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Abstract—Algorithm complexity analysis is a
fundamental aspect in computer science education and
research, providing a critical framework for evaluating
computational efficiency. This study presents a
comprehensive theoretical evaluation of the Selection
Sort algorithm using Big-O notation analysis to
determine formal complexity bounds. The research
aims to rigorously assess the time complexity of
Selection Sort across best-case, average-case, and
worst-case scenarios through asymptotic analysis
methodology. The theoretical framework employs Big-
O, Big-Theta, and Big-Omega notations alongside
mathematical proof techniques including summation
analysis and formal verification methods. A systematic
operation-counting methodology is applied to derive
precise complexity characterizations for each
algorithmic phase. The analysis shows that Selection
Sort exhibits uniform quadratic time complexity O(n?)
under all input conditions, unlike other sorting
algorithms whose performance varies based on input
characteristics. Mathematical evidence confirms that
the algorithm performs exactly n(n—1)/2 comparisons
regardless of the initial data arrangement, thereby
establishing a strict boundary for theoretical
complexity. These2 findings provide a complete
mathematical basis for evaluating Selection Sort
complexity, making a significant contribution to
algorithm analysis literature and educational
methodologies. Despite its consistent performance
predictability, the quadratic complexity limits its
scalability for large datasets. This theoretical evaluation
serves as a comprehensive reference for algorithm
selection decisions and complexity analysis instruction.
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[.INTRODUCTION
Algorithms are key elements inccomputer science
that function to arrange items in a specific order, either

ascending or descending. Some common sorting

algorithms include Bubble Sort, Selection Sort,

Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

Each algorithm own characteristics typical in matter

complexity time, memory usage [18][43], and

efficiency in different data contexts. The complexity of
sorting algorithms can be classified based on best case,
average case, and worst case. For example, Quick Sort
has an average complexity of O(n log n), but in the
worst case it can reach O(n2). On the other hand,

Merge Sort always has a complexity of O(n log n) in

all cases, although it requires a considerable amount of

extra space. Selection Sort, although simple, has a time

complexity of O(n2) for all types of cases [16].
Algorithm analysis has undergone significant

development And become aspect important in theory

computers. With the increasing need to process large
amounts of data in real-time, the study of algorithm
efficiency has become increasingly necessary. The
analysis not only focuses on execution time, but also
considers aspects such as stability, space efficiency,
adaptability, and parallel capabilities. These
innovations have bring up various method analysis
advanced such as amortized analysis, probabilistic

analysis, And parameterized complexity [44][19].
Research in the field of sorting algorithms tends to

be grouped into several structural approaches,

including

¢ Divide and Conquer Methods: For example Quick
Sort and Merge Sort.

e terative Selection Based Methods:
Selection Sort and Bubble Sort.

e Data Structure Based Methods: Such as Heap Sort
which utilizes a heap structure, or the radix and
bucket algorithm which uses arrays and hashes
[45].

Such as
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A. The background of the importance of algorithm

analysis in computer science

Algorithm analysis is very important in the field of
computer science as it helps in selecting the best solution
for a problem. a problem. Algorithm is a series steps or
procedures used to solve problems in an organized
manner, and in the programming process, algorithms
relate to the logic of determining what program to create
or write. In software development, selecting the right
algorithm has a significant impact on system
performance, especially for large-scale applications
such as data processing, compression, and artificial
intelligence [20]. Without sufficient analysis, software
is at risk of experiencing performance bottlenecks or
inefficient use of resources. Algorithms can understood
as a series step or calculation Which required For finish
problems, especially the processes followed by the
computer. A good algorithm is one that uses the right
tools for the purpose, while choosing the wrong
algorithm is like cooking a dish that does not follow the
recipe and tool And material Which required, so that the
result inefficient or inappropriate, because cooking also
has procedures and rules that must be followed [46].

