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Agricultural drought is a critical concern for food security, 

particularly in regions with significant climatic variability 

such as the Roraya Watershed in Southeast Sulawesi. This 

watershed is vulnerable due to its reliance on rain-fed 

agriculture and distinctive karst topography. This research 

aims to describe and map drought-prone areas within the 

Roraya Watershed using the Normalized Difference 

Drought Index (NDDI) from 2019 to 2023 

comprehensively. The findings indicate a consistent 

presence of severe drought conditions across the 

watershed, which led to prolonged dry spells and decreased 

rainfall. Our results reveal that the Roraya Watershed's 

agricultural areas are predominantly experiencing severe 

drought, with NDDI values ranging from 0.25 to 1. Despite 

some annual variations, the overall trend shows an 

increasing severity of drought conditions. This research 

highlights the necessity for targeted interventions and 

supports the development of effective drought mitigation 

strategies to enhance the resilience of agricultural systems 

in drought-prone regions. 
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A. INTRODUCTION 

Agricultural drought poses a 

significant threat to the sustainability of 

food production systems, especially in 

regions with pronounced climatic 

variability. In the context of the Roraya 

Watershed in Southeast Sulawesi, an area 

identified as having a high risk of 

agricultural drought by the Indonesian 

Disaster Risk (InaRisk) assessment, 

understanding and mitigating drought 

impacts is critical. This watershed, 

characterized by its reliance on rain-fed 

agriculture, is highly vulnerable to 

variations in precipitation and 

temperature, which can lead to severe 

agricultural drought conditions. 

Limestone rock types in Southeast 

Sulawesi or the study location (high 

porosity leading to rapid drainage, water 

easily absorbed into the ground; karst 

topography) exacerbates this 

vulnerability (Hasria, et. al., 2023). The 

implications of such droughts are 

profound, affecting not only crop yields 

and food security but also the 
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socioeconomic stability of farming 

communities dependent on agriculture 

for their livelihoods (Yang et al., 2019; 

Zhang et al., 2020). 

One of the key indicators for 

assessing agricultural drought is the 

Normalized Difference Drought Index 

(NDDI). The NDDI is derived from 

remote sensing data and provides a 

quantitative measure of vegetation stress 

due to water scarcity. It combines 

information from the Normalized 

Difference Vegetation Index (NDVI) and 

the Normalized Difference Water Index 

(NDWI), thereby offering a robust means 

of identifying and monitoring drought 

conditions over large spatial and 

temporal scales (Zargar et al., 2019). The 

integration of NDVI, which reflects 

vegetation health, and NDWI, which 

indicates moisture content, allows for a 

more nuanced detection of drought 

stress, making NDDI a valuable tool for 

agricultural drought assessment (Wang et 

al., 2021; Zhang et al., 2020).  

The primary objective of this 

research was to delineate and map areas 

within the Roraya Watershed susceptible 

to agricultural drought using NDDI 

values. By leveraging satellite imagery 

and NDDI calculations, we aim to 

produce a comprehensive spatial 

representation of drought-prone areas, 

which can serve as a valuable tool for 

local farmers, policymakers, and disaster 

management authorities. This spatial 

analysis will facilitate targeted 

interventions and resource allocation to 

mitigate drought impacts. Additionally, 

this study seeks to quantify the total area 

affected by agricultural drought from 

2019 to 2023, providing critical insights 

into the temporal dynamics and severity 

of drought conditions within the 

watershed. Understanding these temporal 

patterns is crucial for developing 

adaptive management strategies and 

improving resilience to future drought 

events (Vicente-Serrano et al., 2019).  

This research area is located in 

Roraya Watershed, where the watershed 

is located within three districts: Kolaka 

Timur Regency, Konawe Selatan 

Regency, and Bombana Regency. The 

largest part of the Roraya Watershed 

covers the South Konawe Regency, 

while the Bombana Regency area is the 

smallest part of the Roraya Watershed. In 

general, the three districts within the 

Roraya Watershed have similar 

characteristics in terms of rainfall, soil 

type, and landforms that support the 

agricultural sector. Based on data from 

the Sulawesi IV Watershed Agency 

(Balai Wilayah Sungai Sulawesi IV) 

(2016), the average discharge of the 

Roraya River over five years (2011-

2015) was 15.31 m³/s. When converted to 

daily units, the river's daily discharge of 

1,322,784 m³/day. The average monthly 

discharge variations of the Roraya River 

are influenced by rainfall, land cover, and 
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soil properties (Singh, 1992). Rainfall 

across the entire DAS Roraya affects the 

magnitude of surface runoff and the 

amount of water that infiltrates into the 

soil (La Baco et al., 2017). 

