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Abstrak—Radiology report generation is a complex and error-
prone task, especially for radiologists with limited experience. To 
overcome this, this study aims to develop an automated system for 
generating text-based radiology reports using chest X-ray images. 
The proposed approach combines computer vision and natural 
language processing through an encoder-decoder architecture. As 
an encoder, a Vision Transformer (ViT) model trained on the 
CheXpert dataset is used to extract visual features from X-ray 
images after Gamma Correction is performed to improve image 
quality. In the decoder section, word embeddings from the report 
text are processed using Long Short-Term Memory (LSTM) to 
capture word order relationships, and enriched with Multi-Head 
Attention (MHA) to pay attention to important parts of the text. 
Visual and text features are then combined and passed to a dense 
layer to generate text-based radiology reports. The evaluation 
results show that the proposed model achieves a ROUGE-L score 
of 0.385, outperforming previous models. The BLEU-1 score also 
shows competitive results with a value of 0.427. This study shows 
that the use of pre-trained ViT, combined with LSTM-MHA on 
the decoder, provides excellent performance in capturing visual 
and semantic context of text, as well as improving accuracy and 
efficiency in radiology report automation. 

 
Keywords—Vision Transformer, LSTM, Multi-Head Attention, 
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I. INTRODUCTION 

Medical reports provide information about the patient's 
health condition, thus becoming a guide in determining the 
appropriate treatment. In addition, it is also very helpful in the 
clinical decision-making process and the overall management 
of patient care [1]. Writing a radiology report is a tiring task, as 
it requires expertise to accurately interpret medical images and 
write down findings in a structured manner in the report. This 
process is not only time-consuming but also prone to errors, 
especially for less experienced radiologists, which can lead to 
diagnostic inaccuracies [2], [3], [4]. High work pressure and 
overloaded working hours can cause fatigue, which ultimately 
increases the risk of misdiagnosis, which has a serious impact 
on the patient's health condition and potentially leads to 
inappropriate treatment decisions [5]. Therefore, it is necessary 
to utilize artificial intelligence technology that is able to 
provide interpretation and information from X-ray images 
consistently and accurately to reduce the workload experienced 
by radiologists. Image captioning is a complex task that 
combines the fields of computer vision (CV) and natural 
language processing (NLP), with the goal of generating 

descriptive text based on the visual content of an image [6]. 
Similar to image captioning, medical image captioning is the 
automated process of generating text descriptions from medical 
images such as X-rays to support clinical diagnosis. This field 
is more complex than regular image classification, as it requires 
a deep understanding of the relationships and interactions 
between elements in the image to generate relevant text [6]. 
This process usually uses an encoder-decoder architecture, 
where the encoder is responsible for extracting features from 
the image and the decoder generates a description that matches 
the input image [7]. This field usually involves two deep 
learning methods that include the use of Convolutional Neural 
Networks (CNN) for feature extraction and Recurrent Neural 
Network (RNN) for generating text from images [8], [9]. 

The main challenge in this field is the similarity of many 
medical images which can lead to misinterpretation in 
producing accurate reports. Therefore, a feature extraction 
model that has been trained using the chest x-ray dataset is 
needed to be able to distinguish each chest x-ray image. In 
addition, image contrast and noise can obscure important 
details and interfere with the accuracy of the model in 
recognizing medical structures. Various pre-processing 
techniques such as denoising, histogram equalization, and 
gamma correction are used to overcome this problem. Among 
these techniques, gamma correction is the most effective 
because it adjusts brightness non-linearly, increases contrast, 
and clarifies image details, thereby improving the quality of the 
resulting caption [10]. Therefore, the application of gamma 
correction is needed to improve image quality so that the 
quality of the resulting caption can be better. 

In this study, before the process of extracting visual features 
from chest x-ray images, gamma correction was applied to 
improve the quality of medical images. This method is able to 
overcome the problem of uneven lighting, which often occurs 
in radiographic images. For visual feature extraction, the 
pretrained Vision Transformer (ViT), which has been trained 
using the CheXpert dataset [11], is used. After visual feature 
extraction, word embedding of radiology report text is also 
processed separately. Word embedding passes through LSTM 
(Long Short-Term Memory) layer to capture the sequential 
relationship of words in the text. The result of LSTM is then 
enriched with Multi-Head Attention (MHA) [12] to ensure that 
the model can focus on important parts of the input text. This 
process allows the model to understand the semantic context of 
the report text in more depth. Both features are then combined 
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before being passed to the final processing layer to generate 
medical report text. 
In short, this study has several main contributions in the 
development of a deep learning-based radiology report 
generation system which are summarized as follows: 

1)  The application of pretrained Vision Transformer (ViT) 
which has been trained using the CheXpert dataset is carried 
out to extract more representative visual features. 

