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Abstract 

Various cathodes have been studied to obtain cathode materials with high energy density and are inexpensive and 

environmentally friendly. Ti4+ substitution is one strategy to achieve this. Ti4+ doping has been done on Co2+ to 

reduce the level of toxicity. The objective of this research was to look at the impact of Ti4+ substitution on 

LiNi0.8Mn0.1Co(0.1-x)TixO2 so that it can be used as a battery cathode. The samples were prepared by the solid-state 

reaction method using high energy milling (HEM) in a wet state using ethanol. The phase formation of the material 

was characterized using XRD, surface morphology was characterized using SEM, and electrical conductivity was 

characterized using LCR-Meter. The finding showed that the particles experienced agglomeration, with the average 

size of the primary particles ranging from 300-500 nm and the secondary particle sizes ranging from 1-3 m. The 

morphology of the sample shows polycrystals. The maximum electronic conductivity obtained was 2.3 x 10-5, 2.4 x 

10-5, and 3.2 x 10-5 S/cm for x = 0.01, 0.02, and 0.03, respectively. Another impact is increasing the cell volume and 

conductivity. With this high electrical conductivity value, this material is suitable for use as a battery cathode. 
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INTRODUCTION 

The growing awareness of environmental issues and the scarcity of fossil fuels have 

necessitated the development of alternative propulsion energy sources in recent decades. For 

example, the regular operation of battery electric vehicles (BEVs) produces zero exhaust 

emissions [1]. Conventional lead-acid batteries have been replaced by lithium-ion batteries (LIBs) 

within the energy production sector. The emergence of large-scale devices, such as electric cars 
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(EVs) and energy storage systems (ESSs), has significantly increased the demand for LIBs [2].  

Among all battery components, the cathode continues to be a critical limiting factor for 

energy density and power improvements. [3]. Cathode materials in LIBs must be capable of 

reversibly intercalating Li-ions without substantial changes to the atomic structure. In this 

instance, lithium metal oxides, LiMO2, are commonly used cathode materials, where M is a pure 

metal or a transition metal combination such as nickel (Ni), cobalt (Co), titanium (Ti), iron (Fe), 

and manganese (Mn) [4]. 

 Research has been done on a variety of cathodes with the goal of increasing the energy 

density of LIBs to fulfill the requirements. Among cathode materials, the Ni-rich NCM811 

cathode has been extensively studied for high-energy LIBs because of its relatively low cost, 

environmental factors, and increased specific capacity [2]. However, Ni-rich (Ni 80%) NCM 

cathodes have several issues, including insufficient cycle life and diminishing capacity, which 

limit commercialization. [5,6]. Therefore, a comprehensive risk assessment of their safety is 

urgently needed. It has been proven established that the thermal stability of NMC reduces as 

the Ni concentration increases, corresponding to an increase in capacity and a reduction in 

material costs [7]. Researchers have tried anion/cation doping to alter the formulation, 

concentration gradient structure, core-shell, and surface coating, for example, by changing the 

surface with conductive materials like TiO2 [8]. 

The integration of foreign ions, including cations and anions, is one of the simplest and most 

prevalent methods for enhancing Ni-rich layered oxides' structural and thermal stability. 

Further, both Li and transition metal sites are taken into account for cation doping. The Li site 

may also contain various alkali metals at the Li site. Ions with no electrochemical activity, such 

as Na+ [9] and Ti4+ or other cation dopants, are proposed to prevent cation mixing, reduce oxygen 

release, and strengthen structural stability [10]. The partial substitution of transition metals is 

another method for enhancing material characteristics. Co is emphasized because of its high 

toxicity and cost, while Mn is disregarded because of its electrochemical passivity. [11]. 

Generally, adding the Ni concentration increases the capacity and decreases the expense, 

but it decreases the structural and thermal stability. However, significant obstacles exist, such 

as the low ionic conductivity of solid electrolytes and the destabilization of the interface [12]. 

Research findings show that replacing Ti4+ with other ions can stabilize the electrolyte and 

enhance the performance of cathodes [13,14], but make the ionic conductivity decrease [15]. 

However, there are ongoing debates around the issues with the NMC811 cathode material. We 

use a composition with a significant nickel content and Ti4+ substitution in Co2+ to reduce the 

toxic nature of cobalt. Previous studies have never studied this composition as a cathode 

material. This study looks at how adding Ti4+ ions to Co2+ ions affects the crystal structure, 

surface shape, and electrical conductivity of LiNi0.8Mn0.1Co0.1-xTixO2 compounds with x = 0.01, 

0.02, and 0.03. 