The basin boasts a functional rice 

field area of 4,105 hectares (BPS 

Provinsi Sulawesi Tenggara, 2016). 

Abundant annual rainfall ensures 

adequate water supply for various 

agricultural activities. Fertile soils, 

including Latosols, Podzols, and 

Andosols, provide a supportive 

environment for the growth of food crops 

and plantations. The main agricultural 

commodities cultivated in the region 

include rice, maize, cocoa, oil palm, and 

cloves. Lowland areas are extensively 

utilized for paddy fields and gardens 

producing rice and maize, while hills and 

mountains are dominated by cocoa and 

oil palm plantations. In addition, the 

inland fisheries sector is also growing 

and can support food security and the 

community's economy. Despite the 

thriving agricultural sector in Roraya 

Watershed, the region has also faced 

challenges in the form of seasonal 

droughts that impact water production 

and availability. To address these 

challenges, the government and local 

communities have implemented various 

mitigation strategies, including the 

construction of reservoirs, dams, and the 

development of more efficient irrigation 

systems. 

This research addresses the 

following key questions: Which areas 

within the Roraya Watershed exhibit the 

highest potential for agricultural drought 

based on NDDI values? How has the 

extent of agricultural drought-affected 

areas changed from 2019 to 2023? By 

answering these questions, we aim to 

enhance the understanding of agricultural 

drought patterns in the Roraya Watershed 

and support the development of targeted 

interventions to mitigate the adverse 

impacts of drought on agriculture. This 

study not only contributes to the 

scientific knowledge base but also 

provides practical guidance for managing 

agricultural resources in drought-prone 

regions. The integration of NDDI in 

drought monitoring offers a scientifically 

robust and operationally feasible 

approach to drought management, 

aligning with global efforts to enhance 

food security and agricultural 

sustainability in the face of climate 

change (Trenberth et al., 2014). 

B. METHOD 

This research investigates the 

distribution of agricultural drought in the 

Roraya Watershed from 2019 to 2023. 

The data for this study was Sentinel 2A 

imagery from the Google Earth Engine 

platform. This data, Sentinel-2A, has a 

surface reflectance correction level, 

which is the bottom of atmospheric 

correction with a spatial resolution of 10 

meters in RGB and NIR bands. This 
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resolution is appropriate for the 

watershed area studied. Image 

preprocessing included filtering for 

watershed areas, time range, and cloud 

masking. Image preprocessing included 

filtering for watershed areas, time range, 

and cloud masking. Image data 

processing was limited to the study area 

using the Roraya Watershed boundary 

shapefile. The watershed boundary 

shapefile was obtained from the Ministry 

of Environment and Forestry. The image 

data used amounted to 5 (five) according 

to the range of years studied. The 

recording time was determined based on 

the best appearance of the agricultural 

area each year. The filtering process uses 

a percentage of pixels with 20% cloud 

cover. In this cloud masking process, the 

QA60 band is also used, which is a 

bitmask band with cloud mask 

information. The results of this filtering 

will provide the best image in the 

specified annual time span. 

The input data for NDVI and 

NDWI calculation is Sentinel 2A 

imagery from 2019 to 2023, pre-

processed with surface reflectance 

correction. The results of index 

transformation will serve as an input for 

calculating the Normalized Difference 

Drought Index (NDDI) using the formula 

from Gu et al (2007). In this study, The 

calculation processes of NDVI, NDWI, 

and NDDI are done by Google Earth 

Engine. Before calculating the NDDI 

using NDVI and NDWI, the range of 

NDVI and NDWI should be converted 

into 8 bits (0 - 255) due to the NDDI 

value that should have a range from -1 to 

1. The value of NDDI is used to assess 

agricultural drought severity in the 

Roraya Watershed, classifying it into five 

classes: non-drought, mild drought, 

moderate drought, severe drought, and 

extreme drought. The resulting NDDI 

index transformation consists of NDDI 

index values within the entire watershed 

area. Therefore, land cover classification 

is necessary to determine NDDI values 

for identifying agricultural drought in the 

Roraya Watershed. 

