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Kontes Robot Sepak Bola Indonesia Beroda (KRSBI-B), 

inspired by the Middle-Size League (MSL) of RoboCup, 

serves as a platform to push advancements in autonomous 

soccer robots in Indonesia. A key requirement for these 

robots is the ability to perceive their environment and make 

independent decisions involving recognizing field features, 

planning the navigation, and playing offensive and defensive 

tactics. Among these, obstacle avoidance during offensive 

play is critical, as robots should dynamically navigate while 

targeting the goal. In line with the theme "Toward Robot 

Soccer League 2050," this study focuses on developing 

robots capable of human-like performance in dynamic and 

competitive settings. To achieve this, we utilize Generative 

Adversarial Imitation Learning (GAIL), a method that 

enables robots to learn adaptive navigation strategies from 

expert demonstrations. Equipped with an omnidirectional 

camera, the robot identifies obstacles, field lines, and goal 

positions, integrating this sensory data into its decision-

making framework. The system was tested in four scenarios: 

no obstacles, one obstacle, two obstacles, and three 

obstacles, with randomized obstacle positions. Success rates 

of 100%, 99.5%, 92.5%, and 82.5% were recorded, 

demonstrating the system's effectiveness in navigating 

complex environments and its potential to enhance robotic 

soccer performance. 
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1. INTRODUCTION  

Kontes Robot Indonesia (KRI) is a prestigious robotics competition held annually in 

Indonesia, designed to encourage university students to innovate and solve real-world problems 

using robotics [1]. Among its various divisions, the Kontes Robot Sepak Bola Indonesia Beroda 

(KRSBI-B) stands out as a challenging competition that focuses on wheeled soccer robots. 

KRSBI-B adopts the rules of the RoboCup Middle-Size League (MSL) [2], where fully 

autonomous wheeled robots compete in soccer matches. By aligning with RoboCup standards, 

KRSBI-B aims to improve the competitiveness of Indonesian teams on the global level. 

Basically, a fundamental aspect of KRSBI-B and RoboCup MSL is the requirement for a 

fully autonomous system. The robots should independently perceive their environment, plan 

their movements, and execute both offensive and defensive strategies in real-time without 

human intervention. Robust sensor integration, effective algorithms, and sophisticated 

decision-making frameworks are essential for these capabilities. In offensive scenarios, robots 

should navigate toward the goal while keeping ball possession on a field full of dynamic 

obstacles, such as opponents and teammates. Because of these challenges, advanced techniques 

that combine offensive play and obstacle avoidance must be developed. 

In recent years, obstacle avoidance research has been widely studied [3][4] using both 

traditional methods, such as rule-based systems [7]-[9] and path-planning algorithms [10]-[16], 

and learning-based approaches [17]-[25]. One of MSL Indonesia teams [7] applies a fuzzy 

logic controller to avoid the collision with the obstacles for catching the ball. Another research 

[8] implements type-2 fuzzy logic system collaborating with behavior tree for making decisions 

and avoiding obstacles in SSL robot matches. Our team [9] also proposes an artificial potential 

field (APF) based on fuzzy logic controller for obstacle avoidance. Another team [11] also 

designs an obstacle avoidance system by combining an improved dynamic window approach 

(IDWA) and artificial potential field (APF). Other research also proposes a path-planning 

approach for avoiding the collision using search-based approach [12]-[14] and  sample-based 

approach [15][16].  

Furthermore, recent advances in machine learning, including reinforcement [5] and 

imitation [6] learning, demonstrates significant promise in this proposal. The research [17] 

introduces a combination of artificial neural networks (ANNs) and a standardization technique 

to improve the performance results from the training network. Some example studies of 

reinforcement learning are utilized with different approaches, such as introducing mobile robot 

collision avoidance learning (MCAL) based on reinforcement learning integrated with path 

planning [20] and proposing end-to-end map-based deep reinforcement learning algorithm 

using dueling double DQN with a prioritized experienced replay [21]. Imitation learning is also 

commonly chosen for obstacle avoidance purpose, namely developing a local policy based on 

an egocentric local occupancy map [24] and imitation learning based path planning (ILPP) in 

dynamic pedestrian environment [25]. 

