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Abstract 

Tippe top is an example of simple moving system of rigid body with non-holonomic constraint, but 

the analysis of this system is not simple. A tippe top equation has been derived with Routhian 

reduction method and Poincaré equation, and physics computation in finding numeric solution of 

the dynamics of the tippe top has also been utilized by using Maple program. However, the Poincaré 

equation required that quasi-coordinate of the quasi-velocity is found, while in the case of the 

dynamics of tippe top, there is not any exact solution of the quasi-coordinate of the quasi-velocity 

was found. Therefore, the tippe top equation should be reduced to solve the problem. In this research, 

Routhian reduction was employed so that the Routhian reduction-based Poincaré equation was used 

to derive the tippe top equation. The method was able to derive a tippe top equation on a flat plane 

and tube inner surface clearly represented differential equations. 
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Pemanfaatan Komputasi Fisika Berbasis Maple dalam Menyelesaikan  

Dinamika Tippe Top 

 

Abstrak 

Komputasi fisika dapat digunakan dalam membantu menyelesaikan persamaan dinamika benda 

yang kompleks, baik translasi maupun rotasi. Tujuan penelitian ini adalah mendapatkan persamaan 

dinamika gasing balik dengan menggunakan komputasi fisika berbasis maple. Persamaan gerak 

gasing balik telah diturunkaan dengan metode reduksi Routhian dengan persamaan Poincare 

dengan bantuan komputasi, dan telah pula dilakukan komputasi dalam pencarian solusi numerik 

dinamika gasing balik dengan menggunakan program Maple. Dalam penelitian ini reduksi yang 

digunakan adalah reduksi Routhian, sehingga persamaan yang digunakan dalam menentukan 

persamaan gerak gasing balik adalah persamaan Poincaré yang didasari oleh reduksi Routhian. 

Metode ini dapat menurunkan persamaan gerak gasing balik yang bergerak di bidang datar dengan 

jelas berupa himpunan persamaan diferensial. Penelitian ini dapat dilanjutkan dengan 

menyelesaikan persamaan dinamika gaing balik di bidang melengkung seperti tabung da bola. 

Tujuan penelitian ini adalah menyelesaikan persamaan gerak gasing balik dengan memanfaatkkan 

komputasi fisika berbasis maple. Hasil temuan penelitian ini adalah persamaan gerak gasing balik 
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pada ruang 3D berupa persamaan diferensial yang dapat digambarkan dengan jelas menggunakan 

komputasi.  

Kata Kunci: Mekanika, Persamaan Poincaré, Komputasi Fisika, Maple 
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I. INTRODUCTION 

Rosyid reveals that a diversity is 

basically a slippery curve or surface or similar 

objects with a higher dimension. Dimensional 

real diversity n is a topological space that is 

locally homeomorphic with Rn, meaning that 

each point in diversity has an environment 

similar to an environment in Rn [1]. The state 

of diversity in a space depends on the space 

topology. Diversity is seen as a topological 

space as there is an open set that will be used 

as an environment (or coordinate domain)  

[2, 3]. Diversity can also be said to be a space 

that locally resembles a Euclidean space with 

certain dimensions. 

The sub-diversity of M in Rn, denoted 

by TM, is a combination of all tangent spaces 

on M, that is, 

 

 x

x M

TM T M


=  (1) 

 

The tangent projection is the mapping 

π∶TM → Mgiven by (x, v) ↦x, which is the 

projection that carries the tangent vector to its 

base point [4, 5]. Symplectic geometry is very 

different geometry which is used in 

mechanics in Hamilton’s formulation. 

Symplectic geometry can still be expanded to 

Poisson geometry. Vector fields are basically 

ordinary differential equations. Vector field, 

generally tensor and differential form used in 

all branches of differential geometry [6]. 

Fowles states that choosing the right 

general coordinates will be easier to solve 

mechanical system problems [7]. A 

mechanical system can be expressed in 

various coordinate systems, such as in the 

case of a mathematical pendulum with two 

holonomic constraints, so that the degree of 

freedom is one, polar coordinates can be 

chosen with the coordinate θ. When choosing 

a coordinate system, the domain for the 

coordinate system must also be considered, so 

that all the points that may be occupied by 

particles can be expressed by the coordinate 

system. The Lagrange equation is a reduced 

Poincaré equation. The Poincaré equation is 

an announcement for the Lagrange equation. 

When the Lagrange equation is difficult to 

apply for certain cases, the Poincaré method 

can be used by paying attention to the 

symmetry of the system being reviewed [7]. 

