Altering Coconut Shell Biomass to High-Ordered Graphitic Carbon with Nickel Catalyzation

Biaunik Niski Kumila 1,a,*, Farhan Aditya 1,b, Fredina Destyorini 2,c, Fitri Nur Indah Sari 3,d, Dhita Azzahra Pancorowati 4,e, and Hamdan Hadi Kusuma 5,f

1 Department of Physics, Faculty of Science and Technology, UIN Syarif Hidayatullah Jalan Ir H. Juanda No. 95, Ciputat, South Tangerang 15412, Indonesia
2 Research Center of Nanotechnology and Materials, National Research and Innovation Agency Jalan Raya Puspiptek Serpong, South Tangerang 15314, Indonesia
3 Department of Materials Science and Engineering, Faculty of Engineering, National Cheng Kung University No. 1 Dasyue Rd, East District, Tainan City 701, Taiwan
4 Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology Daegu Gyeongbuk, Dalseong-gun, Daegu, South Korea
5 Department of Physics, Faculty of Science and Technology, Walisongo State Islamic University Jalan Walisongo No.3-5, Tambakaji, Ngaliyan, Semarang 50185, Indonesia

e-mail: * biaunik@uinjkt.ac.id, b farhan.luhfi18@mhs.uinjkt.ac.id, c fredina.destyorini@lipi.go.id, d fitrinurindah_26@yahoo.com, e dhita_169@dgist.ac.kr, and f hamdanhk@walisongo.ac.id
* Corresponding Author

Received: 23 August 2023; Revised: 30 October 2023; Accepted: 3 November 2023

Abstract

Graphite is a carbon-based material potentially utilized in numerous applications, such as electrodes for supercapacitors, lithium-ion batteries, and absorbers for water treatment. Biomass graphite is a beneficial candidate for low-cost yet valuable graphite. In this work, coconut shells, the abundant materials with high carbon contents, were successfully transformed into valuable coconut shell graphite (CSG) using metal catalytic graphitization with nickel as a catalyst at low-temperature conditions of \textasciitilde1200 \degree C. Nickel concentration varied between 2 mmol, 3 mmol, and 5 mmol per gram of carbon. The samples were further examined using X-ray diffraction (XRD), Raman Spectroscopy, and Transmission Electron Microscope (TEM). The high graphitization degree of \textasciitilde72 \% was confirmed by X-ray diffraction analysis. That was further supported by the high-ordered stacking carbon layer that appeared in HR-TEM images. Meanwhile, Raman spectroscopy confirms that nickel impregnation diminished the structural defect of samples and increased the sp2-carbon bond indicated by its rise of IG/ID. The IG/ID values of CGS and CGS-N\textsubscript{5mmol} are 0.86 and 0.92, respectively.

Keywords: Biomass Graphite; Coconut Shells; Nickel Catalyzation
INTRODUCTION

Graphite is a desirable byproduct of biochar and is utilized in various processes. Due to its excellent electrical conductivity, graphite can be employed as electrochemical electrodes [1–3] and as an anode for secondary batteries [4–7]. Due to its high melting point characteristics, graphite is also a good material for the casting and molding sector [8]. Its market expansion is anticipated to be fueled by the rising demand for Li-ion grade graphite [9–11] to meet the needs of electric vehicles (EVs). However, despite all of graphite’s outstanding properties and widespread applications, it is a mineral resource that is irregularly distributed on Earth and is synthesized artificially at high operation temperature (~3,000 °C) from coal called the Acheson technique [12]. Therefore, high-cost production and limited natural supply are the main causes of concern. In order to address those problems, many researchers have been developing biomass-derived carbon as a potential precursor for graphite due to its abundant supply, benign effects on the environment, and inexpensive cost [13–15].

Due to the ease of manufacture, affordability, and sustainability, biomass-derived graphite has attracted much interest among researchers. Numerous biomass products have been utilized as precursors, such as chitin and cellulose rich-precursors [16], grape extract [17], coconut waste [18], and oil palm empty fruit bunch (EFB) [19,20] in various ways [21] to prepare graphite. Among all carbonaceous precursors, carbon phases generated from coconut shell charcoal have several beneficial properties, including their mesoporous structure [22], hardness [23], and electronic conductivity [24].