 

METHOD 

The raw materials Li2O (Merck), NiO (Merck), MnCO3 (Merck), Co (Merck), and TiO2 

(Merck), each with a purity above 99% was weighed according to stoichiometric calculations to 

form the compound LiNi0.8Mn0.1Co(0.1-x)TixO2 (x = 0.01, 0.02, and 0.03). Equation (1) is the reaction 

equation used. 

Li2O + NiO + MnCO3 + Co +TiO2  ➔  LiNi0.8Mn0.1Co(0.1-x)TixO2 + CO2              (1) 

Each of these raw materials was put into a stainless-steel vial and equipped with stainless 
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steel balls with a ratio of 1:1 for the weight of the material and iron balls. Then the mixture was 

milled in a wet state using alcohol for 30 hours, with stages every 60 minutes of milling 

interspersed with 30 minutes of rest. The samples were then dried in an oven at 80°C. In phase 

formation, the sample was sintered at 1000°C and held for 5 hours in the air. The temperature 

then returned to room temperature. The phase formation was characterized using Cu-K 

radiation with a wavelength of 1.5406 at a diffraction angle of 2θ = 20° - 80°, utilizing an X-ray 

diffractometer (XRD) of Philips PW1710 type. We use continuous measurements with a step 

size of 0.263°, so there is no dwell time. We choose 2θ = 20° - 80° because, according to the 

literature, the first peak appeared at an angle of 2θ less than 20° but more than 10° [16-18]. To 

see the surface morphology, scanning electron microscopy (SEM) type-JEOL, JED 2300 was used, 

and LCR meter type HIOKI 5020 was utilized to measure the electrical conductivity at room 

temperature. 

 

RESULTS AND DISCUSSION  

Figure 1 shows the diffraction patterns of X-ray diffractometer results. The Rietveld program 

characterization results showed that all samples were in phase because the second phase was 

not detected. So, it can be said that the Ti4+ ion succeeded in substituting the position of the Co2+ 

ion. According to H. Sun et al., with the subsequent high-temperature solid-state reaction, Ti 

diffuses into NCM811 crystals and is uniformly distributed throughout the bulk of secondary 

particles [19]. All samples have a rhombohedral crystalline structure with space group R-3mH. 

In comparison, the same results were obtained by J. D. Steiner et al. [5].  

Table 1 presents the complete XRD characterization data. There was a decrease in cell mass 

and density with increasing the Ti4+ doping. On the other hand, the volume increased with 

increasing the Ti4+ values. This is supported by the results of D. Y. Wan et al. [20]. The increase 

in cell volume can be explained by the fact that the ionic radius of Ti4+ (1.025 Å) is larger than 

that of Co2+ (0.885 Å). The diffraction pattern peaks can be indexed with ICDD card No. 

01.078.7219. The peaks correspond to references at angles of 2θ= 18.8°, 38.3°, 44,406°, and 64,373° 

with Miller index (003), (102), (104), and (440), respectively. 

 

Table 1. Rietveld refined result of LiNi0.8Mn0.1Co(0.1-x)TixO2 with x = 0.01, 0.02, and 0.03, 

respectively 

  x = 0.01 x = 0.02 x = 0.03 

Space Group  R-3mH R-3mH R-3mH 

Cell Mass  351.62(1) 345.80(1) 337.72(1) 

Cell Volume (Å3)  106.52(5) 106.70(1) 106.71(1) 

Crystal Density (g/cm3) 5.481(1) 5.382(1) 5.255(1) 

Lattice Parameters: a (Å) 2.9305(2) 2.9320(2) 2.9323(1) 

 c (Å) 14.3226(1) 14.3315(3) 14.3311(2) 

Rexp  2.36 2.39 2.42 

Rwp  2.80 2.79 2.90 

GoF  1.18 1.71 1.20 

 

Crystal size is calculated using the Scherrer equation 𝐷 = 𝑘𝜆/(𝛽 cos 𝜃) , where k = form 

factor (0.89), λ= wavelength (Cu-kα = 1.5406 Å), β is the line broadening at half the maximum 

intensity (FWHM), and θ is the Bragg diffraction angle. From several dominant peaks, the 
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average crystal size ranged from 43.3 to 65.5 nm. This result is larger than the crystal size of 

NMC811 without the Ti doping obtained by H. Widiyandari et al., which is 45.37 – 46.74 nm [6]. 

This is following the XRD results; whereas the Ti value increases, the cell volume increases 

because the Ti4+ ion radius is larger than the Co2+ ion radius. 

 

Figure 1. Rietveld refined powder XRD patterns of LiNi0.8Mn0.1Co(0.1-x)TixO2 with x = 0.01, 

0.02, and 0.03. 

 

The surface morphology of the scanning electron microscopy (SEM) can be seen in Figure 2. 

