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This study presents a direct comparative analysis of a 

Convolutional Neural Network (CNN) and a Support Vector 

Machine (SVM) for static Indonesian Sign Language (SIBI) 

alphabet recognition, utilizing landmarks extracted via 

MediaPipe. The primary contribution of this work is to 

provide a comprehensive performance benchmark, 

evaluating the trade-offs between a deep learning model 

(CNN) and a classical machine learning model (SVM) in 

terms of accuracy, computational efficiency, and robustness 

under a unified experimental framework. The evaluation, 

conducted using metrics such as accuracy, F1-score, 

balanced accuracy, and ROC AUC, reveals divergent 

performance profiles. The CNN model achieved perfect 

classification accuracy (1.00) across all metrics, with its 

learning curve demonstrating stable and effective 

generalization. In contrast, the SVM model achieved a 

respectable test accuracy of 80% and a ROC AUC score of 

0.99, but exhibited some misclassifications for visually 

similar gestures. Notably, the SVM demonstrated 

significantly faster training times, completing its training in 

under 0.09 seconds, whereas the CNN required 

approximately 0.5 seconds per epoch. These findings 

empirically validate that while CNN offers superior 

accuracy, the SVM remains a highly relevant and efficient 

alternative for applications with constrained computational 

resources. This research provides a crucial reference for 

developers in selecting the appropriate architecture for real-

time sign language recognition systems. 
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1. INTRODUCTION 

 

 

For people who are deaf or find it difficult to speak, sign language is the basic means of 

communication. By means of a coordinated use of hand gestures, finger placements, and 

physical movements, it communicates meaning so facilitating visual and tactile interaction 

between speakers [5]. The creation of real-time sign language recognition systems has become 

absolutely essential in a society growing in inclusiveness. Such systems not only enable 

communication between the hearing-impaired and the larger society but also offer great 

possibilities in fields including education, public service delivery, and assistive technologies 

[3]. 

One of the leading-edge solutions in this field is using MediaPipe, a potent Google 

framework. MediaPipe is suited for gesture-based applications [8][13][17] since it is made to 

effectively and precisely detect and track 21 key points on human hands. Its capacity to process 

video data in real-time while preserving compatibility with a range of hardware platforms, 

including those with limited processing capacity [8][23][25] is among its main strengths. 

Various methods have been developed based on landmark data generated by MediaPipe. 

One of the most prominent is the combination of MediaPipe with Convolutional Neural 

Network (CNN) [4][10]. CNN naturally excels at recognizing spatial patterns and has shown 

excellent performance in static sign language alphabet classification (A–Z), even with near-

99% accuracy in some studies [21][23]. This approach is considered strong because it is able 

to extract spatial features from landmark coordinates effectively, resulting in precise and fast 

predictions [6][11][18], 

However, the use of CNN directly on landmark data often results in high-dimensional 

features. This becomes an obstacle when the model is applied to edge devices or real-time 

systems with limited memory and computing power [1][7]. To overcome this challenge, 

Principal Component Analysis (PCA) is utilized as an effective technique for reducing data 

dimensionality. By identifying and retaining the most critical variations within the dataset, 

PCA simplifies the input structure, ensuring that the key characteristics of the data are 

maintained even in a more compact form [7][19]. The combination of CNN with MediaPipe 

shows great potential as an efficient solution as it brings together CNN's advantages in spatial 

feature extraction and in simplifying input complexity [19][22].  

On the other hand, a Support Vector Machine (SVM)-based approach is also a viable 

alternative. Unlike CNN which belongs to the deep learning category, SVM is a classic 

supervised learning method that is effective on high-dimensional data at the scale of medium 

to small datasets. When combined with the MediaPipe extraction results feature, SVM is able 

to provide competitive results, especially in terms of efficiency and computing needs [19][15]. 

In a particular study, the combination of MediaPipe with PCA with SVM showed satisfactory 

performance for alphabet classification, even outperforming CNN in resource-constrained 

scenarios.  

Although sequence-based models such as LSTM and GRU are known to excel at dynamic 

gesture recognition [2][20][24], this approach is less appropriate for static alphabets that do not 

require temporal information. In addition, sequence models such as LSTMs are generally more 

complex, require more parameters, and require longer training time [16][21]. 
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Despite the success of both CNN and SVM in various recognition tasks, there is a lack of 

direct, empirical comparisons within a single, controlled framework for static sign language 

recognition using MediaPipe landmarks. Previous studies often focus on a single methodology 

or do not simultaneously evaluate performance across accuracy, computational cost, and model 

complexity. This creates a critical gap for developers and researchers, who need clear 

benchmarks to decide whether a complex deep learning model is necessary or if a more 

lightweight classical model is sufficient, especially for deployment on resource-constrained 

devices like mobile phones or embedded systems. The problem, therefore, is the absence of a 

clear comparative baseline that weighs the trade-off between the high accuracy of CNNs and 

the computational efficiency of SVMs for this specific application. 