Back-up motion in various arenas is a daily 

example of rigid body motion systems with 

non-holonomic constraints. In the study of 

mechanics, however, the motion systems are 

not simple. The tippe top, sometimes called as 

a reverse top, is a type of top which has a 

spherical shape cut with a small rod as a 

handle and can flip itself in a rotating state. 

When the part of the ball is rotated with a high 

angular velocity on the surface of the flat 

plane, then the tippe top will turn around the 

part of the stem. This phenomenon is called 

inverse [8, 9]. 
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In the previous study, the equations of 

reverse spinning were formulated for tippe 

top moving in a flat plane using various 

methods such as the Euler equation and the 

Maxwell-Bloch equation [9]. In this research, 

it is preferable to formulate the tippe top 

motions when it is played on a flat plane using 

the Poincaré equation and draw the motions 

using Maple 18 based physics computing. 

Initially, the motions of the tippe top in a flat 

plane should be reviewed with the Poincaré 

equation and proceed to review the motions 

on the inner surface of the tube. The Poincaré 

equation is chosen by the authors as this 

equation is believed to formulate the 

dynamics of a complex motion system, such 

as translational and rotational systems, this is 

also reinforced by Holm [6] who asserted that 

the rotational dynamics are difficult to 

formulate with the Euler-Lagrange equation 

because the rotational dynamics have angular 

velocity which is generally not 

time-derivative directly from the general 

coordinates. In addition, rotation generator is 

not commutative, so that the rotational 

dynamics are difficult if solved by the 

Euler-Lagrange equation [6, 10]. 

The Poincaré equation is chosen by the 

author because this equation can formulate 

the reverse gas dynamics clearly. In addition, 

the Poincaré equation can describe a dynamic 

system in the form of a differential equation 

system. This research is an attempt to 

understand the reverse motion by using group 

theory in simplifying the equations of the 

reverse motion through the Poincaré equation. 

The purpose of this study is to reduce the 

equations of tippe top motions in 3D space on 

a flat plane through the Poincaré equation and 

understand the motions of tippe top which 

moves on a flat plane using computational 

physics [11, 12]. 

 

 

The origin of research on reverse 

gasification was described in a book back in 

1890 which was written by Cohen [13] who 

experimented with turning round stones found 

on the beach. Cole explained that round stone 

has a center of mass that does not coincide 

with the center of the geometry of the stone 

[13]. When the stone is rotated, the center of 

mass becomes higher away from the surface 

of the ground. Explanations about the tippe 

top movement began to be stated in a number 

of scientific articles since the 1950s, including 

by Pliskin who stated that the interaction of 

frictions on the tippe top on the floor plays an 

important role in reverse spinning [14]. The 

phenomenon of reverse gasping is the result 

of dynamics instability without involving 

frictions. Furthermore, it was developed by 

Cohen [13] who explained in detail with 

mathematical calculations regarding the role 

of friction on the tippe top. Cohen concluded 

that friction affects the reversal of the tippe 

top [15]. 

In the previous studies, there was no 

clear graphic images of the dynamics of tippe 

top with various initial conditions when the 

tippe top was initially rotated [1]. This study 

provides a clear picture of the dynamics of the 

tippe top with various slope angles. The 

results show the graphs that illustrate the 

dynamics of the tippe top with the Poincare 

equation clearly and detail analysis in every 

second with various slope angles. Previous 

studies did not include a clear picture of 

detailed dynamics of the tippe top per second 

[8, 9]. 

This research will review the tippe top 

dynamics using the Poincare equation with 

Maple 18 based physics computing. The 

researcher will review the reverse and 

rotational top movement using five general 

coordinates, namely two general coordinates 

in translational dynamics and three general 

coordinates for rotational dynamics. The 

reverse gas movement will be changed from 
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the initial condition in the form of a tilt angle 

when the first top is played. Turning 

dynamics will be observed using Maple 18 

based physics computing. 

 

II. RESEARCH METHOD 

This research is a theoretical 

mathematical study with the utilization of 

physics computations. Computing was carried 

out with the help of Maple 18. The research 

was carried out with a review of several 

studies regarding mechanical systems in the 

case of previously developed tippe top and 

mathematical calculations. 

Golstein reveals that the Poincare 

equation can be written with [4], 

 

 (
𝜕�̅�

𝜕𝑠𝑖) − 𝑐𝑟
𝑙𝑖(𝑞)𝑠𝑙 𝜕�̅�

𝜕𝑠𝑟 −
𝜕�̅�

𝜕𝜎𝑖 = 𝑆𝑖 (2) 

 

However, this equation requires quasi 

velocity be found as a direct time-derivative 

from the temporary quasi coordinate. 