2)  The design of an efficient Encoder-Decoder architecture 
by applying Gamma Correction to improve image quality and 
using pretrained Vision Transformer as an encoder, while for 
text using LSTM with MHA. Both features are then combined 
through a fusion layer before being forwarded to the Dense 
layer to generate text for radiology reports. 

II. RELATE WORKS 

Image captioning techniques have evolved rapidly since 
their early use in the medical field. Various methodologies have 
been proposed to improve the accuracy of the reports generated, 
often integrating CNN or Transformer with other models. In the 
early development of research in this field, CNN-based 
architectures as encoders for feature extraction were widely 
used. Research conducted by [13] utilized ResNet-152 on the 
encoder side with an element-wise product mechanism for 
image feature extraction, then combined with LSTM on the 
decoder. In addition, several studies also used VGG as an 
encoder and LSTM as a decoder, showing that although this 
model is quite simple, the results are still good [14]. 

With the development of deep learning research in this field, 
the Transformer architecture has begun to be widely used in the 
field of medical report generation. In another study, [15] used 
DenseNet-121 for feature extraction and Transformer as a 
decoder. Another study conducted by [16] used a combination 
of features from ResNet-50 and DenseNet-121 as a decoder and 
then used Meshed-Memory Transformer as a decoder. Then, 
(Veras Magalhães et al., 2024) proposed an approach using 
GPT-2 as a decoder to generate medical reports and for feature 
extraction using Swin Transformer. In addition, [17] introduced 
the use of Transformer with cross-attention mechanism to 
generate text descriptions and used ResNet-101 & CBAM as 
feature extraction.  

There are studies that pay attention to the use of image 
enhancement to improve image quality before feature 
extraction, and there are also those that combine the power of 
CNN and Transformer as an encoder. One of the studies 
conducted by [10] applied Gamma Correction to improve 
image quality, then used DenseNet-121 (ChexNet) as an 
encoder for image feature extraction, while for the decoder, the 
study utilized BERT Embedding and Multi-Head Attention 
with LSTM. In addition, [18] introduced CNX-B2, a hybrid 
approach that uses ConvNeXt as an encoder and BioBERT as 
a decoder with a cross-attention mechanism to improve text 
generation results. 

Based on previous studies, it can be seen that the use of 
Transformer-based encoders that have been trained using chest 
X-ray datasets in medical image captioning tasks is still rare. 

Most studies prefer to use CNN as an encoder. However, with 
the development of Transformer-based architectures such as 
ViT and Swin Transformer, efforts have begun to emerge to 
utilize Transformer's ability to capture long-term dependencies 
and global context from medical images. Even so, the 
application of Transformers that have been customized or 
retrained using radiology-specific datasets, such as CheXpert, 
is still limited. Therefore, this study attempts to fill this gap by 
using pretrained ViT that has been trained using the CheXpert 
dataset to improve the visual feature representation of chest X-
ray images in the automated radiology report generation 
process. 

III. PROPOSED METHOD 

Figure 1 shows the architecture of the automated radiology 
report generation system proposed in this study. The system is 
designed to generate relevant text descriptions based on chest 
X-ray images by combining image processing, visual feature 
extraction, and text processing techniques. The main process in 
this architecture involves several important stages. First, the X-
ray image goes through a gamma correction stage to enhance 
contrast and clarify important details in the image. After that, 
visual features are extracted using a pre-trained Vision 
Transformer (ViT), which is capable of capturing in-depth 
visual information from the image. In the next stage, the report 
text is processed using Long Short-Term Memory (LSTM) to 
capture the relationship of word sequences in sentences. This 
process is strengthened by the use of Multi-Head Attention 
(MHA), which allows the model to pay attention to the most 
relevant text sections with the extracted visual information. The 
combination of visual and text features is then forwarded to the 
dense layer to generate accurate and comprehensive text-based 
radiology reports. This architecture is expected to improve 
efficiency and accuracy in the process of automating radiology 
reports, providing significant support for radiologists in 
producing precise and fast reports. 
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Fig. 1 Illustration of the proposed architecture. 