One thing that has been lacking in previous studies is the absence of comprehensive 

comparative studies that thoroughly review the advantages and limitations of these approaches 

in a single experimental framework. Some studies focus on only one type of method or do not 

measure the performance of various aspects simultaneously such as accuracy, execution time, 

and implementation complexity [14][9][12]. 

To address this gap, this study provides an original contribution in the form of a direct 

comparative analysis between two primary approaches: a CNN architecture and an SVM 

classifier, both utilizing features extracted from MediaPipe. The strong point of this research 

lies in its rigorous and controlled experimental design. 

Both approaches are tested on the same static SIBI alphabet (A–Z) dataset and evaluated 

not only on classification accuracy but also on a comprehensive set of metrics including 

computational efficiency (training time) and model simplicity. The findings from this research 

are intended to serve as a definitive reference to guide the selection of the most suitable 

architecture for building gesture-based communication systems, particularly for applications 

demanding real-time performance on devices with limited computational resources. 

2. METHODS 

 
Figure 1. Overview of the Proposed Methodology 
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This study's workflow in figure 1 is built upon a systematic pipeline, beginning with raw 

images from the SIBI Sign Language dataset. Instead of using the images directly, the 

methodology first leverages Google's MediaPipe framework to engineer features. This 

powerful tool analyzes each image to pinpoint 21 key hand landmarks, translating their three-

dimensional (x,y,z) coordinates into a single 63-dimensional numerical vector. This 

vectorization step effectively converts complex visual data into a structured format that is 

highly optimized for machine learning algorithms. 

Next, these feature vectors are meticulously prepared for training. The data is partitioned 

using a stratified 80:20 train-test split to ensure a balanced class representation, followed by 

Min-Max scaling to normalize all features to a uniform [0, 1] range. The prepared data is then 

simultaneously channeled into two distinct models for a head-to-head comparison: a deep 

learning-based Convolutional Neural Network (CNN) architected for this specific data 

structure, and a classical Support Vector Machine (SVM) equipped with a non-linear RBF 

kernel. 

Finally, the performance of both trained models is rigorously benchmarked against the 

unseen test data. The evaluation employs a comprehensive suite of metrics including accuracy, 

F1 score, ROC AUC, and training time to provide a multi-faceted view of each model's 

capabilities. The results from this empirical testing form the basis for the final comparative 

analysis, aimed at delivering a clear verdict on the practical trade-offs between the accuracy-

driven deep learning approach and the efficiency-focused classical method. 

2.1. Material 

2.1.1 Dataset 

 

Figure 2. Visualization of the SIBI Dataset. 

The SIBI Sign Language Alphabets datasets available on Kaggle are a collection of A–Z 

alphabet image imagery data in the Indonesian Sign Language System (SIBI). This dataset was 

developed by M. Lanang Afkaar and is intended to support research in computer vision-based 

sign language recognition. 

This dataset consists of 26 classes, each representing the letters of the Latin alphabet (A to 

Z). Each class contains a number of hand images that form the letters according to SIBI 

standards. These images are taken in a variety of lighting conditions and backgrounds to reflect 

the real variations that may be encountered in real-world applications. 

This study utilized only unprocessed photos from the dataset, without augmentation or pre-

treatment. The objective is to evaluate the model's performance under data conditions that 

closely mimic real world scenarios. Each class in Figure 2 serves as a visual representation of 

each letter in model analysis and training. 

 

2.2 Method 

2.2.1 Datasets and Preprocessing 
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The dataset used consists of SIBI alphabet images in the form of hand gestures, each 

representing the letters A to Z (without any other numbers or symbols). Each image is 

processed through MediaPipe Hands, a real-time framework from Google that can detect and 

extract 21 landmarks on the hand in the form of 3D coordinates (x, y, z). The results of this 

extraction are then used as feature representations for both classification methods. 

The dataset is divided into training and testing subsets at an 80:20 ratio. The stratified split 

technique is utilized to maintain class balance, ensuring proportional distribution of letters 

across each group. All features are subjected to Min-Max Scaling within the interval [0, 1] 

before being assigned to the classification model. 