The land cover classification was 

performed using the Maximum 

Likelihood algorithm. This supervised 

classification algorithm is widely 

employed for land cover classification 

tasks. Maximum Likelihood 

quantitatively evaluates the variance and 

covariance of spectral responses when 

classifying unknown pixels (Lillesand 

and Kiefer, 1994). In this study, the land 

cover classes to be classified were 

divided into five categories: water, 

buildings, soil, agriculture, and non-

agricultural vegetation. The 

classification results were then masked to 

obtain only biotic land cover objects 

(agriculture, non-agricultural 

vegetation), water, and soil. Building 

land cover objects were excluded from 

drought calculations as the factors 
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influencing drought are primarily biotic 

factors and water. 

An agricultural drought 

assessment in the Roraya Watershed was 

conducted by calculating the area of 

agricultural land affected by drought.  

The calculations were performed for each 

built-up area masked image using the 

calculate geometry feature in ArcGIS 

software. The results of these 

calculations will show the differences in 

the extent of agricultural land affected by 

drought in the Roraya Watershed over a 

five-year period. The results of these 

differences will be analyzed in relation to 

the factors that cause them, including 

regional characteristics and climatic 

conditions at the time of image recording. 

C. RESULT AND DISCUSSION 

C.1. RESULT  

Based on the result of the NDVI 

calculation, the range of NDVI values in 

the Roraya Watershed in 2019 was -

0.598216 to 0.923805, in 2020 it ranged 

from -0.70929 to 0.945304, in 2021 it 

ranged from -0.63655 to 0.938031, in 

2022 it ranged from -0.299947 to 

0.714808, and in 2023 it ranged from -

0.269297 to 0.708324. The NDVI for 

2019 and 2020 has a similar and wide 

range of values. This is due to the higher 

variation in water content and more 

diverse weather conditions. In 2021, the 

range of NDVI values narrowed 

compared to 2019 and 2020. However, 

the range of values still showed wide 

variations. In 2022 and 2023, the NDVI 

values in the Roraya Watershed 

narrowed from the range of values in 

previous years. Likewise, the maximum 

NDVI value in 2023 was the lowest 

among the previous years. 

Based on the spatial and temporal 

variation of NDWI values in the Roraya 

Watershed. In 2019, NDWI values 

ranged from -0.846934 to 0.694118. In 

2020, NDWI values ranged from -

0.860359 to 0.774618, in 2021 ranged 

from -0.859087 to 0.722553, in 2022 

ranged from -0.654675 to 0.342979, and 

in 2023 ranged from -0.634726 to 

0.30511. In 2019 and 2020, the NDWI 

values gave the same range. This wide 

range indicates a high variation in water 

content. In 2021, the NDWI values in the 

Roraya Watershed showed a narrower 

range than in 2019 and 2020 so it can be 

assumed that the variation in water 

content in that year was smaller. 

Meanwhile, the NDWI values in 2022 

and 2023 were narrower than the 

previous years so the variation in water 

content was smaller. 
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Figure 1. NDDI Value in Roraya Watershed 2019 – 2023 

(Source : Research Processing Result, 2024)

Normalized Difference Drought 

Index (NDDI) is an index used to detect 

and monitor drought, especially 

agricultural drought, using remote 

sensing imagery. It identifies drought in 

an area by combining two indices, 

namely NDVI and NDWI. Figure 1 

shows the changes in NDDI values in the 

Roraya Watershed from 2019 to 2023. In 

order, the range of NDDI values in 2019 

to 2023 are as follows, -0.6179977 to 

0.856061, -0.71756 to 0.869732, -

0.644788 to 0.870722, -0.680934 to 

0.885932, and -0.616858 to 0.878327. 

Land cover classification in the 

Roraya Watershed was performed using 

Maximum Likelihood supervised digital 

classification. This classification resulted 

in 5 land cover classes, namely water, 

buildings, non-agricultural vegetation, 

agriculture, and soil. Based on the 

classification result, land cover changes 

within 5 years show very significant 

differences visually. 

Table 1. Agricultural Area in Roraya Watershed 2019 – 2023. 

