Relation Between Transport Distance with Frequency-Dependent Volume Magnetic Susceptibility in Surabaya River Sediments

Mariyanto 1,a, Ayi Syaeful Bahri 1,b, Widya Utama 1,c, Wien Lestari 1,d, Linda Silvia 2,e, Titis Lestyowati 3,d, Muhammad Khayrul Anwar 4,g, Wahyu Ariffiyanto 4,h, Ahmad Irfan Hibatullah 1,i, and Moh Faisal Amir 1,j

1 Department of Geophysical Engineering, Faculty of Civil Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember
Jalan Raya ITS, Sukolilo, Surabaya 60111, Indonesia
2 Department of Physics, Faculty of Science, Institut Teknologi Sepuluh Nopember
Jalan Raya ITS, Sukolilo, Surabaya 60111, Indonesia
3 Department of Mechanical Engineering, Faculty of Engineering, Universitas Jember
Jalan Kalimantan 37, Tegalboto, Jember 68121, Indonesia
4 Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember
Jalan Raya ITS, Sukolilo, Surabaya 60111, Indonesia

e-mail: a mariyanto@geofisika.its.ac.id, b syaeful_b@geofisika.its.ac.id, c widya@geofisika.ac.id,
d wien@geofisika.its.ac.id, e linda@physics.its.ac.id, i titis.teknik@unej.ac.id.

g muhammad.khayrul.anwar14@mhs.chem.its.ac.id, h wahyu.ariffiyanto13@mhs.chem.its.ac.id,
i ahmad.irfan14@mhs.geofisika.its.ac.id, and j faisal.amir14@mhs.geofisika.its.ac.id

Abstract

Volume magnetic susceptibility measurements have been widely used in numerous studies related to river sediment characterization. A study of the transport distance effect toward the frequency-dependent volume magnetic susceptibility is needed to identify the superparamagnetic grain behavior in river sediments. The purpose of this study is to identify the presence of superparamagnetic grains and to obtain the relation between transport distances and frequency-dependent volume magnetic susceptibility in river sediments. The sediment samples were taken and measured by using the Bartington MS2B Susceptibility meter at two different frequencies of 470 Hz and 4700 Hz. The measurement results show that the sediment transport distance is directly proportional to the frequency-dependent volume magnetic susceptibility. Superparamagnetic grain content is identified to tend to be higher as the distance of sediment transport increases.

Keywords: magnetic susceptibility, river sediments, transport distance, superparamagnetic grain

Hubungan Antara Jarak Transportasi dengan Suseptibilitas Magnetik Volume Bergantung Frekuensi pada Sedimen Sungai Surabaya

Abstrak

Pengukuran susceptibilitas magnetik volume telah banyak digunakan dalam berbagai penelitian yang berhubungan dengan karakterisasi sedimen sungai. Penelitian mengenai pengaruh jarak transportasi

Kata Kunci: susceptibilitas magnetik, sedimen sungai, jarak transportasi, bulir superparamagnetik

PACS: 91.25.-r, 91.25.F-, 91.60.Pn, 96.12.Hg

© 2018 Jurnal Penelitian Fisika dan Aplikasinya (JPF A). This work is licensed under CC BY-NC 4.0

Article History: Received: March 19, 2018 Approved with minor revision: May 3, 2018
Accepted: June 8, 2018 Published: June 30, 2018

I. INTRODUCTION

Geophysical survey on the earth’s surface is an indirect measurement and an important stage to map the physical properties in the subsurface. Previous studies, such as surveys of magnetics [1,2], gravity [3,4], electrical resistivity [5,6], electromagnetics [7] and microearthquake [8] have successfully modeled the physical properties in the subsurface. On the other hand, direct measurement of the earth’s material is also an important stage to characterize the subsurface conditions.

Magnetic susceptibility measurements have been widely used in various studies with various materials, including rocks [9,10], soils [11–13], sediments [14–16] and dusts [17,18]. In the aquatic environments, magnetic susceptibility measurements have been applied to river sediments [14,15,19], marine sediments [16,20] and lake sediments [15,21]. Measurements of magnetic susceptibility especially in riverine environments have been conducted in association with heavy metal pollution [19], storm event [22] and lithology [23].

Various studies of frequency-dependent magnetic susceptibility have been undertaken by several researchers related to magnetic viscosity [24], landmine clearance [25], systems containing nanometer-sized magnetic particles [26] and a proxy for fine-grained iron minerals and aggregate stability [27]. Measurements of frequency dependent magnetic susceptibility have been applied to characterize the properties of materials such as graphitic pottery [28], magnetite at low temperature [29], a colloidal suspension of manganese ferrite nanoparticle [30] and cobalt ferrite nanoparticles embedded in PAA Hydrogel [31].