The pre-processing steps applied to the X-ray images and 
radiology report texts aim to improve the quality of the data 
before feature extraction. As a first step on the X-ray images, 
gamma correction is applied to improve the contrast and 
brightness of the image. This technique is very important 
because it can improve the distribution of pixel intensity, 
resulting in images with more even contrast and brightness. 
This helps the model in capturing medical information more 
accurately. After the gamma correction process, the X-ray 
images are then given as input to the Vision Transformer (ViT), 
which has been trained using the CheXpert dataset. This 
process produces visual features that will then be used in the 
next process. 

In parallel, the radiology report text is also processed to 
ensure the quality of the text data. The process begins with data 
cleaning, such as lowercase normalization, decontraction, 
removal of numbers, and non-alphabetic characters. The 
cleaned text is then processed using a tokenizer to convert the 
text into a sequence of tokens. These tokens are then converted 

into word embeddings using a text embedding model. The next 
process involves processing the text by a Long Short-Term 
Memory (LSTM) to capture the relationship of the word 
sequence in the text. The output of the LSTM is then enriched 
with Multi-Head Attention (MHA), which allows the model to 
focus on important parts of the text and understand the semantic 
context more deeply. 

After the visual and text features are processed, the two 
features are combined through a concatenate layer. This 
concatenation allows the model to utilize visual and text 
information simultaneously, thereby producing more accurate 
and relevant text descriptions. The combined visual and text 
features are then fed into a dense layer to generate predictions 
for the next word in the radiology report. This process is carried 
out iteratively, with the model predicting one word at each step 
until the complete report is formed. Table 1 illustrates the 
sequence of word-by-word prediction steps, starting from the 
initial token "startseq" to the final token "endseq", which allows 
the model to generate comprehensive and precise text 
descriptions. 

TABEL I 
TRAINING SIMULATION ON AN IMAGE WITH FINDINGS 

startseq the heart is normal in size . the mediastinum is 
unremarkable . the lungs are clear endseq 

START 
Features Target 
[Image Features] + [startseq] the 
[Image Features] + [startseq the] heart 
[Image Features] + [startseq the heart] is 
… … 
[Image Features] + [startseq the heart is normal 
in size . the mediastinum is unremarkable . the 
lungs are] clear 
[Image Features] + [startseq the heart is normal 
in size . the mediastinum is unremarkable . the 
lungs are clear] enseq 

END 

 

 

A. Image Enhancement 

Gamma Correction is an important technique in digital 
image processing that functions to correct the non-linear 
relationship between the intensity of the input signal and the 
luminance produced by the display device. This is important 
because camera sensors and monitor screens do not have a 
linear response to light intensity. The main purpose of gamma 
correction is to align the visual appearance of the image with 
human perception, which has a higher sensitivity to changes in 
light at low luminance levels than at high luminance levels [19]. 
In general, the power-law method is used because of its 
simplicity in implementation, with the basic function 𝐼௨௧ =
 𝐼

ఊ  , where the value of γ determines the level of correction. 
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Fig. 2 Gamma Correction Flowchart 

The flowchart in Figure 2 details the gamma correction 
process applied to chest X-ray images to improve visual quality 
based on brightness levels. The process begins with an input X-
ray image containing important medical information. The first 
step is to calculate the average brightness of the image by 
normalizing the pixel values of the image. This normalization 
process aims to obtain consistent brightness values across the 
entire image, allowing the model to assess whether the image 
needs correction. 

Next, if the image brightness value is below the threshold of 
0.3, indicating that the image is too dark, a lower gamma value 
of 0.7 is applied. The use of this low gamma aims to increase 
the brightness of the image, so that hidden details in dark areas 
can be seen more clearly. Conversely, if the image is already 
quite bright, a higher gamma value of 1.5 is used to slightly 
reduce the brightness and avoid overexposure, which can 
obscure important details in the image. 

This gamma correction process adjusts the distribution of 
pixel intensities in the image, improving contrast, and ensuring 
that relevant parts of the X-ray image, such as organ areas or 
body structures, are more clearly visible. Thus, the image 
contrast becomes more optimal, making it easier for the model 
to extract important visual features for further analysis. The end 
result of this process is a gamma-corrected chest X-ray image, 
with a clearer appearance and ready to be processed in the next 
steps in medical analysis. 