B. Algorithm in Knowledge Computer

Algorithm analysis is very important in the field of
computer science as it helps in selecting the best solution
for a problem. a problem. Algorithm is a series steps or
procedures used to solve problems in an organized
manner, and in the programming process, algorithms
relate to the logic for determining the program to be
created or written.[21] In software development,
selecting the right algorithm very impact on system
performance, especially for large-scale applications
such as data processing, compression, and artificial
intelligence. Without sufficient analysis, software risks
experiencing performance bottlenecks or inefficient use
of resources. An algorithm can be understood as a series
of steps or calculations Which required For finish
problems, especially the processes followed by the
computer. A good algorithm is one that uses the right
tools for the purpose, while choosing the wrong
algorithm is like cooking a dish that does not follow the
recipe and tool And material Which required, so that the
result inefficient or inappropriate, because cooking also
has procedures and rules that must be followed [47].

C. Role Notation Big O in Efficiency Evaluation

Application of Big O Notation to evaluate the
efficiency of algorithms. Notation O Big, Which Also
known as Landau Notation or Notation Asymptotic,
is symbol mathematical term used to describe the
characteristics of an asymptotic function. The purpose
of this is to understand behavior A function on mark
input extremes, whether very large or very small, in a
simple but precise manner so that they can be
compared with other functions.

Besides That, symbol O functioning For show limit
above from the asymptotic behavior of a distance or
measure of a simpler function. There are also other
symbols such as O and T that represent boundaries top,
bottom, and average. Its implementation divided to in
two field: in mathematics, this notation is used to
specify the characteristics of the remaining terms in a
truncated infinite region, especially in analysis series
asymptotic. In In computer science, this notation is
used to study the complexity of an algorithm [23].

In general, big O notation is used to express
asymptotic limits. However, these asymptotic limits
are more often and accurately expressed by the symbol
T (big theta), as will be explained further below. This
notation was first introduced in Germany by a number
theorist, Paul Bachmann, in 1894 in the second edition
of his book entitled Analytische Zahlentheorie, which
the first edition published in 1892 did not cover the
theme of big O notation. This notation became more
famous thanks to the contribution of another German
number theorist, Edmund Landau, so it is sometimes
also called Landau notation. Big O comes from the
English term "order of" and was originally the symbol
Omicron big, but Then adopted with letter Latin has a
similar form, namely a capital letter “O”, and not the
number zero (0) [48].

D. Election Algorithm Selection Sort as Case Studies

We conducted a study on the application of the
Selection Sort algorithm to manage inventory data in
this article. This algorithm was chosen because it is easy
to use and shows effectiveness on small to medium
sized datasets. The way it works is by taking the
smallest element from the unsorted section and
exchanging it with the first element in that section. This
process is repeated until the entire dataset succeed
sorted. Study This carry out the implementation
algorithm Selection Sort on system inventory
management using Python programming language. The
results of the study show that this algorithm increases
efficiency in sorting data, making it easier for users to
find the information they need. need, as well as reduce
time needed to manage inventory. In addition, this
system provides convenience for employees and store
managers in accessing product availability information
more easily. fast And easy, so that speed up decision
making in inventory management. Overall, the
application of the Selection Sort algorithm in inventory
management inventory goods has proven effective in
optimizing data management processes [24]. With thus,
study This play a role in developing a better and more
efficient inventory management system.

E. Research Gap: Lack of Comprehensive Theoretical
Analysis
Understanding research gaps is crucial for
researchers. By identifying areas in which knowledge
remains limited, researchers can better focus their
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studies and ensure that their work contributes
meaningfully to existing literature [25]. This awareness
not only promotes innovation by highlighting
unanswered questions, but also enables the
development of more rigorous methodologies, improves
the validity of research findings, and broadens the
scientific landscape by addressing underexplored areas.
Studying research gaps also serves to clarify which
areas require further investigation [26].