Previous studies have never reported the effect of transport distance to the frequency-dependent volume magnetic susceptibility. Dearing [32] explains that the value of frequency-dependent volume magnetic susceptibility is influenced by the presence of superparamagnetic grain in the material. Superparamagnetic grain is associated to the grain size of magnetic minerals in the material. The hypothesis of this study is the transport distance of river sediments has a relation with
superparamagnetic grain content so that it can affect the value of frequency-dependent volume magnetic susceptibility. The present study aims to identify the existence of superparamagnetic grains and to explain the relation between transport distances with frequency-dependent volume magnetic susceptibility in river sediments.

Magnetic susceptibility is one of the important parameters to characterize the earth's material. Volume magnetic susceptibility is a quantity that states the ratio between the magnetization response of a material due to the presence of an external magnetic field acting on the material [33]. Dearing [32] states that magnetic susceptibility is influenced by the type, size and content of magnetic minerals in the material.

The grain size of the magnetic mineral is related to the magnetic domains of a magnetic material. An area within a crystal where all of its magnetic moments are aligned is called the magnetic domain. Each domain is separated by a domain wall [34]. Dunlop and Özdemir [35] classify the magnetic domains of magnetite mineral based on grain size from small to large including: single domain (<0.1 μm), pseudo single domain (0.1-10 μm) and multi domain (>10 μm). Single domain grain has only one domain whereas multi domain has more than one domain. Meanwhile, pseudo single domain is a grain with multiple domain but has properties like single domain grain.

Lowrie [33] explains that single domain grain is the more stable carrier of remanent magnetization than multi domain grain. There is a very fine magnetic grain <0.03 μm called superparamagnetic grain [32]. This grain cannot record remanent magnetization as a paramagnetic material but shows very high magnetization when the external magnetic field is applied.

II. RESEARCH METHOD

The study area is in Surabaya River, Province of East Java, Indonesia. Brantas River is the upstream part of the Surabaya River. This river flows from the Dam Mlirip in Mojokerto through the city of Gresik, Sidoarjo and ends in Surabaya. In Surabaya, this river branches into two parts namely the Mas River and Wonokromo River. The Mas River flows to northward while the Wonokromo River flows to eastward of Surabaya. Both rivers lead to the Madura strait. Mas River is an artificial river as a city drainage so that sediment sampling is not conducted in this river.

According to geological map that was published by the Geological Research and Development Center of Indonesia, rock formations around the Surabaya River consist of series of alluvial deposit and sedimentary rock. Sedimentary rock series is divided into the formation of Kabuh, Pucangan and Lidah. Alluvial deposit is estimated to be Holocene while the sedimentary rock series is estimated to be Pleistocene [36].

![Figure 1. Data Collection Method](image)

Figure 1 shows the flow chart of the data collection method consisting of sediment sampling, sample preparation and measurements. Sediment sampling was conducted in eight different locations along the Surabaya River with spaces between sampling points 4-8 km (Figure 2). Sample
preparation consists of cleaning the sample, drying the sample and the treatment before the measurement. The dried samples were inserted into plastic cylinders and measured using the Bartington MS2B Susceptibility meter. Mathematically, the volume magnetic susceptibility can be expressed by the Equation (1) [32]:

\[\kappa = \frac{M}{H} \]

in which:
\(\kappa \) = volume magnetic susceptibility (dimensionless)
\(M \) = magnetization (Am\(^{-1}\))
\(H \) = magnetizing field (Am\(^{-1}\))

The analysis was conducted to find out the relation between frequency-dependent volume magnetic susceptibility with river sediment transport distance. The reference of transport distance is determined from upstream to downstream of the river (from sample S1 to S8). In addition, frequency-dependent volume magnetic susceptibility is also used to determine the extent of superparamagnetic grain influence on sediment samples.

III. RESULTS AND DISCUSSION

Magnetic measurements using Bartington MS2B Susceptibility meter produce two values of volume magnetic susceptibility in different frequencies by each sediment sample. By calculation using equation (2), we can obtain the frequency-dependent volume magnetic susceptibility value (Table 1). The value of frequency-dependent volume magnetic susceptibility ranges from 0.01146 to 0.02386 (on average 0.01839).