Coconut shell (CS) is an agricultural waste broadly available in India, Indonesia, the Philippines, and Sri Lanka, which are primarily the top coconut producers. The underused coconut shell trash is burned outside or dumped in ponds, which pollutes the environment [25]. Because of its chemical characteristics, CS fiber can improve novel composites and give them higher strength and modulus properties [26]. The components of a coconut shell are cellulose (26.6%), hemicellulose (21%), lignin (29.4%), pentosans (27.7%), solvent extractives (4.2%), uronic anhydrides (3.5%), and ash (0.6%) [27]. Due to its high porosity and surface area, coconut shell-activated carbon is frequently employed as an adsorbent [28]. Coconut shells are also effectively utilized to produce charcoal and activated carbon due to their high carbon content (49.86%) [25].

The Acheson technique is still used to convert amorphous carbon to graphite, which requires an energy-intensive process that leads to the graphite’s high cost [12]. Therefore, developing a technique that converts traditionally non-graphitizable carbon precursors into highly ordered graphitic structures at lower temperatures is still challenging. Numerous techniques are currently used to produce graphitic carbon structure generated from biomass, such as pyrolysis, chemical activation, mainly KOH [29], and catalytic graphitization utilizing transition metals such as Fe, Co, and Ni as catalysts [30–34]. The primary techniques for creating carbon compounds from biomass with a great graphitic structure are high-temperature pyrolysis and catalytic graphitization [35] since the graphitic structure of biomass with chemical activation has low electrical conductivity [16].
Numerous methods have been developed for graphite using coconut shells as a precursor [24,36–38]. However, the successful conversion of highly disordered amorphous carbon from coconut shells to high-ordered graphite reported by previous studies is still challenging and has not been well discovered. Therefore, in this report, we propose efficient metal catalysis using nickel as a catalyst that successfully transformed the amorphous carbon from coconut shells into high-ordered graphite at low temperatures.

METHOD

The three main synthesis steps are preparing coconut shell powder, impregnating nickel, and pyrolysis/heat treatment to produce the graphitic carbon phase. In this section, these three processes are described in extensive detail. This section also describes the materials and research methods, including the tools and equipment employed.

Material Synthesis

Preparation of Coconut Shell Carbon

After being cleansed to remove impurities, the carbon derived from the coconut shell powder was dried in a vacuum oven at 60 °C. A 200-mesh sieve was then utilized to refine and filter the powder. The coconut shell powder was then heated at 500 °C for an hour under a nitrogen atmosphere to complete the carbonization process.

Nickel Impregnation Process

The graphitic carbon derived from coconut shells was synthesized by metal catalytic graphitization using nickel as a catalyst. The 5 g of coconut shell carbon was dissolved in deionized water. Nickel (II) chloride hexahydrate (NiCl₂.6H₂O) was added to the carbon solution, with a concentration of 2 mmol, 3 mmol, and 5 mmol of nickel per gram of carbon. The mixture was then stirred at 60 °C and dried overnight. The solution was then heated at 110 °C to remove the remaining solvent.

Synthesis of Coconut Shell-Graphite (CSG)

The as-synthesized carbon impregnated by nickel was then graphitized at 1200 °C under nitrogen flow for 3 hours. The sample was then washed with HCl 40% to remove nickel impurities. The product mixture was further washed with DI water until it reached normal pH and dried to produce graphitic carbon powder. The product was then labeled as CSG-Ni. In contrast, the sample without nickel impregnation was labeled as CSG.