In medical image processing, gamma correction is used to 
improve visual quality and clarify details of internal structures, 
which are very important in the diagnostic process. This 
approach is effective in reducing artifacts and increasing 
contrast without losing important information [20]. The use of 
gamma correction can significantly improve image quality by 
considering the characteristics of medical image classification 
[21]. 

B. Encoder 

Vision Transformer (ViT) is a Transformer-based deep 
learning architecture designed for image processing tasks, such 
as image classification, and was introduced by the Google 
Research team in 2021 [22]. Unlike Convolutional Neural 
Networks (CNN) that rely on convolution filters to extract local 
features, ViT divides the image into small patches, such as 
16×16 pixels, which are then converted into vector tokens. 
Each of these tokens is processed using a self-attention 
mechanism, which allows the model to learn the relationships 
between patches in the image, similar to how Transformer 
processes sequences of words in natural language processing 
(NLP). Using this mechanism, ViT can capture global patterns 
in the image, improving the understanding of the overall visual 
context. In addition, ViT utilizes a Transformer encoder 
consisting of self-attention and feedforward neural network 
layers, with positional encoding to inform the positional order 
of patches in the image. The main advantage of ViT lies in its 
ability to capture global relationships between image parts and 
process large-scale images with better efficiency, resulting in 
superior performance in various image processing tasks such as 
classification and object detection. This approach leverages the 
advantages of the Transformer architecture that was previously 
successfully applied to text data, opening up new opportunities 
in developing image processing with deeper and more complex 
understanding. 

 

 
Fig. 3 Vision Transformer workflow [22] 

In general, the Vision Transformer work process consists of 
several main stages as shown in Fig 3. 

1)  Image Patching: In the first stage, the input image is 
divided into several small patches of fixed size, for example 
16×16 pixels. Each of these patches is then flattened into a one-
dimensional vector and goes through a linear projection process 
to transform it into an initial representation ready to be 
processed by the model. This process allows the model to 
organize the image in patches, each of which stores relevant 
local information and can be processed independently before 
being combined for further analysis. 

2)  Positional Encoding: To preserve the spatial position 
information of each patch in the image, positional encoding is 
added to each patch representation vector. Positional encoding 
is essential because the Transformer model, used in Vision 
Transformer (ViT), has no direct understanding of the order or 



JIEET: Volume 09 Nomor 01, 2025 
(Journal Information Engineering and Educational Technology)           ISSN : 2549-869X 
 

5 
 

position in the input data. With positional encoding, the model 
can understand the order and relative location of each patch in 
the image, thereby capturing the spatial relationships between 
parts of the image. This allows the model to process global 
information and the overall context of the image, which is key 
to deeper visual understanding. 

3)  Input Token and CLS Token: A special token called the 
CLS token is inserted at the beginning of the patch token 
sequence. This token is tasked with accumulating information 
from all patches to be used in the final classification process. 

4)  Transformer Encoder Block: Each patch token, including 
the CLS token, is processed through several Transformer 
Encoder layers. 

In this study, we utilize a fine-tuned Vision Transformer 
(ViT) model that is publicly available on Hugging Face under 
the name codewithdark/vit-chest-xray. This model is a ViT-
based medical image classification model trained using the 
CheXpert dataset, which focuses on detecting various lung 
disease conditions from chest X-ray images. This model has 
shown excellent performance during the training and validation 
process, achieving an accuracy of 98.46% and a low loss value, 
indicating its ability to classify X-ray images with a high level 
of accuracy. The vit-chest-xray model is used in this study as a 
visual feature extractor, which functions to extract important 
information from chest X-ray images. These extracted visual 
features are then used to assist the system in generating text-
based radiology interpretations or reports automatically, 
thereby simplifying and accelerating the process of generating 
accurate and relevant medical reports. 