On the basis of recent advances in imitation learning, this study proposes a generative 

adversarial imitation learning (GAIL) based framework [26] relying on image-based virtual 

range finder with omnidirectional camera for obstacle avoidance to offensive scenarios in 

wheeled soccer robots. GAIL is a method that trains policies by imitating expert 

demonstrations without the need for a predefined reward function, setting it apart from 

traditional reinforcement learning, which relies on manually designed rewards. An image-

based virtual range finder also is integrated into the GAIL framework, providing a 360-degree 

spatial understanding of the environment. This enables the agent to effectively identify 

obstacles and map state-action pairs, which is essential for navigating dynamic environments 

and maintaining offensive strategies in wheeled soccer robot scenarios. This work aims to 

enhance the capabilities of soccer robots in KRSBI Beroda and RoboCup MSL. 
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2. METHODS 

2.1. Image-Based Virtual Range Finder with Omnidirectional Camera 

In robotic soccer, having an effective perception system is essential for robots to navigate 

in dynamic scenarios while maintaining awareness of their surroundings. Our robots use an 

omnidirectional camera as its main sensor, providing a full 360-degree field of view. This 

configuration allows the robots to detect key elements in their environment, including the ball, 

obstacles, and field lines, enabling it to respond effectively to rapidly changing situations. 

Algorithm 1 Image-Based Virtual Range Finder Approach for Obstacle Avoidance 

1: Input: Camera Streaming 

2: Output: ranges 

3: Function: roi_field(img, vertices) 

4:  Create a mask of zeros with the same shape as img 

5:  Fill polygon on the mask using vertices 

6:  Perform bitwise AND between img and the mask 

7:  Return masked_image 

8: Function: drawLineRadial(point, x, y, radius) 

9:  Initialize empty list pts 

10:  Compute angle as 360/point 

11:  for i = 0 to point do 

12:   Compute coordinates xp = x + radius × cos((angle × i)/360 × 2π) 

13:   Compute coordinates yp = y + radius × sin((angle × i)/360 × 2π) 

14:   Append (int(xp), int(yp)) to pts 

15:  Return pts 

16: Function: radialPoints(angle, x, y, radius) 

17:  Compute xrp = x + radius × cos(angle/360 × 2π) 

18:  Compute yrp = y + radius × sin(angle/360 × 2π) 

19:  Store (xrp, yrp) as ptsr 

20:  Return ptsr 

21: Main: 

22: Capture frame and preprocess it (crop, resize, and convert to HSV) 

23: Retrieve HSV thresholds using calibration sliders 

24: Generate masks (mask1, mask2) using HSV thresholds 

25: Refine masks with erosion and dilation 

26: Combine masks into mask region 

27: Detect contours in mask region 

28: for each contour do 

29:  Compute convex hull and append to region field 

30: Mask region of interest using roi_field 

31: Highlight obstacles in region obstacle 

32: Convert region obstacle to grayscale and threshold it to create thresh obs 

33: Compute inward radial points ptsIn using drawLineRadial 

34: for each radial line do 

35:  for each radius step from 0 to max radius do 

36:   Compute radial points using radialPoints 

37:   if thresh obs at (xrp, yrp) is obstacle then 

38:    Append point to ptsOut 

39:    Break 

40: for each pair of ptsIn and ptsOut do 

41:  Draw line on the frame 

42:  Compute distance and store it to ranges 

43: Return ranges 

 

In obstacle detection purpose, we propose a range finder approach to search obstacle features 

from video streaming. The following algorithm describes the implementation of this virtual 

range finder, detailing the steps involved in generating radial obstacle detection lines using 

image processing techniques. The method combines region-of-interest masking, HSV-based 
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segmentation, and contour analysis to accurately determine the location and distance of 

obstacles relative to the robot.  

Based on Algorithm 1, the frame from an omnidirectional camera is processed to detect 

obstacles. It begins by preprocessing the image and creating masks using HSV thresholds, 

refined with morphological operations. Contours are extracted to identify obstacle regions, 

which are masked to isolate interest area. Afterwards, a virtual range finder is implemented by 

drawing radial lines from a central point, detecting obstacles based on pixel values along these 

lines. Detected points are visualized with lines, and the computed ranges are returned for 

obstacle avoidance, providing a vision-based solution for spatial awareness and navigation. 

Finally, the obstacle detection frame can be shown in Figure 1.  

 

Figure 1. Obstacle Detection Visualization. 