Material Characterization

The samples (CSG and CSG-Ni) were further examined with X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM) as described in this section. X-ray diffraction (XRD) was used to analyze the structural phase, defining the degree of graphitization and height of stacked layer carbon. The degree of graphitization was calculated by Equation 1 [39,40].

\[
\text{DOG} = \frac{3.440 - d_{(002)}}{3.440 - 3.354} \tag{1}
\]

where DOG is the degree of graphitization, 3.440 is the interplanar spacing of turbostratic graphite, \(d_{(002)}\) is the interplanar spacing of the sample, and 3.354 is the interplanar spacing of single crystal graphite. The crystallite size (Lc) was calculated using Equation 2, Scherrer
where \(\lambda \) is the source radiation wavelength of Cu K\(\alpha \), \(\beta \) is the full width at half maxima (FWHM) of XRD peak at 2\(\theta \), and \(K \) is the dimensionless constant which depends on the reflection plane. In this case, \(K \) for the (002) plane is 0.89. The number of stacked carbon layers was also calculated by Equation 3.

\[
n = \frac{L_c}{d_{002}}
\]

In order to observe the degree of structural defect of samples, Raman spectroscopy analysis was carried out with a Raman iHR320 Horiba spectrometer equipped with an Argon laser source (514 nm). Moreover, the Transmission Electron Microscope (TEM) studies were carried out to provide an actual image of stacking layered graphite. Furthermore, the Selected Area Diffraction (SAED) technique was also employed to observe the lattice parameter.

RESULTS AND DISCUSSION

Figure 1 shows the XRD patterns of CSG and CSG-Ni. Figure 1(a) shows the raw XRD data from all samples, whereas Figure 1(b) shows the smoothed data fit and subjected to peak analysis. As can be observed from Figure 1, CSG shows two broad peaks at approximately 2\(\theta \) = 23.54\(^{\circ} \) and 43.89\(^{\circ} \), respectively, indicating its amorphous carbon structure. Furthermore, the XRD pattern of CSG-Ni\(_{2}\)mmol shows a similar feature as CSG. Therefore, CSG and CSG-Ni\(_{2}\)mmol exhibit an amorphous carbon structure. In contrast, CSG-Ni\(_{3}\)mmol and CSG-Ni\(_{5}\)mmol reveal an additional sharp peak at approximately 2\(\theta \) = 26\(^{\circ} \), contributing to the graphitic crystalline plane of (002). Moreover, the peak at approximately 2\(\theta \) = 43\(^{\circ} \)-44\(^{\circ} \) indicates the (101) plane. Figure 1 (c) shows the convolution result of the important peak at 2\(\theta \) = 23.54\(^{\circ} \), corresponding to (002). Graphitic carbon's diffraction properties typically result in a strong peak around 2\(\theta \) = 24\(^{\circ} \) [30,39,42,43]. The sample diffraction data from this study for CGS-Ni\(_{3}\)mmol and CGS-Ni\(_{5}\)mmol (Figure 3(c), however, revealed two peaks made up of a broad peak (blue) and a sharp peak (green). The broad peak (blue) corresponds to the disordered graphite phase, while the sharp peak (green) demonstrates the high-ordered graphitic phase. Moreover, the red peak shows the cumulative fit-peak of all peaks. Previous studies have found similar findings for the diffraction features of biomass graphite, which is related to the turbostratic graphitic phase [1,18,21,34]. Turbostratic carbon is typically considered a variation of h-graphite, and both the h-graphite and the t-carbon are piled up by graphene layers with uniform spacing but varied stacking ordering degrees. Although the graphene layers of t-carbon may arbitrarily translate to each other and rotate around the normal of the graphene layers, h-graphite has an ordered AB stacking structure [39,44].

In conclusion, a sufficient concentration of nickel improves the degree of graphitization, proved by the appearance of a sharp peak of the (002) plane, confirming that the sp\(^2\) carbon bond is optimized after nickel catalyzation (see Figure 2). Furthermore, the XRD data shows the successful transformation of biomass to highly ordered graphitic carbon after the nickel catalyzation process at a relatively low temperature (~1200 °C) compared to the ancient high-cost graphitization process, which was performed at high temperatures up to 3000 °C. Metals such as copper, iron, cobalt, and nickel have been commonly utilized as catalysts to reduce the graphitization temperature of biomass carbon [30]. However, enhancing the quality of crystalline graphite as measured by the degree of graphitization (DOG) remains a problem in the commercialization of biomass graphite.
Figure 1. Raw Experimental XRD Result of (a) CSG and CSG-Ni in Various Concentrations; (b) Cumulative-fit Peak of CSG and CSG-Ni with Various Concentrations, (c) Convolution Peak of CSG-Ni\textsubscript{5mmol}; and (d) CSG-Ni\textsubscript{3mmol}