C. Decoder 

After the word embedding process, the vector representation 
of each word in the sentence will be processed by LSTM to 
understand the context of the word sequence as a whole. LSTM 
is a development of RNN designed to overcome the problem of 
long-term dependency with the ability to learn information in 
the long term through an internal memory mechanism called 
cell state. LSTM consists of three main gates, namely input gate, 
forget gate, and output gate, which dynamically regulate the 
flow of information. The forget gate determines which 
information should be forgotten, the input gate selects new 
information to be stored, and the output gate produces a hidden 
state to be forwarded to the next step. Each gate uses a 
combination of sigmoid and tanh activation functions to filter 
and transform information. This mechanism allows LSTM to 
retain and manipulate important information in long data 
sequences, making it effective for sequential data processing. 

After processing using LSTM, the next step in the model is 
the application of Multi-Head Attention (MHA). MHA is a key 
component in the Transformer architecture that functions to 
improve the model's ability to capture contextual 
representations in sequential data, such as text [12]. The basic 
concept of MHA is the use of multiple attention mechanisms 
simultaneously on the input embedding. In this way, the model 
can pay attention to various positions in the input sequence 
from different perspectives, resulting in a richer and better 

representation compared to conventional approaches that only 
consider adjacent tokens. This approach allows the model to 
learn relationships between tokens at a greater distance in the 
sequence, which is important for understanding context more 
globally. 

MHA is an extension of the self-attention or scaled dot-
product attention mechanism, which calculates an attention 
score based on three main matrices: Query (Q), Key (K), and 
Value (V). This attention score is used to calculate how much 
attention is given to each token in the input sequence. This basic 
attention calculation is defined through the equation in (1), 
which describes how the attention value is calculated between 
the query and key to determine the contribution of each token 
to the final output. With MHA, the model can parallelly capture 
contextual information from different parts of the input, 
enhancing the model's ability to understand data sequences 
more comprehensively and effectively. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ 

ඥௗೖ
൰ 𝑉 (1) 

 
Where dk is the dimension of Key. This mechanism allows 

each element in the input sequence to give attention weight to 
other elements in the sequence. MHA strengthens this ability 
by dividing the attention process into several heads that work 
in parallel. Each head uses different projection weights to form 
different sets of Q, K, and V. Each head calculates self-attention 
independently, then the results of all heads are combined 
(concate) and projected back with the final weight matrix Wo. 
Mathematically, MHA can be defined in Equation 2 and 3. 

 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = [ℎ𝑒𝑎𝑑ଵ, ℎ𝑒𝑎𝑑ଶ, … , ℎ𝑒𝑎𝑑]𝑊ை(2) 

 
ℎ𝑒𝑎𝑑 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊

ொ
, 𝐾𝑊

 , 𝑉𝑊
)  (3) 

 
Where WO is the final weight matrix which functions to 

change the combined results of all heads into a form or 
dimension that suits the model's needs. 

IV. EXPERIMENTAL   

The proposed methodology for medical report generation is 
done using IU X-Ray dataset and all the implementation details 
are described in detail in this section. 

A. Implementation Details 

The proposed methodology is implemented using the Python 
programming language by utilizing the Keras framework (with 
TensorFlow backend) and PyTorch for the integration of the 
Hugging Face library. For the encoder, the Vision Transformer 
(ViT) model that has been trained using the CheXpert dataset 
[11] is used. The training process of this model is carried out 
on hardware consisting of an Intel Core i9-13900H, 32 GB of 
RAM, and an NVIDIA RTX 4060 GPU with 8 GB of memory, 
with a total training time of 25 epochs using a batch size of 1. 
This model applies the LeakyReLU activation function to avoid 
the “neuron death” phenomenon [23] and uses the Categorical 
Crossentropy loss function. During training, the 
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ReduceLROnPlateau technique is applied with a learning rate 
reduction factor of 0.5 and a patience of 4, followed by the use 
of a dropout layer with a rate of 0.5 to reduce the risk of 
overfitting [23]. Each epoch of the model is saved and tested 
against all evaluation metrics, so that the best epoch can be 
selected based on the results of the evaluation of these metrics.  

