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This study aims to predict the soil organic carbon (C-

organic) content based on soil color using the Random Forest 

algorithm. This prediction is essential as C-organic is a key 

indicator of soil fertility. The method used is regression with 

a machine learning approach. The dataset was obtained from 

soil color images and actual C-organic laboratory results. 

The model was evaluated using metrics such as Mean 

Squared Error (MSE), R-squared (R²), and accuracy. 

Additionally, a classification was performed to categorize 

the fertility level of the soil to support the prediction 

interpretation. The results showed excellent performance of 

the Random Forest regression model, with an R² of 0.9988 

and accuracy of 99.88%. The fertility classification showed 

perfect precision and recall in all classes. These findings 

demonstrate that soil color can be effectively used to predict 

C-organic content and support data-driven agricultural 

decisions. 
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1. INTRODUCTION 

 

 

Soil organic carbon content is an important parameter in determining soil fertility 

levels. Conventional laboratory analysis to measure organic carbon content usually requires a 

long time and significant costs. Therefore, fast and affordable automatic prediction methods 

are highly needed. Soil color, which can be captured through digital imaging, has shown a 

correlation with organic carbon content and can be developed into a non-destructive predictive 

approach. Soil color reflects complex physical and chemical characteristics of the soil, 

including organic matter content. In this study, the Random Forest algorithm was chosen 

because it can handle non-linear data and provide stable prediction results[1]. Random Forest 

also has the advantage of reducing the risk of overfitting [2]. 

This study specifically focuses on predicting soil organic carbon content (C-organic) 

using the Random Forest Regression model, based on soil features such as color, moisture, and 

pH. Soil color is used as the primary indicator due to its strong correlation with organic matter 

content and pH[3] [4]. Color data is obtained from a color sensor that reads RGB (Red, Green, 

Blue) values, which are then converted into HSV (Hue, Saturation, Value) format—considered 

more stable for visual representation. 

In addition to predicting numerical values of C-organic, the model is also used to 

classify prediction results into three soil fertility categories: Not Fertile, Slightly Fertile, and 

Fertile. The purpose of this classification is to simplify the predictive output into actionable 

information that can be easily used by farmers in the field, enabling them to make rapid 

decisions regarding soil treatments, such as the application of organic fertilizers or pH 

correction[5]. 

Soil moisture is incorporated as a key parameter in the model because of its known 

impact on the decomposition process of organic matter and microbial activity, both of which 

significantly influence organic carbon levels [6] Recent studies also show that variations in 

moisture levels significantly affect sensor color readings and the interpretation of soil fertility 

classifications, which necessitates testing the model’s robustness across different moisture 

ranges [7]. The evaluation demonstrated that the model consistently maintains accuracy above 

99%, even under dry or saturated soil conditions—indicating strong generalization capability. 

The selected model, Random Forest Regressor, was chosen for its ability to handle 

multivariate and non-linear data with high performance, while also providing insight into the 

relative contribution of each feature to the prediction outcome[8]. Random Forest operates by 

building numerous decision trees and aggregating their results through bagging, thereby 

reducing overfitting and improving predictive accuracy[9]  

The model’s performance was validated using evaluation metrics such as Mean Squared 

Error (MSE) and R² (coefficient of determination) for regression, along with confusion matrix, 

precision, and recall for classification. Visualizations such as scatter plots, confusion matrices, 

and boxplots were employed to evaluate the model's effectiveness under varying moisture 

conditions. By combining soil color and moisture features, and supported by a robust and 

interpretable machine learning method, the proposed model offers a practical, cost-effective, 

and accurate solution for real-time soil fertility monitoring—making it highly relevant to 

precision agriculture and sustainable land management[10] [11]. 