 

2.2.2 CNN Architecture and Training with MediaPipe 

This work presents a convolutional neural network (CNN) architecture especially designed 

to manage input structured as landmark vectors, derived by reformatting MediaPipe into tensor-

compatible structures. The model's design extracts hierarchical elements from hand gesture 

data by means of a multi-stage processing approach:  

• Two convolutional layers applied consecutively in the component of feature extraction 

each follow batch normalisation, ReLU activation, and max pooling for spatial 

downsampling. The model learns layered spatial relationships buried in the hand 

landmark coordinates by means of this sequence. 

 

The core of the convolutional layers is the convolution operation, which is defined as: 

 

(𝑓 𝑥 𝑔)(𝑡) = ∑ 𝑓(𝑖)g(𝑡 − 𝑖)

∞

𝑖=−∞

              (1) 

Where f is the input feature map and g is the kernel. This is followed by a Rectified 

Linear Unit (ReLU) activation function to introduce non-linearity, defined as: 

 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) 
             (2) 

• For classification, the architecture consists in two fully connected (dense) layers with 

an output layer comprising 26 units corresponding to the letters A through Z. After that, 

a flattening layer transforms the resulting multidimensional feature maps into a one-

dimensional feature vector fit for classification. By means of a softmax function, the 

last layer transforms outputs into class probability. Optimized with the Adam method, 

the categorical cross-entropy loss function guides training. Metrics covering accuracy, 

F1 score, balanced accuracy, and ROC. 

 

This architecture emphasizes systematic feature abstraction through its layered design, 

combining spatial pattern recognition in early stages with discriminative classification in 

subsequent layers, while maintaining computational efficiency through dimensionality 

reduction techniques.The model underwent training for 30 epochs utilizing a batch size of 32. 

To mitigate overfitting, early stopping and k-fold cross-validation approaches were employed, 

accompanied by the monitoring of validation metrics throughout the training process. 
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2.2.3 SVM Architecture and Training with MediaPipe 

This work makes use of a second method based on the Support Vector Machine (SVM) 

algorithm for classification problems. Using the same set of input features obtained from 

MediaPipe 21 hand landmarks taken across three spatial dimensions (x, y, z) this approach 

generates 63 numerical features overall. These properties are normalized to guarantee 

consistency in scale across dimensions before classification.   

SVM does not include an inherent feature learning mechanism unlike the Convolutional 

Neural Network (CNN) method. Since SVM directly runs on pre-extracted features without 

depending on iterative learning of representations, this difference makes SVM more 

computationally efficient. 

Radial Basis Function (RBF) kernel is used in construction of the SVM classifier this 

choice is appropriate for data with non-linear trends. The SVM algorithm works by finding an 

optimal hyperplane that maximizes the margin between classes. For a non-linear classification, 

the decision function is given by:  

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑓𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥𝑗) + b

𝑁

𝑖=1

) 

 

             (3) 

This study utilizes the Radial Basis Function (RBF) kernel, defined as: 

𝐾(𝑥𝑖 , 𝑥𝑗)  =  exp(−γ‖𝑥𝑖 − 𝑥𝑗) ‖2) 
             (4) 

Where γ (gamma) is a hyperparameter that defines the influence of a single training example. 

Using a methodical grid search approach, the hyperparameters of the model—that of the 

regularization parameter C and the kernel coefficient gamma are tuned to find the best 

parameter combination. 

Using a methodical grid search approach, the hyperparameters of the model—that of the 

regularization parameter C and the kernel coefficient gamma are tuned to find the best 

parameter combination.  

By averaging results over several data partitions, k-fold cross-valuation with k = 5 generates a 

strong estimate of generalization performance. This operation reduces possible bias connected 

to particular data splits. More research is done in order to have better understanding of the 

SVM model's performance and efficiency. These show how the accuracy of the model changes 

in response to different training set sizes, so reflecting its learning dynamics. Designed to 

evaluate the scalability and computational cost of the model during training, training time 

analysis relative to dataset size. 

 

2.3 Evaluation and comparison 

Using a dedicated test dataset, the performance of both classification models was evaluated 

over a whole range of criteria. Among these are accuracy, which gauges the general percentage 

of accurately labeled examples.  

• F1 Score provides a balanced assessment of the classification performance of the model 

by representing the harmonic mean of recall and accuracy.  

Calculated as the average recall across all classes, balanced accuracy offers a fair 

evaluation especially in situations of class imbalance.  