While Selection Sort has been widely discussed in
the literature, particularly in classical algorithm
textbooks such as that of Sedgewick and Wayne [25],
the treatment often remains at the level of basic
implementation and general performance analysis.
However, to date, limited attention has been given to in-
depth theoretical exploration or contextual adaptability
of this algorithm.To clarify the distinction between prior
work and the present study, a structured comparison is
provided in Table 1:

Table 1. the distinction between prior work and the
present study

Aspect Sedwick & Wayne | This Study
(2011)
Primary Provides an overview | Offers an in-
Focus of sorting algorithms, | depth
including Selection | theoretical
Sort, with an | examination of
emphasis on | Selection Sort,
implementation and | focusing on
general performance | structural
analysis properties  and
algorithmic
complexity.
Theoritical Limited to | Develops a
Depth introductory-level comprehensive
explanations aimed | and systematic
at practical | theoretical
understanding. framework.
Comparative | Focuses primarily | I ~ ncorporates
Perspective on asymptotic | both  technical
analysis  (Big-0) | (Big-O) and
and empirical | non-technical
performance aspects such as
metrics. implementation
simplicity and
determinism.
Application Does not address | Explores the
Context algorithm adaptation | adaptability of
in specialized | Selection Sort in
domains such as | hybrid sorting
hybrid systems or | models and
embedded embedded
computing. system
scenarios.
Research Lacks exploration of | Identifies and
Contribution | recent trends or | addresses
underexplored areas | research gaps by
related to Selection | mapping current
Sort. trends and
proposing novel

perspectives in
sorting
algorithm
studies.

This comparative overview highlights a significant
gap in the existing literature: the lack of a
comprehensive theoretical and contextual analysis of
the Selection Sort algorithm. This study aims to fill that
gap by not only analyzing the algorithm’s internal
structure and complexity, but also by exploring its
relevance and adaptability in modern computational
settings. In doing so, the research contributes to both the
theoretical advancement and practical application of
sorting algorithm studies.

II. LITERATURE REVIEW
A. The Basics Notation Big- O

Formal Definitions of Big-O, Big-Theta, Big
Omega.The mathematical foundation of algorithm
analysis is very relies on asymptotic notation, which
provides a convenient framework for characterizing
computational complexity [1]. Big-O notation, formally
introduced by Bachmann and popularized by Knuth,
represents an upper bound on algorithmic complexity
[4]. According to Cormen et al., Big- O notation is
formally defined as: for a given function g (n), O(g (
n ) ) represents the set of functions f ( n ) so that there
is constant positive ¢ And no in where 0 < f (n)<c—
g(n)foralln>n0 [1].

Complementary notation provides a complete
asymptotic characterization. Big-Omega ( Q ) notation
describe the boundaries lower, in where Q (g (n)
)—{ f (n):} There is constant positive ¢ And n o so
that0<c—g n)<f (n)foralln>n o [2]. Big-Theta
Notation ( ® ) represents a strict constraint, defined as
® (g (n))={f (n)} there is a constant positive C 1,
C2,andnosothat0<cl—-g(n)<f(n)<c2—-g
(n) For all n>n o [1]. This tripartite notation system
allows the characterization of complexity. Which
appropriate in various perspective analytic different [3].
Knuth emphasizes that these notations serve not only as
computational tools, but also as fundamental
mathematical constructs that enable rigorous
algorithmic analysis [4]. Formal definitions establish
the theoretical framework necessary to perform
systematic complexity evaluations, providing the
mathematical rigor necessary for academic research [5].

B. Foundation Mathematics

The mathematical foundation underlying asymptotic
analysis comes from advanced mathematical concepts
including limits, calculus, and discrete mathematics [6].
Sedgewick and Wayne showed that asymptotic analysis
requires an understanding of growth rates, where
functions are classified by their dominant terms as the
input size approaches infinity [7]. Their mathematical
framework uses the theory limits, specifically lim lim
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f(n) / g (n), for build n—ooconnection asymptotic
between function [1]. Graham et al. provide a
comprehensive mathematical tool for asymptotic
analysis, including summation and generating function
techniques [8]. Its mathematical foundation includes
several key principles: first, the dominance of the
highest-order terms in polynomial expressions; second,
the insignificance of constant factors in asymptotic
growth; and third, the application of mathematical
induction. For construction proof formal [8]. Principle-
This principle forms the theoretical basis for evaluating
algorithm complexity.

