
Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 1

Computational physics Using Python:

Implementing Maxwell Equation for Circle Polarization

Madlazim

1, 2
 and Bagus Jaya Santosa

1
,

E-mail: lazim@fisikaunesa.net

1. Physics Department, Faculty Mathematics and Science of ITS Jl. Arif Rahman Hakim

 I, Surabaya 60111, Indonesia.

2. Physics Department, Faculty Mathematics and Science of The State University of

 Surabaya (UNESA) Jl. Ketintang, Surabaya 60231, Indonesia.

Abstract

Python is a relatively new computing language, created by Guido van Rossum [A.S.

Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J. Jansen, G. van

Rossum, Experiences with the Amoeba distributed operating system, Communications of the

ACM 33 (1990) 46–63; also on-line at http://www.cs.vu.nl/pub/amoeba/, which is

particularly suitable for teaching a course in computational physics. There are two questions

to be considered: (i) For whom is the course intended? (ii) What are the criteria for a suitable

language, and why choose Python? The criteria include the nature of the application. High

performance computing requires a compiled language, e.g., FORTRAN. For some

applications a computer algebra, e.g., Maple, is appropriate. For teaching, and for program

development, an interpreted language has considerable advantages: Python appears

particularly suitable. Python‟s attractions include (i) its system of modules which makes it

easy to extend, (ii) its excellent graphics (VPython module), (iii) its excellent on line

documentation, (iv) it is free and can be downloaded from the web. Python and VPython will

be described briefly, and some programs demonstrated numerical and animation of some

phenomenal physics. In this article, we gave solution of circle polarization by solving

Maxwell equation.

Keywords: Circle Polarization; Maxwell equations; Teaching; Graphics; Computational

physics; Finite Difference Time Domain; Python.

Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 2

1. Introduction

 This paper discusses why Python is

a suitable language for the teaching of

computational physics. It provides an

overview of Python, but it is not an

introduction to programming Python.

Python is an object-oriented language, but

that will not be explicitly discussed. There

is no discussion of other computing

languages, but see Donaldson: Python as a

First Programming Language for Everyone

[1]. Raw Python, that is Python by itself, is

a language with limited capabilities, but it

can be extended by importing one or more

of the many available modules. VPython,

which has been developed by Bruce

Sherwood, Ruth Chabay, David Scherer

and colleagues at the University of North

Carolina, is a module particularly suitable

for teaching computational physics [2, 3].

Current versions of Python and of

VPython can be downloaded from the

web, and each is free. Each comes with

excellent on-line documentation, including

a tutorial. VPython comes with a folder of

examples: of which Color Sliders and

Stonehenge are particularly attractive and

show different features of VPython.

 Another example in the folder is

Bounce.py to show the structure of a

Python program. Its first statement is from

visual import * which makes available the

visual module (VPython). Note that there

are no end statements. In a block

statement, the first line of the block ends

with a colon (:) and subsequent lines are

indented by one tab space. The end of the

block is indicated by the end of the

indentation.

 ball and floor are visual objects,

with properties such as ball.velocity. The

program shows a ball bouncing, but when

it runs it has an irritating feature: the scale

of the picture alters with the height of the

ball: there is nothing explicit in the

program to determine the scale. The

VPython autoscale default is that the scale

is chosen to match the size of the whole

picture to the size of the window.

 When writing a program with a

graphical output, a programmer must pay

attention to scale factors, which can be

tedious, since it is necessary to know the

screen resolution, etc., and how the

computer program interacts with the

display. Having a varying scale factor, as

in this example is a minor irritation,

particularly since it is easily overcome, by

inserting scene.autoscale = False

immediately before the while statement.

 The computer is now ready for

your first Python session, in which you

write your first Python program, using

immediate mode: the Hello World

Program. At the prompt (>>>) in the

Python Shell Window, type “Hello World”

(including the quotation marks) and press

the return key. The computer prints out the

message „Hello World‟ and you have

written and run your first program: it

seems almost too easy. To write a

program, such as bounce.py shown above,

return to the IDLE Window, and type the

listing. IDLE handles the formatting

automatically. The file has to be saved

before it can be run, so save it with a

suitable name, with the extension „.py‟, in

the default directory (IDLE looks after

that) then press F5 and the program will

run, or will stop and report where it has

found errors.