Year Agricultural Area (ha) 

2019 49198.20 

2020 67985.57 

2021 46050.71 

2022 56984.01 

2023 53112.67 

(Source : Research Processing Result, 2024) 
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Figure 2. Agricultural Drought in Roraya Watershed 2019 – 2023 

(Source : Research Processing Result, 2024) 

 

The drought index values are categorized 

into five classes: Non-Drought, Drought 

Mild, Drought Moderate, Drought 

Severe, and Drought Extreme. In the 

context of agricultural land cover, the 

NDDI classes range from Non-Drought 

to drought-severe, with a predominance 

of the Drought Severe class across all 

years. Across all years, the Drought 

Severe class is the most prevalent on 

agricultural land, indicating a persistent 

risk of severe drought conditions in these 

areas. 

 

Table 2. Agricultural Drought Area Roraya Watershed 2019 – 2023. 

Year Agricultural Drought Area (ha) 

Non 

Drought 

Drought 

Mild 

Drought 

Moderate 

Drought 

Severe 

Drought 

Extreme 

2019 31.46 61.19 108.90 48996.66 0 

2020 0 0 0.13 67985.44 0 

2021 168.80 226.82 210.80 45444.30 0 

2022 477.75 430.42 458.50 55617.41 0 

2023 58.82 499.01 916.70 51638.14 0 

(Source : Research Processing Result, 2024) 
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This can be caused by the 

characteristics of the study area which 

has geomorphological characteristics in 

the form of karst topography. 

C.2. DISCUSSION 

Changes in the range of values in 

each year indicate changes in vegetation 

and environmental conditions, including 

drought. Severe drought will cause a 

drastic decrease in vegetation index 

values as the health of the vegetation also 

declines. Insufficient water availability in 

the dry season will cause drought. During 

drought, vegetation does not have 

enough water to carry out the process of 

photosynthesis and growth. This causes 

the vegetation condition to decline. The 

decline in vegetation condition is 

characterized by decreasing NDVI 

values over time. The El Nino 

phenomenon in Indonesia in 2023 affects 

changes in weather patterns, namely a 

decrease in rainfall which results in a 

long drought. This is also assumed to be 

the cause of drought in 2023. 

Based on the maximum value, the 

NDWI values decreased from 2019 to 

2023. The range of values and lower 

maximum values indicate a decrease in 

water content in the region, especially in 

vegetation and soil. The El Nino 

phenomenon in 2023 which has an 

impact on reduced rainfall in Indonesia is 

one of the causes of indications of 

drought in the Roraya Watershed area in 

2023. Visually (Figure 5), 2019 showed 

that most areas of the Roraya Watershed 

were dry. NDWI has a high sensitivity in 

indicating agricultural drought because 

NDWI describes plant water stress 

(Jayawardhana & Chathurange, 2020). 

Meanwhile, the severity of drought is 

indicated by the NDDI drought index 

which combines NDVI with NDWI. 

Some areas with low NDDI values are 

visualized in green indicating wet areas 

(water bodies). In 2020, the dry areas 

expanded with more orange to red color 

and less green color (wet areas). In 2021, 

the maximum NDDI value is higher than 

in 2020 and the minimum NDDI value is 

lower than in 2020. However, the 

dominance of more drought areas 

indicates that there are indications that 

the drought is still severe.  In 2022, the 

maximum NDDI value increased, 

indicating a more severe drought. 

Based on the map, land cover 

changes within 5 years show very 

significant differences visually. Changes 

in agricultural land cover over time are 

presented in Table 2, where the actual 

agricultural land area shows a downward 

trend. However, many misclassifications 

between non-agricultural and agricultural 

vegetation land cover caused the 

agricultural land area to increase in 

several years. The possibility of massive 

forest clearing could lead to a decrease in 

non-agricultural vegetation land cover 

and an increase in agricultural land. The 

weakness of the digital classification 
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method is the appearance of salt and 

pepper, as well as the indistinguishability 

between non-agricultural and agricultural 

vegetation (misclassified). 

Based on Table 3, in 2019, the 

agricultural area in the Roraya Watershed 

was 49,198.20 hectares. The drought 

map for this year indicates a moderate 

spread of drought conditions, with areas 

classified under mild and moderate 

drought categories. The prevalence of 

severe and extreme drought conditions 

was minimal. This year likely 

experienced relatively stable climatic 

conditions, characterized by average 

rainfall and temperatures, which 

contributed to moderate NDDI values. 