• By computing the area under the Receiver Operating Characteristic curve, ROC AUC 

Score measures the model's ability to differentiate between classes.  
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• Confusion Matrix helps to identify particular misclassification patterns by providing a 

comprehensive picture of classification results per individual class in this case, every 

letter.  

• To assess computational efficiency, training duration measured for the CNN model per 

epoch and as overall training time for the SVM model  

Graphically presented results from these assessments help to improve clarity and 

support for comparative study. Deeper interpretation and debate of the relative strengths 

and shortcomings of every model in the section on subsequent analysis build on these 

visualizations. 

 

3. RESULTS AND DISCUSSION 

3.1. Results 

3.1.1 CNN Evaluation with MediaPipe 

a. Confusion Matrix 

 
Figure 3. Confusion matrix 

 

The confusion matrix for the model is illustrated in Figure 3, which evaluates the performance 

across the 26 classes of the SIBI (Indonesian Sign Language) alphabet. The matrix indicates 

that most predictions align with the diagonal, demonstrating a substantial quantity of accurate 

classifications for each letter from A to Z. It is important to highlight that nearly all classes 

were accurately predicted, exhibiting no significant misclassifications. 

This indicates a strong performance across all categories, highlighting that the model has 

effectively learned to differentiate between the distinct hand shapes corresponding to each 

alphabet sign. Each class received a minimum of three correct predictions (indicated by the 

diagonal entries), with several classes achieving four correct classifications out of four samples. 

 

b. Final Metric Evaluation 
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Figure 4. Evaluation matrix 

 

The convolutional neural network (CNN) model's performance results in figure 4 for SIBI 

alphabet recognition. All recorded at 1.0, the model attained perfect scores across all key 

evaluation metrics—training accuracy, testing accuracy, F1 score, balanced accuracy, and the 

area under the ROC curve.  

These findings confirm that, both during training and on fresh, unprocessed input data, the 

model can precisely identify every letter in the SIBI alphabet. Moreover, the high values in 

ROC AUC and balanced accuracy imply that the used dataset was well-balanced across classes 

and that the model preserved objectivity free from favoring particular classes. For sign 

language alphabet recognition in the framework of SIBI, the CNN-based method shows to be 

generally dependable and computationally effective. 

 

c. Learning Curve 

 
Figure 5. Learning curve graph 

 

Figure 5 illustrates the CNN model’s learning progression, specifically the trends in accuracy 

and loss over the span of 30 training epochs. From approximately the fifth epoch onward, both 

training and validation accuracy display a consistent upward trajectory, ultimately approaching 
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near-perfect performance. This upward trend indicates the model's growing generalization 

capability to previously unseen data. 

 

In parallel, the training and validation loss curves show a steady decline, nearing zero as 

training progresses. This pattern reflects the model’s effective reduction of prediction error and 

indicates stable learning without signs of divergence. The close alignment between training 

and validation metrics further suggests that the model successfully avoids overfitting. Overall, 

the learning curve analysis demonstrates that the CNN architecture is capable of efficient 

training, robust generalization, and achieving a desirable balance between model bias and 

variance. 

 

d. Training Time 

 
Figure 6. Training time graph 

 

Figure 6 delineates the temporal characteristics of the CNN model's training process across 

successive epochs. As shown, the initial epoch necessitates approximately 2.1 seconds of 

computational time, a duration attributable to preliminary computational overheads associated 

with data pipeline initialization, memory resource allocation, and parameter configuration. 

Subsequent epochs exhibit a marked reduction in processing time, converging to a stable range 

between 0.5 and 0.6 seconds per epoch.   

This temporal pattern demonstrates the model's operational efficiency and computational 

stability during the training phase. The observed reduction in temporal demands and consistent 

execution intervals across epochs indicate optimized architectural design and implementation, 

facilitating rapid iterative training cycles without substantial temporal variance. Such temporal 

predictability is critical for applications requiring extended training periods or deployment in 

time-sensitive operational contexts, where resource management and processing reliability are 

paramount. The empirical evidence derived from these temporal metrics validates the 

architecture's dual capability in maintaining classification precision while achieving 

computational effectiveness, reinforcing its suitability for both scalable training frameworks 

and real-time inference scenarios. 

 

3.1.2 SVM Evaluation with MediaPipe 

a. Confusion Matrix 
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Figure 7. Confusion matrix 

 

Figure 7 presents the confusion matrix, offering a detailed depiction of the model’s 

classification accuracy across all individual letters in the SIBI alphabet. The prominence of 

high values along the diagonal axis of the matrix highlights the model’s strong predictive 

accuracy, indicating that most letters were correctly classified. There are several off-diagonal 

instances, specifically for the letters ‘R’, ‘U’, ‘V’, and ‘Z’, that were misclassified on occasion. 