2.2 Generative Adversarial Imitation Learning 

Generative Adversarial Imitation Learning (GAIL) [13] is a framework enabling robots to 

imitate expert behavior by learning policies directly from demonstrations, without requiring 

explicit reward signals as traditional reinforcement learning. Instead, GAIL infers an implicit 

reward function from expert trajectories, allowing robots to navigate complex environments 

and replicate expert strategies. This approach is particularly suited for dynamic tasks as soccer 

robot. In MSL soccer, obstacle avoidance is crucial for effective navigation in offensive 

strategy. Robots should adapt to changing environments, avoiding collisions while maintaining 

offensive positioning. GAIL facilitates this by learning obstacle avoidance and strategic 

behaviors through expert demonstrations. 

The field size used in KRI is 12 x 8 meter divided into two areas, defensive area (ours) and 

offensive area (opponent). In this scenario, there are three obstacles placed in the offensive area 

as depicted in Figure 2. The objective is how the robot (blue mark) navigates to the opponent's 

penalty box (red area) without colliding the obstacle before scoring the goal. 
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Figure 2. Field Visualization. 

Based on the problem statement, GAIL employs a generator-discriminator framework to 

learn policies that mimic expert behavior, as illustrated in the architecture diagram (Figure 3). 

The generator, denoted as 𝜋𝜃𝐺
(𝑎𝑡|𝑠𝑡), represents the policy model parameterized by 𝜃𝐺 . It 

interacts with the environment (𝐸𝑛𝑣), generating actions (𝑎𝑡) based on the current state (𝑠𝑡) 

and producing trajectories. These trajectories are fed into discriminator, represented by 

𝑝(𝑒𝑥𝑝𝑒𝑟𝑡|𝑠, 𝑎), for distinguishing generator's trajectories and expert demonstrations.  

 

Figure 3. GAIL Architecture in this Scenario.

The discriminator outputs a reward, providing feedback to the generator by evaluating the 

similarity between its trajectories and the expert's. The generator updates its policy by 

minimizing the discriminator’s negative log-loss, improving its ability to mimic expert 

trajectories. Meanwhile, the discriminator is trained to maximize its accuracy in classifying 

expert (𝑠, 𝑎) pairs and generated (𝑠, 𝑎) pairs. Through this adversarial process, the generator 

gradually learns to produce trajectories similar to expert demonstrations, achieving expert-level 

behavior without explicit reward functions. 

The neural network architecture in Figure 5 is designed to facilitate robot navigation in a 

soccer field, directly correlating with the problem representation illustrated in Figure 4. Figure 

1 highlights the goal area in red and depicts key inputs to the network: actions (𝑉𝑥, 𝑉𝑦, 𝜔𝑧), the 

robot's current state derived from 20 image-based virtual omnidirectional range finders, and 
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the relative position (𝛥𝑥, 𝛥𝑦) between the robot and the goal area. These inputs enable spatial 

awareness, obstacle detection, and goal-directed navigation. 

 

Figure 4. Problem Statement Representation: Environment, Action, and Current State 

As shown in Figure 5, the network's input layer consists of 25 neurons categorized into 

three components: current velocities (𝑉(𝑥,𝑦), 𝜔(𝑧) ), radial distances from the virtual range 

finders (𝑆(1−20)), and the relative position to the goal (𝑃(𝑥,𝑦)). Two hidden layers process these 

inputs, extracting patterns for obstacle avoidance and goal navigation. The output layer 

generates motion commands, where 𝑉𝑎(𝑥,𝑦) defines linear velocity and 𝜔𝑎(𝑧) specifies angular 

velocity, guiding the robot to the goal area in Figure 4 while avoiding obstacles dynamically 

and efficiently. 

 

Figure 5. Neural Network Architecture.

2.3 Evaluation 

2.3.1 Success Rate 

The success rate is a key evaluation metric used to measure the robot's performance in 

achieving its offensive scenarios. This metric is calculated as the ratio of successful trials to 
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the total trial number, expressed as a percentage. A trial is successful if the robot reaches the 

goal within a defined area while avoiding obstacles.  

𝑆𝑅 =  (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠
) × 100                         (1) 

The success rate, calculated as successful trials over total trials, is tested across scenarios of 

varying obstacle placement. This metric reflects the robot's reliability and effectiveness in 

obstacle avoidance, with higher rates indicating better navigation performance. 

3. EXPERIMENT 

3.1. Experimental Setup 

In this experiment, the robot was simulated on the Gazebo as a world simulation. As 

visualized in Figure 6, the robot’s design utilized was an omnidirectional robot with 4-wheels 

configuration based on real robot’s design with an omnidirectional camera as a main sensor. 