Research conducted by Fredina et al. stated that a DOG of 77.9% was successfully achieved in the coconut fiber graphitization process using nickel as a catalyst at a graphitization temperature of 1300 °C [34]. In this study, a new precursor, coconut shell, was successfully graphitized at a lower temperature of 1200 °C, resulting in a DOG of 71.96% (see Table 1). Previous researchers have carried out coconut shell graphitization using various methods [24,36,38,45,46]. However, those earlier publications lacked solid evidence to support the finding that high crystalline-graphite formation was successful. In other words, the graphitization of coconut shells used in earlier studies results in low-crystalline or amorphous-
grade graphite graphite. Therefore, employing the nickel catalyzation process at low temperatures, this research can be a starting point for successfully synthesizing high-ordered graphite from coconut shells.

![Graph showing Raman Spectra of CSG and CSG-Ni in Various Concentrations]

Figure 2. Raman Spectra of CSG and CSG-Ni in Various Concentrations

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSG</td>
</tr>
<tr>
<td>Phase</td>
<td>Amorphous</td>
</tr>
<tr>
<td>Degree of Graphitization (DOG), (%)</td>
<td>-</td>
</tr>
<tr>
<td>Interlayer spacing of (002), (d<sub>002</sub>), (nm)</td>
<td>-</td>
</tr>
<tr>
<td>Crystallite size (L<sub>c</sub>), (nm)</td>
<td>-</td>
</tr>
<tr>
<td>Number of stacked layers (n)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Structural Parameters of Samples Obtained from XRD Data Analysis

The parameters calculated from XRD data analysis, including degree of graphitization, crystallite size/number of stacked layer graphite, and lattice parameter of samples, are concluded in Table 1. The high-ordered biomass graphite with a degree of graphitization up to~72% was obtained by CSG-Ni_{5mmol}, which is the great DOG compared to previous works [24,36].
The Raman spectrum is used to identify further the structure, specifically the existence of defects in samples. Figure 2 shows two distinct peaks: the D band (~1350 cm\(^{-1}\)) and the G band (~1590 cm\(^{-1}\)), corresponding to the disordered carbons and sp\(^2\) bonded carbon atoms, respectively. Defects generally consist of physical or structural defects and chemical defects. Physical defects are associated with structural damage due to the presence of pores, holes, and vacancies in the sample. At the same time, carbon bonds cause chemical defects with oxygen functional groups such as epoxy, hydroxyl, carboxylic, and carboxyl groups [47,48].

Graphite is a carbon-sp\(^2\) bond that is arranged hexagonally. Any form of arrangement of carbon bonds other than sp\(^2\), such as sp\(^3\) and sp, is also categorized as a chemical defect [49,50]. The G peak in Raman is associated with the sp\(^2\) quantity of carbon in the sample, while the D peak is associated with all types of physical and chemical defects. I\(_G\) and I\(_D\) are related to the intensity of the G and D peaks, respectively. Therefore, I\(_G\)/I\(_D\) is a value of the G and D peak intensity ratio, representing the amount of sp\(^2\)-carbon bond and the quality of the sample. The greater the I\(_G\)/I\(_D\) value, the higher the quality of the graphitic carbon. The intensity ratio of the G and D band (I\(_G\)/I\(_D\)) indicates the degree of sp\(^2\)-bonded carbon of materials. The I\(_G\)/I\(_D\) values of CSG in CSG-Ni\(_{2\text{mmol}}\), CSG-Ni\(_{3\text{mmol}}\), and CSG-Ni\(_{5\text{mmol}}\) are 0.86, 0.87, and 0.89, respectively. After nickel impregnation, the increasing I\(_G\)/I\(_D\) value of samples indicates a higher number of sp\(^2\)-bonded carbon, confirming the rise in graphitization degree. This statement further supports the XRD analysis, which expresses that nickel catalyzes graphitization to occur.