Therefore, the Poincare equation used in this 

study to analyze the dynamics of the 

tippetopon a flat plane is the Poincare 

equation which is based on the Routhian 

reduction [2], which can be written as 

follows: 

 

 
𝑑

𝑑𝑡

𝜕𝑅

𝜕𝑣𝜌 −  ∑ ∑ 𝑐𝜆
𝜇𝜌𝑣𝜇 𝜕𝑅

𝜕𝑣𝜆 = 0𝑛
𝜆=2

𝑛
𝜇=2  (3) 

 

III. RESULTS AND DISCUSSION 

The rigid body motion is represented by 

two vector equations, namely F = dp⁄dt for 

translation at the center of mass, and        

M = dL⁄dt for rotation around the center of 

mass, with F total is external force. Tippe top 

consists of a ball and a cylindrical rod with the 

center of mass being able to move from the 

center of c on the ball, meaning that it can be 

straight under the center of geometry or 

straight above the center of geometry [10, 16]. 

 

 

Figure 1. Tippe top reversal process 

 

Initially the top spinning around the 

symmetry axis is e3 vertically, then the top 

spinning rod slowly moves down and finally 

the head flips up and rotates vertically with 

the reverse trunk. Rotation changes the 

reverse direction, while vector L stays in the 

original vertical position. Furthermore, the 

center of mass moves upwards due to the 

decrease in the value of L. This is due to the 

action of friction F on the top contact point 

back to the table. 

The friction force F causes the 

appearance of the force M, which can be 

imagined to have the vector components M(n, 

n') and M3 along the symmetry axis e3. 

Similarly, angular momentum L has 

components L(n, n') and L3. Initially, L3 = L and 

L (n, n') = 0, due to instability, the friction force 

produces M3 which decreases L3, while M(n, n') 

starts increasing L(n, n'). Since L holds the 

constant, the angle θ that is the tilt angle of the 

top will continue to expand, and when θ = π⁄2, 

L3 = 0 and L(n, n ') = L. Then the rotation along 

the 3 axis changes direction, and because the 

actions M(n, n') and M3, L3 starts to increase due 

to the decrease in L(n, n'). Finally, the rod 

touches the table due to the action of the new 

force friction force and moment, which is F' 

with the torque moment M' which makes the 

tippetop can lift itself stably. The component 

L(n, n') is delayed by the new M (n, n') and finally 

L3 becomes the same as L [17, 18]. 
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During the inversion process, the center 

of mass takes place on the top of the tippe top. 

This states that rotational kinetic energy 

decreases during inversion, and as a result, the 

potential energy has increased, so that the 

total angular velocity and total angular 

momentum decreases during the inverse 

process [19]. Figure 1 shows the process 

which shows the inversion process in reverse 

[20]. 

 

Figure 2. The Center Point of the Mass 

on the Tippe Top 

 

Routhian is defined by 

 

𝑅(𝑞2, … … , 𝑞𝑛; 𝛽1, 𝑣2 , … … , 𝑣𝑛) = 𝑇 − 𝑈 − 𝑣1 𝜕𝑇

𝜕𝑣1 (4) 

 

by referring to the Routhian reduction [2], 

Poincaré equation is written by maintaining 

the following variables: 

 

𝑑

𝑑𝑡

𝜕𝑅

𝜕𝑣𝜌
− ∑ ∑ 𝑐𝜆

𝜇𝜌𝑣𝜇
𝜕𝑅

𝜕𝑣𝜆
−

𝑛

𝜆=2

𝑛

𝜇=2

∑ 𝑐𝜆
𝜇𝜌𝑣𝜇𝛽1 − 𝑋𝜌𝑅

𝑛

𝜇=2

= 0,  𝜌 = 2, … , 𝑛. 