The observed misclassifications indicate that specific hand gestures may exhibit visual 

similarities, or that additional data could be required to effectively distinguish between certain 

classes. The overall structure of the matrix demonstrates strong performance, exhibiting 

minimal misclassifications in relation to the number of classes. The model has successfully 

identified significant patterns and demonstrates the ability to accurately differentiate between 

a diverse range of sign language gestures. 

 

b. Final Metric Evaluation 

 
Figure 8. Final matrix evaluation 
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Figure 8 presents the quantitative outcomes spanning multiple performance axes derived 

from the model’s final evaluation phase. Empirical results reveal a training accuracy of 0.85 

alongside a test accuracy of 0.80, signifying moderate generalizability to unseen data 

distributions while retaining a controlled degree of overfitting. The macro-averaged F1 score, 

recorded at 0.76, indicates acceptable harmonization of precision and recall metrics in the 

polychotomous classification context—a critical consideration in applications such as isolated 

gesture recognition.   

Notably, the balanced accuracy metric mirrors the test accuracy at 0.80, demonstrating 

parity in predictive performance across heterogeneous classes despite potential marginal 

disparities in class representation. The most compelling evidence of discriminative capacity 

emerges from the ROC AUC metric, which attained a value of 0.99, approaching theoretical 

maximum separation between class probability distributions. These collective metrics 

substantiate the architecture’s operational viability for SIBI alphabet classification tasks, with 

particular strength in inter-class differentiation. While the current performance thresholds 

satisfy baseline functional requirements, the discrepancy between the F1 score and accuracy 

metrics suggests opportunities for refinement in harmonizing precision and recall metrics, 

particularly for classes exhibiting lower feature saliency. 

The convergence of these evaluation dimensions spanning discriminative power, 

generalization capacity, and class-agnostic performance provides empirical validation of the 

model’s technical adequacy while delineating specific pathways for future optimization efforts. 

Such multidimensional validation proves essential when deploying classification systems in 

real-world human-computer interaction scenarios, where both reliability and equitable 

performance across all target classes constitute non-negotiable operational parameters. 

 

c. Learning Curve and training time 

 
Figure 9. Learning Curve and training time 

 

Figure 9 offers insights into the model’s learning behavior and training efficiency relative to 

different training set sizes. In the left plot, the learning curve illustrates how both the training 

score and cross-validation (CV) score improve steadily as the training set size increases. This 

positive trend, accompanied by narrowing confidence intervals, suggests that the model 

benefits from more training data and is not overfitting. The CV score approaching the training 

score also indicates improved generalization. 

In the right plot, the graph of training time versus dataset size shows a nearly linear increase in 

training time as the number of training samples grows. Despite this rise, the fit time remains 
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low, not exceeding 0.09 seconds even at the maximum set size. This demonstrates the 

scalability and computational efficiency of the model, affirming its feasibility for use in larger 

datasets or real-time applications. 

 

3.1.3 Comparative Analysis of Methods 

Table 1. Comparison of cnn with mediapipe and svm with mediapipe 

Aspects CNN with MediaPipe SVM with MediaPipe 

Test Accuracy 100% 80% 

F1 Score 1.00 0.76 

Skor ROC AUC 1.00 0.99 

Noise resistance Very high Keep 

Training Time ~0.5 seconds/time ~0.01–0.09 seconds total 

Model Complexity High (deep learning) Low (classic machine learning) 

Data Dependency Efficient, even on small data Sensitive to small data 

Scalability Excellent Limited to data complexity 

 

Table 1 In general, CNN with MediaPipe excels in accuracy and robustness of complex data, 

but has higher computing overhead. SVM with MediaPipe is lighter and faster, but not as 

precise as CNN especially in multi-class classifications such as the SIBI alphabet. 

4. CONCLUSION 

The CNN model with MediaPipe excels significantly in terms of accuracy and 

generalization, making it particularly suitable for real-time sign language letter classification 

applications, especially if accuracy is a top priority. The uniqueness of this approach is its 

ability to make optimal use of the geometric features of MediaPipe in convolutional networks. 

In contrast, SVM models with MediaPipe have advantages in terms of training speed and 

model interpretability, suitable for lightweight deployments in devices with limited resources. 

This approach shows that classical techniques can still compete when combined with modern 

feature extraction. 

These two methods complement each other and are worthy of further research for 

publication, especially in the context of the development of interactive systems based on sign 

language. 
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