The mathematical rigor required for asymptotic
analysis demands precise formulation of assumptions,
clear statements of theorems, and systematic
construction of proofs [9]. Sipser emphasizes that the
mathematical ~ foundation  must include an
understanding of discrete probability, combinatorics,
and algebraic manipulation techniques that are essential
for complexity analysis [9]. Exchange element the
smallest that have been selected with elements in the
unsorted part of the array. This process will continue
until all elements in the array are completely sorted[12].
The Selection Sort algorithm is the simplest algorithm,
but this algorithm is not efficient in large data sets
[13][14].

C. Pseudocode
Algorithm Selection Sort started with look for
smallest element from subarray Which Not yet sorted.
Element then exchanged with the first element of the
subarray. This step is repeated for all elements until the
array is sorted. Here is an example of a pseudocode for
the Selection Sort algorithm:
Void selectionsort(int arr([], int n)
{
int i, min, time;
for(int i=0;i<n- 1;i++)
{ . .
min=i;
for(int j=i+1;j<n;j++)
{
if(arr[j]<arr[min]) min=j;
/
temp=arr[min/; arr[min]=arr[j],; arr[j]=temp;

/

The principles of asymptotic analysis guide the
systematic evaluation of algorithmic efficiency through
a methodological framework that has been established
[10]. Roughgarden identified three basic principles:
worst-case analysis for determining upper bounds,
average-case analysis for evaluating practical
performance, and best-case analysis for determining
lower bounds [10]. These principles collectively
provide a comprehensive algorithmic characterization.
The asymptotic dominance principle states that higher-
order terms determine computational complexity,

making lower- order terms and constants asymptotically
insignificant [1]. This principle allows comparison of
algorithms based on fundamental growth characteristics
rather than specific details. implementation [7].
Methodology This emphasize in scalability analysis,
examining the behavior of the algorithm as the input
size increases towards infinity [3].

Aho et al. showed that the principles of asymptotic
analysis should combine theoretical rigor and practical
application [8]. These principles include: methodology.
calculation operation Which systematic, verification of
mathematical proofs, and a comparative analysis
framework for evaluation algorithm [8]. Principles This
building the foundation For do analysis theoretical
Which strict to algorithmic complexity.

E. Selection Sort Algorithm Definition Algorithm
Selection Sort

The Selection Sort algorithm is an algorithm that
sorts data based on comparison. This algorithm will
examine an array of elements and will try to find the
smallest element in the array. Then this algorithm swaps
the smallest element with the element in the first
position. Then after it is done, it tries to select
the smallest element from the unsorted part of the array
after performing each iteration. Then he Characteristics
Base Algorithm Selection Sort. Selection Sort is a
comparison-based sorting algorithm that has the basic
characteristic of working in-place and has a lower
number of data exchanges compared to other simple
algorithms. However, this algorithm has a time
complexity. O ( n 2 ) in every condition input, so it
doesn't efficient for large data [15].

F. Analysis Complexity Previous theoretical work exists

In computer science, algorithms are used to solve
various problems in an organized manner. The
effectiveness of an algorithm is assessed through
complexity analysis, which assesses the amount of
resources (time and memory) required depending on the
size of the input. This assessment is very important
because it directly affects the performance of the
software, especially when handling large amounts of
data [28][27].
1. Donation Donald E. Knuth

In his book entitled The Art of Computer
Programming, Knuth serve runway mathematics solid
to understand algorithms, especially algorithms for
sorting and searching. He introduced the methods of
average analysis, worst-case analysis, and probabilistic
approaches to evaluating the performance of algorithms
[29].
2. Cormen and his colleagues. and Compilation of Book
Analysis

"Introduction Algorithm" Which written by Cormen
and his colleagues. Serve method Whichregular to
analyze algorithms using asymptotic notation ,Which
covers notation Big-O, Omega, And Theta. They Also