  (5) 

 

Completion of the Equations of Motion in 

the Tippe Top on a Flat Plane 

The total general force moment on the 

tippe top moving in a flat plane is expressed in 

the following formula: 

 

𝐒 = 𝐅𝑥 𝑑𝑥 + 𝐅𝑦 𝑑𝑦 + (𝑟 × �⃗�)𝜃𝑑𝜃 + (𝑟 × �⃗�)𝜙𝑑𝜙

+ (𝑟 × �⃗�)𝜓 𝑑𝜓 

  (6) 

𝐒𝐱 =  −𝜇|𝐹𝑁| (�̇�  −  sin 𝜙 �̇�(𝑅 − 𝑎 cos 𝜃 )

+  sin 𝜃 cos 𝜙 (𝑅�̇�  +  𝑎�̇�)) 

  (7) 

𝐒𝐲 = −𝜇|𝐹𝑁| (�̇� +  cos 𝜙 �̇�(𝑅 − 𝑎 cos 𝜃 )

+  sin 𝜙 sin 𝜃  ( 𝑅�̇� + 𝑎�̇�)) 

  (8) 

𝐒𝛉 = − 𝜇|𝐹𝑁|(𝑅 − 𝑎cos 𝜃)((𝑅�̇� + 𝑎�̇�) sin 𝜃 cos 𝜙

+ �̇� sin 𝜙 (𝑎cos 𝜃 − 𝑅)) 

  (9) 

𝐒𝛟 =  − 𝜇|𝐹𝑁|(𝑎 − 𝑅 sin 𝜃) sin 𝜃 ((cos 𝜙�̇� �̇�)

+ sin 𝜃 (𝑎�̇� + 𝑅�̇�)) 

  (10) 

𝐒𝛟 =  − 𝜇|𝐹𝑁|(𝑎 − 𝑅 sin 𝜃) sin 𝜃 ((cos 𝜙�̇� �̇�)

+ sin 𝜃 (𝑎�̇� + 𝑅�̇�)) 

  (11) 

 

with Lagrangian tippe top on a flat plane as 

follows: 

 

𝑅 =
1

2
(𝐼�̇�2 + 𝐼 sin2 𝜃 �̇�2) − 𝑚𝑔(𝑅 − 𝑎cos 𝜃) −

(𝛽1)2

2𝐼3
+ 𝛽1�̇� cos 𝜃  (12) 

 

with 

 

 𝛽1 = 𝐼3(�̇� + �̇� cos 𝜃) (13) 

 

The tippe top which is played in a flat plane 

without friction is as follows: 

 

�̈� =
sin 𝜃

𝐼
(cos 𝜃 (𝐼�̇�2) + (2𝛽1�̇� + 𝑚𝑔𝑎)) 

  (14) 

 �̈� =
𝛽1

𝐼
�̇� csc 𝜃 (1 − csc 𝜃) −

2𝐼

𝐼
�̇��̇� cot 𝜃 (15) 

 �̈� = 0  and �̈� = 0 (16) 
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Reverse motion equation if there is an 

external force in the form of a reverse force 

which is a force of constraint is as follows: 

 

�̈� =
sin 𝜃

𝐼
(2�̇�𝛽1 + cos 𝜃 𝐼�̇�2 + 𝑚𝑔𝑎) −

𝜇|𝐹𝑁|�̇�

𝐼
(𝑅

− 𝑎 cos 𝜃) 

  (17) 

�̈� =
1

𝐼 sin 𝜃
(−𝜇|𝐹𝑁|�̇�(𝑎 − 𝑅 sin 𝜃) − 𝛽1�̇�(1

− csc 𝜃) − 2𝐼�̇��̇� cos 𝜃) 

  (18) 

�̈� = −𝜇
|F𝑁|

𝑚
(�̇� + (𝑅�̇� + 𝑎�̇�) sin 𝜃 cos 𝜙

+ �̇� sin 𝜙 (𝑎 cos 𝜃 − 𝑅)) 

  (19) 

�̈� = −𝜇
|F𝑁|

𝑚
(�̇� + (𝑅�̇� + 𝑎�̇�) sin 𝜙 sin 𝜙

+ �̇� sin 𝜙 (𝑅 − 𝑎 cos 𝜃)) 

  (20) 

 

with normal force as follows: 

 

|F𝑁| = 𝑚𝑔 + 𝑚�̈� = 𝑚𝑔 + 𝑚𝑎(�̇�2 cos 𝜃 + �̈� sin 𝜃) 

  (21) 

 

Numerical solution of the equations of 

the reverse motion for coordinates 

𝜃(𝑡), 𝜙(𝑡), �̇�(𝑡), �̇�(𝑡), �̇�(𝑡),  and �̇�(𝑡),  with the 

initial conditions tippe top is in the Table 1. 

 

Table 1. Initial Conditions of Tippe Top 

In=In’=I 

(gr.cm2) 

I3 

(gr.cm2) 

mtotal 

(g) 

R 

(cm) 

D 

(cm) 

45 50 13 1.3 2.6 

 

The value of initial conditions based on 

previous studies [1,9,13] is in the Table 2. 

