𝑝 [
𝑖𝑚Φ4

4ℏ
[

√2

2
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)]

2

  

× cot Φ4𝑡]               (72) 

 

The Wave Function and Energy Spectrum 

From the result in Equation (72), the 

propagator can be expressed in Equation (73). 

𝐾(𝑥1, 𝑥2, 𝑥3, 𝑥4, 0,0,0,0; 𝜏) 

= ∑ Ψ𝑛1,𝑛2,𝑛3,𝑛4
∗ (𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑛1,𝑛2,𝑛3,𝑛4𝜖𝑁

 

   × Ψ𝑛1,𝑛2,𝑛3,𝑛4
(0,0,0,0)𝑒−

𝑖

ℏ
𝑡𝐸𝑛1,𝑛2,𝑛3,𝑛4 (73) 

for an initial point 𝑥1𝑜 = 𝑥2𝑜 = 𝑥3𝑜 = 𝑥4𝑜 = 0. 

Using the relations in Equations (74) and (75). 

𝑖 sin Φ𝑡 =
1

2
𝑒𝑖Φ𝑡(1 − 𝑒−2𝑖Φ𝑡)  (74) 

cos Φ𝑡 =
1

2
𝑒𝑖Φ𝑡(1 + 𝑒−2𝑖Φ𝑡) (75) 

and the Mehler formula [27] of the form in 

Equation (76). 

1

√1−𝑧2
𝑒𝑥𝑝 [

4𝑥𝑦𝑧−(𝑥2+𝑦2)(1+𝑧2)

2(1−𝑧2)
]  

= 𝑒−
(𝑥2+𝑦2)

2 ∑
1

𝑛!
(

𝑧

2
)

𝑛

𝐻𝑛(𝑥)𝐻𝑛(𝑦)∞
𝑛=0  (76) 

where the functions 𝐻𝑛  are the Hermite 

polynomials given by Equation (77). 

𝐻𝑛(𝑦) = (−1)𝑛𝑒𝑦2 𝑑𝑛

𝑑𝑦𝑛 𝑒−𝑦2
  (77) 

 

 

the propagator can be written in its symmetric 

form in Equation (78). 

𝐾(𝑥1, 𝑥2, 𝑥3, 𝑥4, 0,0,0,0; 𝜏) 

=
1

√2
(

𝑚

𝜋ℏ𝑡
)

2
(Φ1Φ2Φ3Φ4)

1

2  

× 𝑒𝑥𝑝 {−
𝑚

4ℏ
[Φ1 [

√2

2
(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4)]

2

  

+Φ2 [
√2

2
(𝑥1 + 𝑥2 − 𝑥3 − 𝑥4)]

2

  

+Φ3 [
√2

2
(𝑥1 − 𝑥2 + 𝑥3 − 𝑥4)]

2

  

+Φ4 [
√2

2
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)]

2

]}  

∑ (2𝑛1𝑛1!)−1(2𝑛2𝑛2!)−1(2𝑛3𝑛3!)−1

𝑛1,𝑛2,𝑛3,𝑛4𝜖𝑁

 

× (2𝑛4𝑛4!)−1𝑒𝑥𝑝 {−𝑖𝑡 [
1

2
(Φ1+Φ2 + Φ3  

+Φ4)+𝑛1Φ1+𝑛2Φ2 + 𝑛3Φ3 + 𝑛4Φ4]} 

× 𝐻𝑛1
(√

𝑚Φ1

2ℏ
[

√2

2
(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4)])  

× 𝐻𝑛2
(√

𝑚Φ2

2ℏ
[

√2

2
(𝑥1 + 𝑥2 − 𝑥3 − 𝑥4)])  

× 𝐻𝑛3
(√

𝑚Φ3

2ℏ
[

√2

2
(𝑥1 − 𝑥2 + 𝑥3 − 𝑥4)])  

× 𝐻𝑛4
(√

𝑚Φ4

2ℏ
[

√2

2
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)])  (78) 

 

From this, the energy spectrum is extracted 

giving in Equation (79). 