The training process was carried out for 25 epochs with a 
batch size of 1, resulting in a total training time of 5 hours 7 
minutes 44.91 seconds, a relatively short time considering the 
complexity of the model used. This training speed is supported 
by the application of image augmentation, image enhancement, 
and feature extraction which are carried out off-line before the 
training process begins. The average time required for each 
epoch is around 738.58 seconds (around 12 minutes 18.58 
seconds). However, at the beginning of training (the first and 
second epochs), the model showed low scores or even failed to 
form meaningful sentences, which caused the duration per 
epoch to exceed 2 hours. Several other epochs were also 
recorded to exceed 25 minutes. After that, the duration per 
epoch began to stabilize in the range of 16 to 25 minutes per 
epoch. The model evaluation process, which involves word 
prediction and the formation of complete sentences, requires an 
additional time of around 12 hours 17 minutes. Thus, the total 
time required for model training and evaluation reached 17 
hours 24 minutes, reflecting a fairly efficient time for this high-
complexity process. 

B. Evaluation Metrics 

Based on many previous studies, to evaluate the ability of 
the model in generating radiology reports, we use several 
evaluation metrics commonly used in the fields of image 
captioning and medical report generation, namely BLEU [24] 
and ROUGE-L [25]. The BLEU metric, although originally 
developed for language translation tasks, has been widely 
adopted for evaluating the quality of texts produced by research 
in this field. Meanwhile, ROUGE-L is used to measure how 
similar the text predicted by the model is to the reference text 
based on the same word sequence and sequence between the 
two texts. 

C. Dataset 

The data used in this study is the IU X-ray Dataset [26], 
which consists of chest X-ray images paired with their 
associated diagnostic reports. This dataset was collected by 
Indiana University (IU) and contains 7,470 pairs of X-ray 
images and 3,955 reports in XML format, accompanied by 
problem tags that describe the medical conditions identified in 
the images. The images in this dataset are chest X-rays in a 
standard medical imaging format, while the reports are 
diagnostic descriptions written by radiologists in text form. The 
images in this dataset vary in size, but have generally been 
adjusted for analysis purposes. Preprocessing has been carried 
out to ensure consistency of format and data quality, including 
adjusting the image size to suit the analysis needs. This dataset 
comes from a trusted source and has gone through various 
stages of validation to ensure the accuracy and reliability of the 
data used in the study. Figure 4 shows a sample example from 

the IU X-ray Dataset, depicting pairs of X-ray images and their 
relevant diagnostic reports. 

 

 
Fig. 4 Samples from the IU dataset consisting of Indication, Findings, 

Impression, and MeSH 

Each report may not have images and some are associated 
with two to five images. The report includes impressions and 
findings as reports. In this study, the findings section is used as 
the target text for the generation process following previous 
research. In addition, the data is divided into two main parts: 
90% for training data and 10% for test data. On the training data, 
image augmentation is carried out using a rotation technique 
(maximum 5 degrees) with a probability of 50%, as well as 
random brightness and contrast modifications with a limit of 
±0.05 and the same probability. This augmentation is applied 
to increase data variation in images with low tag frequencies. 
Meanwhile, text pre-processing includes normalization to 
lowercase, decontraction, removal of numbers, and non-
alphabetic characters to improve text quality before the 
modeling stage. 

V. RESULT 

In this section, we present the results of the study, including 
visualization of images processed using the adaptive gamma 
correction method, as well as a quantitative evaluation that 
measures the performance of the model in generating 
automated radiology reports. This evaluation is carried out by 
comparing the BLEU score and ROUGE-L values between the 
reports generated with and without the application of adaptive 
gamma correction. This process allows us to measure the extent 
to which the improvement in image quality resulting from 
adaptive gamma correction contributes to improving the 
accuracy of the model in generating more relevant and precise 
medical descriptions. In addition, we also compare the results 
obtained with previous studies using similar methods, to assess 
the effectiveness of the proposed approach. This comparison 
provides deeper insight into the advantages or potential 
disadvantages of the adaptive gamma correction method in the 
context of automated radiology reports, as well as comparing 
its contribution to the performance of the model in generating 
more accurate reports, especially on images with low quality or 
less clear details. Thus, this section not only provides an 
overview of the effectiveness of the proposed technique, but 
also places it in the context of the existing literature, providing 
a more comprehensive perspective on the progress made in this 
field. 