The performance evaluation of the model is carried out using the Mean Squared Error 

(MSE) metric, coefficient of determination (R-squared), confusion matrix, as well as precision 

and recall from the classification results. Visualizations in the form of scatter plots, bar charts, 

heatmaps, and boxplots are used to facilitate understanding of the relationship between actual 

data and prediction results. One additional analysis conducted is an observation of prediction 

accuracy at each humidity range, to determine how consistently the model works under 

different humidity conditions[12]. The use of the Random Forest method in this research also 
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provides advantages in terms of interpretability, as it can show the relative contribution of each 

feature to the prediction result.[13] 

The color and soil moisture-based organic carbon prediction method using Random 

Forest has the potential to be an efficient tool in soil monitoring systems. With this technology, 

it is expected that soil management can be carried out more accurately, sustainably, and data-

driven, in order to support food security and optimal agricultural productivity. 

 

2. METHODS 

 

2.1.Material 

The dataset used in this study consisted of numerical features extracted from digital soil 

images, specifically Red (R), Green (G), and Blue (B) color channels that had undergone 

calibration. Additionally, Hue (H), Saturation (S), and Value (V) were derived through color 

space conversion. Complementary features such as soil pH and moisture content were also 

included. The target variable, soil organic carbon (C-Organik), was obtained through 

standardized laboratory tests. The data were collected from seven sampling points. 

 

2.2.Method 

The method employed in this study was the Random Forest Regressor, a machine 

learning algorithm capable of handling non-linear relationships and robust against 

overfitting. The workflow of this research included several key stages. 

In the data preprocessing stage, important steps were taken to ensure the quality and 

relevance of the input data. These steps included handling any missing values, converting 

RGB (Red, Green, Blue) color values into the HSV (Hue, Saturation, Value) color space, 

and selecting the appropriate features for model training. The features used consisted of 

soil pH, moisture content, and color attributes (R, G, B, H, S, V), all of which have been 

shown to correlate with soil organic carbon (C-Organik) levels. 

Following preprocessing, the Random Forest model was employed to predict 

continuous C-Organik values. These predictions were then categorized into three soil 

fertility classes to enhance interpretability and field applicability. The classification 

thresholds were defined as follows: soils with C-Organik values less than 1.5 were 

categorized as Unfertile (Tidak Subur), values between 1.5 and 2.5 as Less Fertile (Kurang 

Subur), and values equal to or above 2.5 as Fertile (Subur). This classification allows 

farmers to quickly interpret model output and make informed decisions regarding soil 

management. 

2.3. Evaluation 

Evaluation of regression performance was performed using MSE and R² metrics. 

Classification accuracy was assessed using confusion matrix, precision, and recall. The 

performance evaluation of the model was carried out using statistical indicators such as Mean 

Squared Error (MSE) and the coefficient of determination (R²) to assess the accuracy of 

regression predictions. For classification tasks, confusion matrix analysis was used along with 

precision and recall values to measure how well the predicted labels matched the actual 

classes[14]. 
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2.3.1. Mean Squared Error (MSE) 

In the regression process, Mean Squared Error (MSE) is often used to measure the 

quality of the model by calculating the average of the squared differences between the actual 

and predicted values. The residuals mentioned in Regression-Kriging (RK) are part of this 

error, which is then further processed using kriging to model the spatial variation unexplained 

by the regression [15]. 

Mean Squared Error (MSE) measures the average of the squares of the differences 

between the actual and predicted values. It penalizes large errors more heavily, making it 

sensitive to outliers and large deviations[11]. 

MSE measures the average of the squares of the differences between the actual and 

predicted values. It penalizes large errors more heavily. The formula is: 

 

Equation (1) 

MSE = (1/n) * Σ (yi - ŷi)^2 

 

Where: 

• yi is the actual value of C-Organik 

• ŷi is the predicted value 

• n is the number of observations 

2.3.2. Coefficient of Determination (R² Score) 

R² represents the proportion of the variance in the dependent variable that is 

predictable from the independent variables. It is defined as: 

 

Equation (2) 

R² = 1 - [Σ (yi - ŷi)^2 / Σ (yi - ȳ)^2] 

 

Where: 

• ȳ is the mean of the actual C-Organik values. 