 

Table 2. Initial Conditions Based on Previous Studies 

𝜃(𝑡)

rad 

𝜙(0)

rad 

�̇�(0)  

rad/s 

�̇�(0)  

rad/s 

�̇�(0) 

cm/s 

�̇�(0) 

cm/s 

𝛽1 

𝑔𝑚2𝑟𝑎𝑑/𝑠 

𝜇 

0.1 0 0 0 0 0 2,500 0.3 

 

The obtained graph is shown in Figure 3. 

 

 
Figure 3. Relationship Between Angle (𝜽)  

and Time (t)  

 

 

Figure 4. Relationship Between Angular Velocity (�̇�)  

and Time (t) 

 

 

Figure 5. Relationship Between Angle (�̇�)  

and Time (t) 
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Based on equations 6, 7, 8, and 9 can 

illustrate the graphs of the relationship 

between angle θ (t) with time and angular 

velocity �̇�(t) with respect to time and graph 

�̇�(t). In the three images, it can be seen that 

the tippe top occurs at the 9th second and stops 

spinning. The tippe top process occurs in 

accordance with the predetermined initial 

requirements. This shows that differential 

equations that have been derived are true and 

can be proved computationally by using 

Maple. The purpose of solving the dynamics 

system by describing the numerical equations 

of the tippe top is to compare the results of the 

solutions that have been calculated with the 

nature of the qualitative analysis on the tippe 

top equation studied in this study. 

The numerical solution of the equations 

of reverse motion for the coordinate θ(t) 

which has the initial conditions based on 

Table 1 and Table 2 shows the main 

characteristic of the reverse reversal. In the 

graph it can be seen that the tippe top is 

spinning then slowly it will experience a 

reversal at 20 seconds, after θ(t) forms an 

angle of π, the tippe top will rotate with its 

stem stably without precision towards the 

z-axis where the speed of precision and speed 

the angle θ(t) is zero. So, after reversing the 

top of the tippe top, it will rotate with its stem 

without precision and experience a steady 

state.  

Based on Figures 3, 4, and 5, it shows 

that the mechanical system with a non-holistic 

constraint for tippe top moving in a flat plane 

can be described by the Poincaré equation, 

which is a dynamic system that can be 

described by a set of differential equations 

and system energy is clearly stated. On the 

graph showing the tippe top moving on a flat 

surface without friction can be seen in Figures 

3 and 4 which state that if the surface of the 

flat where the tippe top is moving has no 

friction (slippery), the tippe top will not 

reverse. This is expressed by the angular 

velocity θ and the constant angular velocity 

which illustrate that the tippe top is in a 

constant stable rotating state with very little 

precision on the ez axis and there is no 

translation movement from the tippe top. As 

for the tippe top that moves on a flat plane 

with friction can be seen through Figure 5 

which states that after the spinning top rotates 

for a few seconds, slowly the tippe top will 

experience a reversal. After θ(t) approaches 

an angle of π, the tippe top will rotate stably 

with the stem without precision on the ez. 

In addition to the previous studies 

which stated that the dynamics of tippe top 

were solved by the Euler and Routhian 

Reduction equations, this study the shows 

how the dynamics of the tippe top was 

successfully solved by the Poincare equation 

which is derived from the Euler-Lagrange 

equation with the assistance of Maple-based 

physics computing. The authors are 

successful in describing the top spin dynamics 

with the initial conditions that have been 

determined with various coordinate points in 

accordance with the configuration space of 

the tippe top that moves in a flat plane. 
 

IV. CONCLUSION 

Based on research on the use of 

Maple-based physics computation in 

formulating the dynamics of tippe top, the 

following conclusions can be drawn: (1) 

mechanical systems with a non-holistic 

constraint for tippe top moving on a flat plane 

can be described by the Poincaré equation, 

which is a system of dynamics that can be 

described by a set of differential equations 

and system energy as clearly stated; and (2) 

Based on the results of the previous studies on 

similar object, the dynamics tippe top were 

solved by the Euler and Routhian Reduction 

equations. In this study the dynamics of the 

tippe top dynamics are successfully solved by 

the Poincare equation which is derived from 

the Euler-Lagrange equation with the 
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assistance of Maple-based computation. The 

author succeeded in describing the dynamics 

of top motions with the initial conditions that 

have been determined with various coordinate 

points in accordance with the tippe top 

configuration space that moves in a flat plane. 
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