A. Image Enhancement 

Before the visual feature extraction process is carried out, the 
quality of the CXR image is enhanced using the Gamma 
Correction method. The main purpose of this stage is to 
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increase the contrast and clarify important details in the image, 
making it easier for the model to capture more accurate medical 
information. Gamma Correction functions to adjust the 
brightness of pixels based on the gamma value, which in turn 
improves the contrast of the image, especially in areas with low 
lighting or contrast. Fig 5 shows a comparison between a chest 
X-ray image in normal conditions (unprocessed) and after 
Gamma Correction is applied. From this comparison, 
significant differences can be observed in both images, where 
the image that has been applied with Gamma Correction shows 

a clear increase in contrast, especially in certain parts that were 
previously unclear or too dark. This process allows previously 
hidden or less visible details to be more clearly visible, which 
is very important in the context of medical diagnosis. The 
benefits of using Gamma Correction as a contrast enhancement 
method for medical images are very visible in improving image 
quality, which in turn helps the model to perform a more 
accurate and efficient analysis of the medical conditions present 
in the X-ray image.

 
Fig. 5 Comparison results between normal images and gamma correction 

In the upper left part of Figure 5, there is a chest X-ray image 
in normal condition. This image has relatively low contrast. 
The histogram presented on the right shows the pixel intensity 
distribution that tends to be skewed towards the dark side, with 
the majority of the intensity falling in a narrow range of values. 
This indicates that the original image has uneven color 
variations, so some important details may be overlooked or 
difficult to extract by the model. After Gamma Correction is 
applied, the chest X-ray image (bottom left part of Figure 5) 

experiences a significant increase in contrast. Anatomical 
details such as the lungs, ribs, and other organs become clearer. 
This helps improve the visibility of important features in the 
image, which is very important for the radiological 
interpretation process. The histogram in the lower right part of 
Figure 5 also shows a striking change: the pixel intensity 
distribution becomes more even and wider, with a wider spread 
of intensity values. This shows that Gamma Correction 
successfully optimizes the pixel intensity distribution, thereby 
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improving the visual quality and information available in the 
image. 

B. Model Outputs 

In this section, we present the results of the model 
performance evaluation in generating automated radiology 
reports using standard evaluation metrics, namely BLEU and 
ROUGE-L. The purpose of this evaluation is to measure the 
extent to which the reports generated by the model can match 
or replicate the reference reports prepared by radiologists. The 
BLEU (Bilingual Evaluation Understudy) metric measures the 
n-gram similarity between the text generated by the model and 
the reference text. This metric provides an overview of the 
model's ability to replicate relevant words, phrases, and 
structures from the original report, as well as how well the 
model captures important elements in the reference text. As an 
n-gram-based metric, BLEU focuses more on surface similarity 

and is often used in machine translation systems. On the other 
hand, ROUGE-L (Recall-Oriented Understudy for Gisting 
Evaluation) assesses similarity based on the longest common 
subsequence between the model-generated text and the 
reference. This metric is more sensitive to sentence structure 
and overall context, thus providing a more comprehensive 
assessment of the quality of the match between the generated 
report and the reference. ROUGE-L pays more attention to the 
similarity of meaning and relationships between sentences in 
the report, which is very important in the context of radiology 
report generation that requires precise contextual 
understanding. These two metrics, BLEU and ROUGE-L, 
provide comprehensive insights into the model's ability to 
generate reports that are not only technically accurate but also 
clinically relevant, reflecting the patient's condition in a way 
that is close to a real radiologist's report. 
 

 

 
Fig. 6 Accuracy, loss, and score during training 

The first graph in Figure 6, Test Accuracy, shows a significant 
increase in model accuracy over time. In the beginning (above 
epoch 0), the accuracy value is very low, but increases sharply 
to above 70% at epoch 25. The second graph, Test Loss, shows 
that at the beginning of training, the loss value is very high, but 
drops drastically to stabilize at around 1.0 at the last epoch. The 
BLEU Scores graph shows a consistent increase for all BLEU 
variables (BLEU-1 to BLEU-4) although there are some 
fluctuations, with BLEU-1 having the highest value and BLEU-
4 lower due to the complexity of the long text. Finally, the 
ROUGE Score graph also shows an increase in ROUGE-L to 
reach 0.40 at certain epochs, indicating that the prediction 
results are getting closer to the reference report. 