The surface morphology of the sample has a heterogeneous grain shape and size. The particle 

size is obtained by comparing the grain length to the existing scale length. 

The SEM findings indicate that the particles are aggregated. The average size of the primary 

particles ranges from 300-500 nm, and the secondary particle sizes range from 1–3 µm. 

Meanwhile, S.-J. Sim et al. obtained primary particle sizes ranging from 3-5 µm, and secondary 

particles ranging from 15-20 µm [2], D. Y. Wan et al. and H. Liu et al. produced primary particles 

between 200-500 nm, and secondary particle sizes of 3-5 µm [20, 21], while AA Savina obtained 

primary and secondary particle sizes of 100-500 nm and 0.8-1 µm, respectively [22]. The SEM 

results' morphology followed the XRD characterization results, where the sample showed 

polycrystals. 
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(a) Ti = 0.01 (b) Ti = 0.02 

 

(c) Ti = 0.03 

Figure 2. Surface morphology for Ti doping of samples LiNi0.8Mn0.1Co(0.1-x)TixO2 

 

Table 2. The value of mass (gram) of each raw material 

  x = 0.01 x = 0.02 x = 0.03 

Li2O  3.8438 3.8481 3.8525 

NiO  15.3736 15.3911 15.4087 

MnCO3  2.9574 2.9607 2.9641 

Co 1.3645 1.2143 1.0637 

TiO2  0.2055 0.4114 0.6179 

 

Table 2 describes the mass of each raw material required to form the LiNi0.8Mn0.1Co(0.1-x)TixO2 

sample with x= 0.01, 0.02, and 0.03. Surface morphology affects the cathode conductivity of high 

Ni-based Lithium Battery (LIB) cells [23, 24]. Large surface area can enhance power density and 

yield a greater specific capacity while providing susceptibility to electrolyte degeneration [25]. 

The high-power density results were also in high electronic conductivity [26]. Ti dopped can 

increase grain size. The increases in grain size also improved the conductivity as obtained by 

Dao Yong Wan et al. [27]. 

The electrical conductivity in a log scale that depends on frequency can be observed in 

Figure 3, and the graph of composition dependence of the electrical conductivity can be seen in 

Figure 4. The maximum electronic conductivity obtained is 2.3 x 10-5, 2.4 x 10-5, and 3.2 x 10-5 

S/cm for x = 0.01, 0.02, and 0.03, respectively. This result is better than NMC811 without Ti 
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doping, which is 2.8 x 10-5 S/cm, even higher than the electrical conductivity of NMC111 (5.2 x 

10-8 S/cm) [28]. Thus, Ti4+ substitution can increase the conductivity so that this material can be 

used as a battery cathode. Also, Ti4+ ion-doped can improve cyclic stability by increasing the 

distance between layers [29] and stabilizing the electrolyte [30]. Also from Figure 3, the 

substitution of Ti, in addition to increasing conductivity, can reduce the use of cobalt, which is 

toxic, making it safer for the environment [31-33]. 

 

 

 

(a) (b) 

 

 

(c) 

Figure 3. The frequency-dependent conductivity of the sample LiNi0.8Mn0.1Co(0.1-x)TixO2 (a) x = 

0.01, (b) x = 0.02, and (c) x = 0.03 

 

The weakness of this study is that we have not arrived at a characterizing battery cycle life 

to measure the charge/discharge of this composition. Battery cycle life is the number of charges 

and discharge cycles a battery can complete before it loses performance. The cycle life of lithium-

ion batteries is greatly affected by the depth of discharge, in which the discharge depth is the 

battery's total storage capacity [34]. 

This research is a form of support for the Indonesian government's project in downstream 

nickel mining products. Due to the abundant availability of nickel, Indonesia can become the 

producer of electric batteries, where nickel can be utilized from upstream to downstream. The 

prospects for nickel in the global market are bright as the electric vehicle (EV) industry continues 

to grow. 
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Figure 4. The composition dependence of conductivity of the sample LiNi0.8Mn0.1Co(0.1-x)TixO2 

(a) x = 0.01, (b) x = 0.02, and (c) x = 0.03 

 

CONCLUSION 

We have successfully synthesized and characterized cathode materials with Ti4+ substitution. 

SEM findings indicated that the particles experienced agglomeration, with a typical proportion 

of the primary particles ranging from 300-500 nm and the secondary particle sizes ranging from 

1-3 µm. The morphology of the samples showed polycrystals. The maximum electronic 

conductivity obtained was 2.3 x 10-5, 2.4 x 10-5, and 3.2 x 10-5 S/cm, for x = 0.01, 0.02, and 0.03, 

respectively. Another impact of the substitution of Ti4+ is to increase the cell volume and 

conductivity, and the sample can be used as a battery cathode. 
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