An R² value closer to 1 indicates that the model explains most of the variability in the target 

variable. 

2.3.3. Classification Evaluation 

Classification evaluation is the process of assessing how effectively a model 

distinguishes between different classes or categories. This process involves various metrics, 

such as accuracy, precision, recall, F1-score, and the Area Under the Curve (AUC), each 
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offering insights based on the characteristics and goals of the classification task. Accuracy, 

while commonly used, can be misleading when dealing with imbalanced datasets; thus, 

measures like precision and recall are preferred in such contexts[16][17]. F1-score provides a 

balanced measure that considers both precision and recall, especially valuable when false 

positives and false negatives carry different consequences[18]. AUC, on the other hand, 

evaluates the model's ability to discriminate between classes regardless of threshold, making it 

suitable for comparing classifiers in imbalanced scenarios[19]. As noted by [20]. Selecting the 

right evaluation metric depends heavily on the specific objectives of the classification problem, 

the cost of misclassifications, and the distribution of the classes. After converting continuous 

predictions into categorical fertility classes, classification metrics were computed: 

• Confusion Matrix: A table showing true vs. predicted class distributions. 

• Precision: Measures the proportion of positive identifications that were actually 

correct: 

Equation (3) 

Precision = TP / (TP + FP) 

• Recall (Sensitivity)  

  Recall (Sensitivity) is an evaluation metric in classification that shows a model's 

ability to detect all actual positive data, calculated as the ratio of true positives to the 

sum of true positives and false negatives. Recall is particularly important in applications 

where mistakes in overlooking positive cases can have serious consequences, such as 

in medical diagnosis or fraud detection. Recall is very useful for assessing how well a 

model detects all relevant cases, but it needs to be balanced with precision to avoid 

generating too many false positive predictions. [21] also emphasizes that recall is highly 

relevant in cases of imbalanced data, as it can describe the model's performance 

concerning the important minority class. Recent research has also shown the use of 

recall in various domains, such as disease detection[22] and hardware security, where 

positive cases become a priority.[23] 

Measures the proportion of actual positives that were correctly identified: 

Equation (4) 

Recall = TP / (TP + FN) 

Where: 

• TP = True Positives 

• FP = False Positives 

• FN = False Negatives 

These metrics were calculated for each class: Unfertile, Less Fertile, and Fertile. 
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3. RESULTS AND DISCUSSION 

3.1. Regression Results 

The updated evaluation shows excellent predictive performance with MSE of 0.0015 

and R² of 0.9988, which corresponds to a prediction accuracy of 99.88%. The regression plot 

(Figure 1) shows near-perfect alignment with the ideal line (y = x). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scatter plot of predicted vs actual C-organic values. 

 

Figure 1 presents a scatter plot comparing predicted values of soil organic carbon (C-

organic) with those obtained from laboratory tests. Each point represents a sample, with the X-

axis showing the actual lab values and the Y-axis indicating the model predictions. The dashed 

diagonal line (y = x) indicates ideal predictions. The close alignment of most points to this line 

demonstrates the model's high accuracy, further confirmed by a Mean Squared Error (MSE) of 

0.0015 and a Coefficient of Determination (R²) of 0.9988, implying that the model explains 

99.88% of the variance. These results validate the strength of the model in regression tasks and 

support earlier findings by [2] that Random Forests are effective for nonlinear and complex 

datasets. The importance of features like soil color in RGB and HSV space, moisture content, 

and pH in estimating C-organic is also evident. These are strongly correlated to soil health and 

can serve as effective proxies for direct laboratory tests. 

 

3.2. Fertility Classification 

Classification was performed based on predicted C-organic values. The confusion 

matrix (Figure 2) shows that the model correctly classified all data points. The classification 

report showed perfect precision and recall (1.00) across all classes, indicating outstanding 

classification capability. 
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Figure 2. Confusion matrix of soil fertility classification. 

This matrix compares the actual fertility categories from laboratory results with the categories 

predicted by the model. 