TABEL III 
COMPARATIVE RESULTS WITH PREVIOUS RESEARCH 

MODEL BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L 

Full-ARL [2]    0.125 0.262 

ResNet 50 + 
DenseNet 
121 & MMF 
[16] 

0.348 0.218 0.15 0.106 0.237 

CNX-B2 [18] 0.479 0.363 0.261 0.173 0.354 

XraySwinGe
n [27] 

0.377 0.239 0.168 0.124 0.3 

Ours 0.427 0.281 0.193 0.137 0.385 

In Table 2, the BLEU-1 metric shows that the CNX-B2 
model [18] obtained the highest score of 0.479, while the 
proposed model scored 0.427, which although slightly lower, is 
still in the competitive range compared to other tested models. 
However, when viewed overall from the BLEU-1 to BLEU-4 
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metrics, the proposed model shows superior performance. This 
can be seen in the comparison between the proposed model and 
the Full-ARL [2], MMF [16], and XraySwinGen [27] models. 
For example, in the BLEU-4 metric, the proposed model 
obtained a score of 0.137, higher than the Full-ARL model 
which obtained a score of 0.125 and XraySwinGen which only 
reached 0.124. In addition, in the ROUGE-L metric which 
measures the level of agreement between the predicted text and 
the reference text based on the longest subsequence, the 
proposed model also shows outstanding performance. With a 
ROUGE-L score of 0.385, the model outperforms all previous 
models, indicating its ability to produce more relevant and 
accurate results. Overall, despite not ranking top on all metrics, 
the proposed model performs very competitively, even better in 
some important metrics compared to existing leading models. 

Fig 7 shows a clear comparison between the radiology 
reports generated by the model (Prediction) and the reference 
report (Ground Truth) based on three chest X-ray (CXR) 
images. This comparison provides an overview of the extent to 
which the model is able to generate relevant, accurate, and 
appropriate text descriptions of the analyzed medical images. 
Each example of the predicted report is compared with the 
ground truth report, accompanied by an assessment of the 
BLEU-1 to BLEU-4 evaluation metrics as well as ROUGE-L, 
which provide a quantitative overview of the model's 
performance in producing medical descriptive texts. Overall, 

the results shown in Figure 6 indicate that the proposed model 
successfully generates automatic reports that are quite close to 
the reference report, with relatively minor differences, such as 
additional phrases that do not significantly affect the 
understanding of the report content. The generated predicted 
reports remain relevant and include important medical 
information that should be in the radiology report, according to 
the patient's condition being analyzed. This success is 
supported by the fairly high results of the BLEU and ROUGE-
L evaluation metrics, indicating that the proposed approach is 
effective in combining visual features of X-ray images with 
textual information to generate accurate and comprehensive 
medical descriptions. However, a deeper analysis reveals that 
the model still faces challenges in generating accurate reports 
for anomalous cases or abnormal medical conditions. This is 
largely due to the high data imbalance between normal and 
abnormal findings in the training dataset, where normal 
findings are more dominant. As a result, the model tends to be 
better trained to predict common and easily recognizable 
findings, such as normal conditions, but is less effective in 
identifying or describing rare or complex conditions that are 
abnormal. The model's inability to handle such cases affects the 
model's generalizability to more varied and diverse data, which 
is an important area for further model improvement and 
development. 

 

 
Fig. 7 Example between prediction results and ground truth 

VI. CONCLUSION 

This study proposes an automated system for radiology 
report generation based on visual feature extraction using 
Vision Transformer (ViT) and a text decoder consisting of 
Long Short-Term Memory (LSTM) and Multi-Head Attention 
(MHA). This system aims to improve the efficiency and 
accuracy in generating clinically relevant and linguistically 
coherent radiology reports, by leveraging state-of-the-art 
technologies in medical image processing and natural language 
processing. 

Experimental results show that the proposed model is able to 
outperform other models in terms of ROUGE-L score and 
achieve competitive results in BLEU score, indicating that this 
system is effective in generating reports that are not only 
accurate but also linguistically coherent. The application of 
Gamma Correction in the image preprocessing stage is also 
proven to improve the quality of chest X-ray images, allowing 
for more accurate feature extraction and supporting better 
classification and reporting processes. 

However, this study also has some limitations that need to 
be improved in the future. The model used was trained with a 
limited dataset, which limits its generalization ability, 
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especially in detecting rare findings. In addition, the imbalance 
between normal and abnormal data and the use of fixed Gamma 
Correction parameters are also challenges. Therefore, further 
research will focus on the use of larger and more balanced 
datasets, as well as the exploration of adaptive image 
enhancement and data augmentation techniques to overcome 
the imbalance problem and improve image quality. 
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