As a reference, we executed the simulation on a laptop, installed Ubuntu OS 22.04 LTS and 

ROS2, that was equipped with an intel core i7-14650H CPU, NVIDIA GeForce RTX 4060 

laptop GPU, and 16GB of RAM. 

 
(a)   (b) 

Figure 6. Robot Visualization: (a) Real Robot, (b) Gazebo Simulation. 

3.2. Data Collection 

User control data was collected using a joystick on the Gazebo simulator. The user operated 

the soccer robot to reach the goal area while avoiding obstacles. As illustrated in Figure 2, 

three obstacles were selected from 15 possible positions, marked as orange points. This process 

was repeated for 100 episodes, with obstacle positions shuffled randomly within each row to 

ensure diverse expert demonstrations, improving the learning effectiveness. 

3.3. Train Results 

The training experiment was performed using an omnidirectional soccer robot in a simulated 

virtual environment using Gazebo. As shown in Figure 4, an image-based 360-degree virtual 

range finder was used on top center. Additionally, each training episode, the three cube 

obstacles were placed randomly in each row. The settings of each hyperparameter in imitation 

learning are shown in Table 1. 
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Table 1. Hyperparameter Settings 

Hyperparameter Value 

Maximum Steps 70000 

Batch Size 256 

Learning Rate 0.00003 

Weight Decay 5.0 

Number of Layers 2 

Hidden Units 512 

Input Dropout 0.6 

Dropout 0.75 

Activation ReLU 

The Figure 7 shows training performance over time, with initial significant fluctuations in 

rewards, including sharp dips, as the model explores suboptimal policies. Over time, rewards 

improved and stabilized, indicating successful learning and convergence to an effective 

strategy, although occasional dips might result from exploration of new strategies or 

challenging scenarios. 

 

Figure 7. Reward on Imitation Learning. 

3.4. Test Results 

To evaluate the performance of the trained model, we conducted tests across four different 

scenarios: no obstacles, one obstacle, two obstacles, and three obstacles. Each scenario was 

designed to assess the robot’s ability to navigate toward the goal area while avoiding collisions 

with obstacles. 



Achmad Akmal Fikri, Imitation Learning Based Obstacle Avoidance for MSL Soccer Robot in Offensive 

Scenario | 92 

DOI: http://dx.doi.org/10.xxxxx/jistel.vXiX 

e- ISSN 25xx-80xx 

● No Obstacle: The robot navigates freely, serving as the baseline. 

● One Obstacle: A single obstacle was placed in the first row, shuffled randomly per 

trial. 

● Two Obstacles: Obstacles were placed in the first and second rows, with positions 

shuffled within their rows. 

● Three Obstacles: Obstacles were placed in the first, second, and third rows, with 

random shuffling in each row for every trial. 

For each scenario, we conducted 200 trials to ensure statistical significance. A trial was 

deemed successful if the robot reached the goal area without colliding with any obstacles. The 

success rate for each scenario was then calculated as the percentage of successful trials out of 

the total trials. The results are as shown in Table 2. 

Table 2. Results of Each Scenario 

 Without Obstacle 
With One 

Obstacle 

With Two 

Obstacles 

With Three 

Obstacles 

Success Rate 100 99.5 92.5 82.5 

 

These results demonstrate the robot's capability to navigate effectively under varying levels 

of environmental complexity. As the number of obstacles increases, the success rate decreases, 

indicating the challenge posed by more dynamic and cluttered environments.  

 

Figure 8. Sample Trajectories: (a) No Obstacle, (b) One Obstacles,  

(c) Two Obstacles, (d) Three Obstacles 

Additionally, we provide a sample trajectories plot (Figure 8) for each scenario, illustrating 

the robot's path as it approaches the goal area while avoiding obstacles. These trajectories 

highlight the model's ability to generate efficient and collision-free paths. 
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4. CONCLUSION 

This study implements Generative Adversarial Imitation Learning (GAIL) to teach MSL 

soccer robots obstacle avoidance in offensive scenarios. Using expert demonstrations, the robot 

learned effective navigation policies, achieving a 100% success rate without obstacles and 

82.5% with three randomly placed obstacles. The results demonstrate GAIL’s capability to 

handle dynamic environments and ensure efficient, collision-free trajectories. 

This study highlights the potential of GAIL in advancing robotic soccer navigation and 

imitation learning applications. For the future work, complex obstacle setups, dynamic 

opponents, and multi-agent strategies to further enhance performance can be explored more. 
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