TEM images are used to analyze the atomic morphology of the material further. Figure 3(a-c) shows the TEM images of CSG-Ni\(_{5\text{mmol}}\) including its Selected Area Diffraction (SAED) pattern in different magnifications. Figure 3 (a) shows the TEM image, including the Selected Area Diffraction (SAED) pattern of the CSG-Ni\(_{5\text{mmol}}\) sample (inset). In the image, it can be seen that three typical rings are associated with the crystalline planes of (002), (101), and (110). The dotted ring pattern of SAED of CSG-Ni\(_{5\text{mmol}}\) corresponds to a single crystal followed by a polycrystalline-like material. The nearly bold ring embedded by a white-dotted point pattern of SAED (inset) indicated the polycrystalline-like pattern. It is obvious that the sample is a polycrystalline-like material. The higher magnification of the CSG-Ni\(_{5\text{mmol}}\) TEM image is shown in Figure 3(b). It clearly shows the number of highly oriented stacked carbon layers, which confirms the formation of the graphitic carbon structure. The plot profile (Figure 3c, inset) of the selected line is executed to measure the interplanar spacing of the carbon layer. Ten peaks of the plot profile correspond to ten layers of stacked carbon plane in the range of 3.4 nm. Based on the analysis of the selected line profile of the HR-TEM image, the interplanar spacing of the carbon layer is ~0.34 nm, which is in agreement with d\(_{002}\) calculated from XRD data (~0.337 nm).
The entire process in this research focuses on initial studies of the success of nickel catalyzation to convert biomass to highly ordered biomass graphitic carbon with low-temperature operation. Several types of metals as catalysts are highly recommended for research on various types of carbon biomass. In addition, studies about the utilization of graphite biomass in various strategic fields, such as energy (lithium-ion battery anode) and the environment (water treatment), are highly recommended.

CONCLUSION

High-ordered biomass graphite from coconut shells has been successfully synthesized using the metal catalytic-graphitization method with nickel as a catalyst. The metal catalyzation

Figure 1. TEM Images of CSG-Ni5mmol and Its SAED Pattern (inset) (a), HR-TEM Images of CSG-Ni5mmol at Different Magnifications (b-c). Plot Profile at Selected Line (c,Inset).
method was confirmed to have a lower graphitization temperature than ancient graphitization methods. This work reported that nickel impregnation has successfully facilitated graphitization at such a low temperature, \(\sim 1200 \, ^\circ\text{C} \). The X-RD analysis confirmed that CSG and CSG-Ni\textsubscript{3mmol} are amorphous materials. CSG-Ni\textsubscript{3mmol} and CSG-Ni\textsubscript{5mmol} are graphitic materials with DOG of 70.42 and 71.96, respectively. That clarified that a sufficient amount of nickel is essential to attain graphitization. Raman spectroscopy analysis also confirmed that nickel impregnation promoted graphitization, which enhanced the sp2 carbon bond indicated by increasing the I\textsubscript{G}/I\textsubscript{D} value. The atomic morphology of CSG-Ni showed by TEM images confirmed the polycrystalline-like pattern of SAED. Furthermore, the high-ordered graphitic carbon layers were also observed by TEM images. The interplanar spacing of (002) was also calculated using plot profile analysis of the HR-TEM image. The interplanar spacing value is \(\sim 0.34 \, \text{nm} \), which agrees with the XRD result.

ACKNOWLEDGMENT

This work is supported by funding from BOPTN UIN Syarif Hidayatullah Jakarta, Ministry of Religious Affairs of Indonesia. The author would also like to thank the Physics Laboratory Center of the National Research and Innovation Agency, Indonesia, and Green Laboratory, Bandung, Indonesia.

AUTHOR CONTRIBUTIONS

Biaunik Niski Kumila: Conceptualization, Methodology, Formal Analysis, Resources, Writing-Original Draft, Validation and Supervision; Farhan Aditya: Methodology, Formal Analysis, Resources and Investigation, Writing-Review Editing; Fredina Destyorini: Conceptualization, Methodology, Formal Analysis and Supervision; Fitri Nur Indah Sari, Dhita Azzahra, Hamdan Hadi Kusuma: Data Curation, Project Administration and Supervision

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