2. For whom?

 All physics graduates should have

some knowledge of a high level computing

language and of computational physics, of

what it can do, and of its limitations, as

well as its strengths [1]. An introductory

course in computational physics has two

aspects: • an introduction to numerical

methods, e.g., there is more to solving a

differential equation than the Euler

method; • an introduction to computer

programming, e.g., input and output,

conditional statements, loops and arrays.

(Experience has shown students have

difficulty with these.) An introductory

course needs to be made attractive to all

students, not only to computer enthusiasts.

Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 3

The language used must be easy to run,

easy to program and must have graphics.

For such a course the advantages of an

interpreted language such as Python (with

an immediate mode) are overwhelming:

students can get results immediately, and

can find and rectify errors quickly. Python

is widely used in program development by

large organisations: see the Python

website. An interpreted program runs

much more slowly than a compiled one,

but program development is faster, and

some parts of a program do not need to run

fast, e.g., those involving human

interaction. Furthermore, most computer

languages are sufficiently similar that

translating from one to another is

straightforward.

3. Getting started with Python/V

Python

 Both Python and VPython must be

installed. If not already installed, find the

websites (Python.org and VPython.org)

and follow the instructions. VPython has

an excellent Integrated Development

System [IDE] called „IDLE‟ whose use is

strongly recommended: it organizes the

formatting of the program being written.

To open the IDLE Window, double click

on the VPython IDLE Icon on the desktop.

At the top of the IDLE Window is a menu:

„Run‟. Click on it, and double click on the

option „Python Shell‟, opening a new

window called „Python shell‟ which

displays the Python prompt „>>>‟.

 The computer is now ready for

your first Python session, in which you

write your first Python program, using

immediate mode: the Hello World

Program. At the prompt (>>>) in the

Python Shell Window, type “Hello World”

(including the quotation marks) and press

the return key. The computer prints out the

message „Hello World‟ and you have

written and run your first program: it

seems almost too easy. To write a

program, such as bounce.py shown above,

return to the IDLE Window, and type the

listing. IDLE handles the formatting

automatically. The file has to be saved

before it can be run, so save it with a

suitable name, with the extension „.py‟, in

the default directory (IDLE looks after

that) then press F5 and the program will

run, or will stop and report where it has

found errors.

4. Programming aids

 Python has a number of built-in

aids to programming • „Help‟ on the

window menu bar takes you to the Python

documentation and to documentation on

Visual if it has been imported. The Python

documentation includes a tutorial by

Guido van Rossum, the originator of

Python. The VPython documentation also

includes a tutorial. • Two useful functions

are dir() and help(). dir() on its own lists

the currently accessible objects, while

dir(object) gives the properties of the

named object. help() gives further

information

on objects. • There is a large amount of

documentation on the web, e.g., a very

useful text book (Downey, „How to think

like a computer scientist‟ [4]) available

either free on line or as a book. • Several

textbooks are available, e.g., [5]. Many are

more suitable for computer science than

for computational science.

5. Programming and graphics for

circle polarization

 An introductory course in

computational physics should aim to be

based on familiar problems in physics,

preferably with known analytic solutions.

We mention two topics: (1) solves

Maxwell equations, (2) the solution of

nonlinear equations. For each, a graphical

display enhances understanding. One of

the strengths of an analytic solution of the

Maxwell equations is that it can yield

insight; for circle polarization, which we

discuss below; while a purely numerical

solution is unlikely to yield a similar level

of insight. This does not mean that we

should not carry out purely arithmetic

solutions, e.g., the Apollo missions

Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 4

depended critically on the numerical

solutions of the equations of motion. A

purely arithmetic solution is unlikely to

yield insight. How then can one obtain

insight from a computational calculation?