• Y-Axis (Actual): Represents the true class labels from the dataset: 

o Unfertile 

o Less Fertile 

o Fertile 

• X-Axis (Predicted): Represents the class labels as predicted by the model. 

 

Table 1. Comparison of Actual vs. Predicted Soil Fertility Classes 

Actual \ Predicted Unfertile Less Fertile Fertile 

Unfertile 12 0 0 

Less Fertile 0 8 0 

Fertile 0 0 8 

 

  The model achieved perfect classification performance. All predictions match the 

actual labels, with no misclassifications across any of the three fertility categories. This is 

indicated by all values falling along the diagonal of the confusion matrix. Such results 

demonstrate the model’s exceptional ability to generalize and distinguish between fertility 

levels based on soil color features. This result underscores the model’s exceptional 

discriminative power and its ability to generalize across varying sample conditions, particularly 

when using features such as soil color in RGB and HSV formats—parameters known to 

correlate strongly with key soil fertility indicators like organic carbon and pH[24] 

The matrix reveals perfect classification, with all 28 samples correctly identified. The 

diagonal-only values and zero off-diagonal entries mean that there are no false positives or 

false negatives, resulting in precision and recall scores of 1.00 across all classes. Such 

performance underscores the robustness of the Random Forest classifier, as also shown in prior 



Muhammad Afifi Andriansyah, Prediction of Soil Organic Carbon Based on Soil Color Using Random Forest 

| 196 

DOI: https://doi.org/10.26740/jistel.v1n2.p189-199 

e- ISSN 3090-613X 

research [1]. Table 1 provides a numerical summary of the classification results. All entries lie 

along the diagonal, reconfirming the zero-error performance. In real-world applications, 

especially in agriculture where misclassification may lead to over- or under-treatment of soil, 

this level of accuracy is critical. It demonstrates excellent feature separability, which is 

particularly important in multi-class problems and is a known strength of ensemble methods 

like Random Forest [25]. 

 

3.3. Accuracy by Moisture Range 

To assess model robustness under various soil moisture conditions, the model was 

tested across different moisture ranges. Figure 4 shows consistent high accuracy (~99–100%) 

across all ranges, demonstrating the model’s generalizability regardless of moisture content. 

This finding aligns with the results by [7], which showed that a soil sensor system maintained 

high predictive accuracy across different levels of soil moisture, from dry to wet conditions, 

with differences in C-organic and pH values remaining below 1% compared to laboratory 

results. 

 

 

 

 

 

 

 

 

Figure 4. Prediction accuracy across different soil moisture ranges. 

Figure 4 investigates model performance across different soil moisture levels, which 

can affect microbial activity and organic matter decomposition[7]. The model maintains an 

accuracy range of 99%–100%, showing excellent generalization under varying environmental 

conditions. This is consistent with previous findings that Random Forests maintain high 

performance in heterogeneous data environments [16]. This stability is crucial for real-time 

field applications. The ability to function accurately across moisture conditions suggests that 

the model is well-suited for integration into mobile apps or IoT-based soil sensors, enabling 

rapid, in-situ soil fertility analysis.  

In summary, this study highlights how machine learning, particularly Random Forests, 

can transform traditional soil analysis. Using inexpensive sensors and accessible features like 

soil color and moisture, accurate fertility classification and C-organic prediction are not only 

feasible but field-deployable. This supports the move toward digital agriculture with real-time, 

data-driven decision tools for sustainable land management. 

The proposed system offers high accuracy and real-time usability, especially in field 

conditions. However, it still relies on color sensor stability and may be influenced by external 

lighting or sensor calibration inconsistencies. Further testing on larger and more diverse 

datasets is recommended. 
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4. CONCLUSION 

This research confirms that soil color features can be effectively used to predict C-

organic content using Random Forest regression. The model achieved a Mean Squared Error 

of 0.0015 and an R² of 0.9988, with a classification accuracy of 100%. These results support 

its integration into precision agriculture systems. 
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