Based on the interpretation of frequency-dependent magnetic susceptibility values proposed by Dearing [32], we can identify the presence of superparamagnetic grains in sediment samples. Samples of S1, S2, S3 and S4 are in area closer to the upstream of the river having value of frequency-dependent volume magnetic susceptibility less than 0.02. The value less than 0.02 is interpreted to be included in the low category. The condition indicates that four samples closer to the
upstream contain lower superparamagnetic grain (<10%). Meanwhile, Samples of S5, S6, S7 and S8 are in area closer to the downstream of the river having value of frequency-dependent volume magnetic susceptibility greater than 0.02. The value between 0.02-0.10 are interpreted to be included in the medium category. This condition indicates that four samples closer to the downstream contain higher superparamagnetic grain (>10%) or admixture of superparamagnetic and coarser non-superparamagnetic grains, or superparamagnetic grains <0.005 μm.

Table 1. The Results of Magnetic Susceptibility Measurement and Transport Distance of River Sediment

<table>
<thead>
<tr>
<th>Sample</th>
<th>Transport Distance (km)</th>
<th>κLF (x 10^5 SI)</th>
<th>κHF (x 10^5 SI)</th>
<th>FDVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
<td>930</td>
<td>920</td>
<td>0.01146</td>
</tr>
<tr>
<td>S2</td>
<td>8</td>
<td>547</td>
<td>539</td>
<td>0.01465</td>
</tr>
<tr>
<td>S3</td>
<td>16</td>
<td>423</td>
<td>416</td>
<td>0.01596</td>
</tr>
<tr>
<td>S4</td>
<td>24</td>
<td>433</td>
<td>425</td>
<td>0.01786</td>
</tr>
<tr>
<td>S5</td>
<td>32</td>
<td>240</td>
<td>235</td>
<td>0.02043</td>
</tr>
<tr>
<td>S6</td>
<td>37</td>
<td>282</td>
<td>276</td>
<td>0.02121</td>
</tr>
<tr>
<td>S7</td>
<td>41</td>
<td>239</td>
<td>234</td>
<td>0.02168</td>
</tr>
<tr>
<td>S8</td>
<td>45</td>
<td>270</td>
<td>264</td>
<td>0.02386</td>
</tr>
</tbody>
</table>

Figure 3. Plot Between Transport Distances with Frequency-Dependent Volume Magnetic Susceptibility in Surabaya River Sediments, Indonesia.

The relation between transport distances with frequency-dependent volume magnetic susceptibility is shown in Figure 3. The value of frequency-dependent volume magnetic susceptibility tends to increase downstream of the river. The relation model between these two parameters is approximated by a linear equation. The linear regression shows that the transport distance has a significant linear relation with frequency-dependent volume magnetic susceptibility. The value of frequency-dependent volume magnetic susceptibility tends to increase by 0.0003/km additional transport distance. This value is represented by the gradient in the linear equation in Figure 3. Pearson correlation coefficient (R) states how significant the relation between the both parameters. In this case, R=0.993 indicates that frequency-dependent volume magnetic susceptibility is very significantly correlated to the sediment transport distance. The increasing value trend indicates that the sediment transport distance is allegedly to affect the content of superparamagnetic grain of the sediment. Sediments transport over longer distances are allegedly to have higher superparamagnetic grain content. This study provides information on the possible location of the presence of river sediments containing high superparamagnetic grain in the downstream area.

We compare the result of the present study with measurement result of frequency-dependent volume magnetic susceptibility in two rivers in India. [37]. Figure 4 and Figure 5 respectively show plot between transport...
distance with frequency-dependent volume magnetic susceptibility of selected sediments in Cauvery and Palaru River. Transport distance is not in actual distance value (not in km) and only in order of sample number from upstream to downstream of the river. Despite ignoring the actual transport distance, both plots show a similar trend to the conditions in Surabaya river sediments. The value of frequency-dependent volume magnetic susceptibility of Cauvery and Palaru river sediments tends to increase downstream. In addition, the sediments from both rivers are dominated by the value of frequency-dependent volume magnetic susceptibility in low-medium categories similar with Surabaya river sediments.

IV. CONCLUSION

The Surabaya river sediments have frequency-dependent volume magnetic susceptibility in low-medium category with value varying from 0.01146 to 0.02386 (on average 0.01839). The relation between transport distance and frequency-dependent volume magnetic susceptibility shows a very high positive correlation. The increase in transport distance is identified as the cause of the increase in superparamagnetic grain content in the river sediments.

ACKNOWLEDGMENT

The authors are grateful to the Laboratory of Rock Magnetism, ITB for the measurement facility of frequency-dependent volume magnetic susceptibility. We also thank our fellow, ITS students who had assisted us when sampling the sediment. This study is financially funded by Hibah Penelitian Pemula ITS 2018.

REFERENCES