We may be able to obtain insight through

displaying the results graphically. Our

ability to recognise patterns is highly

developed, and when we observe an

unfamiliar pattern we examine it closely,

as we can see from Figure. 1.

Figure 1. Circle polarizations animation

 In computational physics the

appearance of an unexpected pattern may

be nothing more than an artefact of the

calculations, e.g., too large a step size in

the solution of Maxwell equation or if the

method being used is inappropriate, such

as using the Finite Difference Time

Domain (FTDT) method for the Maxwell

equations, one may obtain what appear to

be very exciting results but which are of

value only in warning the user how badly

things can go wrong in computational

science. In the circle polarization problem,

the FTDT method can be shown to be

unconditionally unstable, and a fourth-

order Runge–Kutta method is used:

Python‟s ability to manipulate vectors and

arrays simplifies the program writing. On

looking at a graphical display of the

solution of this problem, it is very

satisfying to rediscover Maxwell equations

of Equal Areas, as is shown in Fig. 1. The

author still remembers with pleasure his

“discovery” of the Maxwell equation of

equal areas when he was teaching himself

how to make use of the graphics display

on an Apple II computer. At that time the

speed of computers was sufficiently slow

that the development of the trajectory

could be followed. On a modern computer,

the speed is such that the whole trajectory

may appear almost instantaneously.

Python has the rate() function which

permits the display to be slowed down so

that one can observe the development of

the system being studied: this helps one

obtain better insight into its dynamics. The

solution of FTDT method is familiar, but it

holds a surprise which can be appreciated

with a graphical display. The Maxwell

equation has complex solutions. Python‟s

ability to manipulate complex numbers

simpli- fies program writing. The FTDT

method is iterative (supporting

information). If an equation has complex

solutions, which solution is found depends

upon the ini tial trial value. All the initial

values which lead to a particular solution.

This equation has attractive solution,

shown in Fig. 1.

6. Summary

Python is a very attractive language,

particularly suitable for teaching

computational physics, but also widely

used by many organisations for program

development. Python has many features

not discussed, e.g., classes, which make it

a very powerful language, fully supporting

object oriented programming if required.

That Python is available free makes it

particularly suitable for use in developing

countries.

References

 [1] P.H. Borcherds, Python: a language

for computational physics, Computer

Physics Communications 177 (2007)

199–201

[2] P.H. Borcherds, Computational

physics, Physics Education 21 (1986)

238– 253.

Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 5

[2] D. Scherer, P. DuBois, B. Sherwood,

Scientific computing: VPython,

Computing in Science and Engineering

2 (5) (October 2000) 56–62.

 [3] T. Donaldson, Python as a first

programming language for everyone,

www.cs.ubc.ca/wccce/Program03/

papers/Toby.html.

 [4] A. Downey, J. Elkner, C. Meyers,

 How to think like a computer scientist:

learning with Python,

www.greenteapress.com/thinkpython.

[5] M. Lutz, D. Ascher, Learning Python,

O‟Reilly, ISBN 1-56592-464-9, 1999.

 [6] A.S. Tanenbaum, R. van Renesse, H.

van Staveren, G.J. Sharp, S.J.

Mullender, A.J. Jansen, G. van

Rossum, Experiences with the Amoeba

distributed operating system,

Communications of the ACM 33

(1990) 46–63; also on-line at

http://www.cs.vu.nl/pub/amoeba/.

[7] RH Landau, MJ Paez, and CC

BORDEIANU "A SURVEY OF

COMPUTATIONAL PHYSICS"

Electronic Materials copyright: R

Landau, Oregon State Univ, 2008;

 MJ Paez, Univ Antioquia, 2008; and

CC BORDEIANU, Univ Bucharest,

2008.

http://www.cs.ubc.ca/wccce/Program03/
http://www.cs.vu.nl/pub/amoeba/

Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 6

Supporting Informations:

#CircPolarztn.py: menyelesaikan persamaan Maxwell eqs. using FDTD method

#given the initial E and H field components as cosine functions for 200 points

#The same space region is observed as time transcurs

from visual import *

from visual.graph import * #graphics and math classes

scene = display(x = 0,y = 0,width = 600,height = 400,range = 200,

 title='Circular polarization, E field in white, H field in yellow')

global phy,pyx

max = 201

def Exini(tim,z,phx): #x component E field all x and time t

 return math.cos(tim-2.0*math.pi*z/200 +phx)

def Eyini(tim,z,phy): #y component E field all x and time t

 return math.cos(tim-2*math.pi*z/200 +phy)

def Hxini(tim, z, phy): #x component H field all x and time t

 return math.cos(tim-2*math.pi*z/200 +phy+math.pi)

def Hyini(tim, z,phx): #y component H field all x and time t

 return math.cos(tim-2*math.pi*z/200 +phx)

 # c= (c0/dz)*dt

c = 0.1 #Courant stability condition, unstable for c>0.1

time = 100

Ex=zeros((max+2,2),float) # Ex and Hy components

Hy = zeros((max+2,2),float)

Ey = zeros((max+2,2),float) # Ey and Hx components

Hx = zeros((max+2,2),float)

def plotfields(Ex,Ey,Hx,Hy):

 rate(10) # avoids flickering

 for obj in scene.objects:

 obj.visible=0

 arrowcol= (1,1,1) #E in white color

 for i in range(0,max,10): #xyz reference system is different for plots

 arrow(pos=(0,i-100,0),axis=(35*Ey[i,1],0,35*Ex[i,1]),color=arrowcol) #plot arrow

 arrow(pos=(0,i-100,0),axis=(35*Hy[i,1],0,35*Hx[i,1]),color=color.yellow) #plot arrow

def inifields(): #Initial values for E and H fields

 phx = 0.5*math.pi

 phy = 0.0

 for k in range(0,max):

 Ex[k,0]=Exini(0, k,phx)

 Ey[k,0]=Eyini(0,k,phy)

 Hx[k,0]=Hxini(0,k,phy)

Jurnal Penelitian Fisika dan Aplikasinya (JPFA) Vol. 1 No. 1, Juni 2011

ISSN: 2087-9946

Madlazim, Bagus Jaya Santosa 7

 Hy[k,0]=Hyini(0,k,phx)

def newfields():

 while 1: #time steps

 #

 for k in range(1,max-1): #New Ex, Ey components

 Ex[k,1]= Ex[k,0] + c*(Hy[k-1,0]-Hy[k+1,0])

 Ey[k,1]= Ey[k,0] + c*(Hx[k+1,0]-Hx[k-1,0])

 Hx[k,1]= Hx[k,0] + c*(Ey[k+1,0]-Ey[k-1,0]) #New Hx,Hy components

 Hy[k,1]= Hy[k,0] + c*(Ex[k-1,0]-Ex[k+1,0])

 Ex[0,1] =Ex[0,0] + c*(Hy[200-1,0]-Hy[1,0]) #periodic boundary

 Ex[200,1]=Ex[200,0]+c*(Hy[200-1,0]-Hy[1,0]) #conditions for first

 Ey[0,1] =Ey[0,0]+ c*(Hx[1,0]- Hx[200-1,0]) #and last points

 Ey[200,1]=Ey[200,0]+c*(Hx[1,0]- Hx[200-1,0])

 Hx[0,1] =Hx[0,0]+ c*(Ey[1,0]- Ey[200-1,0])

 Hx[200,1]=Hx[200,0]+c*(Ey[1,0]- Ey[200-1,0])

 Hy[0,1] =Hy[0,0]+ c*(Ex[200-1,0]-Ex[1,0])

 Hy[200,1]=Hy[200,0]+c*(Ex[200-1,0]-Ex[1,0])

 plotfields(Ex,Ey,Hx,Hy)

 for k in range(0,max): #update fields old=new

 Ex[k,0]=Ex[k,1]

 Ey[k,0]=Ey[k,1]

 Hx[k,0]=Hx[k,1]

 Hy[k,0]=Hy[k,1]

inifields() #Initial field components at t=0

newfields() #subsequent evolution of fields

Modified from Landau et al., [7]