The literature supports that such 

conditions typically result in moderate 

drought stress, allowing vegetation to 

maintain a certain level of health despite 

reduced water availability (Dai, 2011). 

By 2020, the agricultural area 

expanded significantly to 67,985.57 

hectares. This increase in agricultural 

land correlates with a notable expansion 

of drought-affected areas, with a higher 

incidence of severe and extreme drought 

conditions. The strain on water resources 

due to the increased agricultural area, 

coupled with potentially below-average 

rainfall and higher temperatures, likely 

exacerbated drought conditions, as 

indicated by higher NDDI values. 

According to Trenberth et al. (2014), 

such climatic anomalies can lead to 

significant drought stress, especially in 

regions with increased anthropogenic 

water demand. 

The agricultural area decreased to 

46,050.72 hectares in 2021, which 

coincided with a reduction in the extent 

of drought conditions. The maps for this 

year show fewer areas under severe 

drought compared to 2020. This 

reduction in agricultural area likely 

relieved some pressure on water 

resources. Additionally, more favorable 

climatic conditions, such as better rainfall 

distribution, may have contributed to the 

observed decrease in NDDI values. This 

aligns with findings by Dai (2011), which 

suggest that reduced agricultural 

intensity and improved rainfall can 

mitigate drought severity. 

The year 2022 saw an increase in 

the agricultural area to 55,617 hectares, 

which corresponded with a resurgence of 

severe and extreme drought areas. This 

increase in agricultural land likely 

heightened the pressure on water 

resources, leading to higher NDDI 

values. Unfavorable climatic conditions, 

such as reduced rainfall or higher 

temperatures, might have compounded 

this effect. The literature suggests that 

such increases in agricultural intensity, 

coupled with adverse climatic conditions, 

can significantly exacerbate drought 

severity (Dai, 2011; Trenberth et al., 

2014). Extreme climate events can result 

in damage to agricultural land, leading to 
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reduced harvest areas or decreased 

productivity (Surmaini & Faqih, 2016). 

In 2023, the agricultural area 

further decreased to 53,112.67 hectares. 

Correspondingly, the drought conditions 

were less severe, with a marked reduction 

in areas affected by extreme drought. The 

sharp reduction in agricultural areas 

likely played a significant role in 

alleviating drought conditions by 

reducing water demand. Favorable 

climatic conditions, including increased 

rainfall or lower temperatures, also likely 

contributed to this trend. Trenberth et al. 

(2014) highlight that such climatic 

factors can significantly impact drought 

severity and distribution, underscoring 

the importance of both land use and 

climate in drought dynamics. 

The data suggests a dynamic 

interplay between climatic factors and 

land use changes in influencing 

agricultural drought conditions in the 

Roraya Watershed. Years with increased 

agricultural areas tend to show more 

severe drought conditions, likely due to 

higher water demand and reduced water 

availability for irrigation. Conversely, 

reductions in agricultural areas generally 

correlate with less severe drought 

conditions, indicating a release of 

pressure on water resources. Climatic 

events, such as El Niño and La Niña, also 

play a crucial role, with El Niño typically 

leading to warmer temperatures and 

reduced rainfall, exacerbating drought 

conditions, while La Niña can bring 

increased rainfall and cooler 

temperatures, potentially alleviating 

drought (Trenberth et al., 2014). 

Indonesia's location in the tropical 

monsoon climate makes it vulnerable to 

El Niño climate anomalies that can 

trigger drought (Rahman el al., 2017). 

These climatic variations, coupled with 

land use changes, create a complex 

pattern affecting the severity and 

distribution of drought. 

D. CONCLUSION 

Based on the results of this study, 

several things can be concluded, 

including: 

1. Agricultural areas in the Roraya 

Watershed are dominated by severe 

drought levels with a range of NDDI 

values of 0.25 to 1. This causes the entire 

agricultural area in the Roraya Watershed 

to have a very high potential for drought, 

which is supported by its topographic 

characteristics which contain a lot of 

limestone. 

2. Changes in the agricultural areas that 

experienced drought did not show 

significant changes. This is because the 

results of the NDDI analysis show an 

increase in drought from year to year, but 

in each year, the dominant level of 

drought remains severe in all agricultural 

areas. 
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