𝐸𝑛1,𝑛2,𝑛3,𝑛4
= ℏ [(𝑛1 +

1

2
) Φ1 + (𝑛2 +

1

2
) Φ2  

 + (𝑛3 +
1

2
) Φ3 + (𝑛4 +

1

2
) Φ4]  (79)    

and the general formula for the wave function 

in Equation (80). 
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Ψ𝑛1,𝑛2,𝑛3,𝑛4
 

     =
𝑚

𝜋ℏ𝑡
√

√Φ1Φ2Φ3Φ4

(√2)(2(𝑛1+𝑛2+𝑛3+𝑛4)𝑛1!𝑛2!𝑛3!𝑛4!)
  

× 𝑒𝑥𝑝 {−
𝑚

4ℏ
[Φ1 [

√2

2
(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4)]

2

  

+Φ2 [
√2

2
(𝑥1 + 𝑥2 − 𝑥3 − 𝑥4)]

2

  

+Φ3 [
√2

2
(𝑥1 − 𝑥2 + 𝑥3 − 𝑥4)]

2

  

+Φ4 [
√2

2
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)]

2

]}  

× 𝐻𝑛1
(√

𝑚Φ1

2ℏ
[

√2

2
(𝑥1 − 𝑥2 − 𝑥3 + 𝑥4)])  

× 𝐻𝑛2
(√

𝑚Φ2

2ℏ
[

√2

2
(𝑥1 + 𝑥2 − 𝑥3 − 𝑥4)])  

× 𝐻𝑛3
(√

𝑚Φ3

2ℏ
[

√2

2
(𝑥1 − 𝑥2 + 𝑥3 − 𝑥4)])  

× 𝐻𝑛4
(√

𝑚Φ4

2ℏ
[

√2

2
(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)])  

(80) 

This result agrees with the particular 

case dealt by [14-16, 18] when the third and 

fourth coordinates are set to zero and de Souza 

Dutra [17] for the non-driven case (when 𝑓1 

and 𝑓2  of Equation (32) are set to zero). In 

contrast, the works of Hong-Yi [9-10] contain 

cross-coupling constants of inter-particle 

harmonic oscillator forces, which in turn, 

gives a different form of wave functions. 

One remarkable feature of the 

quantization for this system is the appearance 

of the energy spectrum to be degenerate 

provided that the frequencies Φ1 , Φ2 , Φ3 , 

and Φ4  are related conveniently. Also, the 

four-coupled system is usually applied to a 

rotationally invariant system where 

symmetric characteristic and synchronization 

is important in many concepts of quantum 

mechanics. Finally, when the four-coupled 

oscillator is extended into N coupled 

oscillators interacting with a system, it can be 

used in modeling energy transport in solid-

state and biological systems [20]. For the case 

of a harmonic oscillator system interacting 

with the N coupled oscillator environment, the 

resulting dynamics is vital to the 

comprehension of dissipation in quantum 

computing [43].  

IV. CONCLUSION 

The quantum propagator for the ring of 

four harmonically coupled oscillators has 

been derived successfully through white noise 

analysis. After decoupling and evaluating the 

full Lagrangian, it is observed that it was just 

the product of the four propagators. The 

decoupled system showed the differences in 

normal mode frequencies: the first and second 

propagators showed degeneracy while the 

other two exhibited non-degeneracy. 

Moreover, the propagator was expressed in its 

symmetric form wherein the energy spectrum 

was just the sum of the energies of the four 

harmonic oscillators. 

The results in this work indeed, prove 

the promise of white noise analysis in 

analyzing systems of many degrees of 

freedom. In addition, the authors will explore 

the areas where there are systems of       

N-coupled oscillators in future works. The 

said system, when coupled to an environment, 

can be used to model quantum transport of 

energy excitation in solid-state and biological 

systems. 
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