4



introduce approach in construct an algorithm like for
And conquer, greedy, and dynamic programming
[31][30].
3. Visual and Experimental Methods by Sedgewick and
Wayne
Sedgewick and Wayne contributed through
experimental methods in analyzing algorithms. They
combined theoretical methods and data visualization to
provide a practical understanding of algorithm
performance, especially in the area of sorting
algorithms.
4. A Study of Data Structures and Complexity by Weiss.
Mark Allen
Weiss emphasizes the importance of analyzing
algorithms in relation to data structures, as well as
presenting the efficiency of various operations (such as
searching, inserting, And deletion) on diverse structure
such as trees and hash tables [32]. The theoretical work
that has been done has created a very solid framework
for analyzing algorithms. However, there is still scope
for integrating theoretical and empirical approaches in
research on algorithm performance. The mastery of
Good to theory very crucial as foundation to create more
flexible and effective algorithms in the context of use in
everyday life.
5. The Gap in literature At the moment
Despite significant advances in algorithmic theory—
particularly in the development of formal models such
as Big-O notation—there remains a critical gap between
theoretical complexity and practical implementation.
This study aims to investigate these overlooked aspects,
particularly regarding simple algorithms like Selection
Sort, which are often excluded from contemporary
algorithmic research.
o Lack of Evaluation of Simple Algorithms
Most algorithm textbooks and research papers
tend to focus on advanced algorithms with lower
time complexities, often disregarding simpler ones
such as Selection Sort. For instance, Baase and Van
Gelder [33] provide minimal theoretical treatment of
Selection Sort, describing it only briefly in the
context of introductory examples. Similarly, Cormen
et al. [34] and Sedgewick & Wayne [35] emphasize
efficient algorithms like Merge Sort, Quick Sort, and
Heap Sort, while relegating Selection Sort to a
marginal position without detailed exploration. This
omission is problematic because Selection Sort
remains relevant in educational settings, where its
deterministic behavior and conceptual simplicity
make it ideal for teaching core algorithmic
principles. Moreover, it is often still used in
embedded systems, where memory and resource
constraints make simpler, predictable algorithms
preferable. The lack of in-depth theoretical and
applied analysis of such algorithms represents a
blind spot in the current literature.
o Discrepancy Between Theory and Practice

As noted by Cormen et al. [34], algorithm
analysis often centers on asymptotic behavior (e.g.,
Big-O) without considering empirical performance
under real-world hardware conditions. Factors like
cache utilization, branch prediction, and memory
hierarcy are rarely addressed. This hierarchy are
rarely addressed. This results in a disconnect
between theoretical efficiency and practical
execution times.

e  Over-Reliance on ldealized Models

Many analyses use the RAM (Random Access
Machine) model, which assumes constant-time
access for all operations and ignores delays from
system-level behaviors such as caching, latency, and
instruction pipelining. Sedgewick and Wayne [35]
acknowledge these limitations but do not integrate
them into  their complexity evaluations.
Consequently, algorithms may perform quite
differently on real hardware than theoretical models
suggest.
o Limited Integration with Modern Computing

Architectures

The algorithm literature often fails to reflect the
demands of parallel systems, GPU-based
computation, or big data environments. Existing
complexity analyses rarely incorporate modern
workloads or architectural features such as
concurrency or data locality. As a result, there is a
lack of algorithmic strategies optimized for these
emerging domains.
o Lack of Interdisciplinary Applicability

Although algorithms are widely applied in
domains like bioinformatics, finance, and
computational linguistics, most literature remains
highly technical and insular to computer science.
There is little effort to simplify or adapt
algorithms—especially simple ones—for cross-
disciplinary usage. Bridging this gap requires
making algorithms more accessible and practically
grounded.

III. METHODLOGY
A. Framework Work Theoretical

Framework theoretical For analysis complexity
Selection Sort uses a systematic approach based on
notation theory. asymptotic And methodology proof
mathematical [1]. The analysis framework follows the
established paradigm of evaluating algorithms through
the enumeration of operations, modeling mathematics,
And construction proof formal [3]. This approach
ensures a rigorous theoretical evaluation that is
consistent with academic standards for algorithm
analysis research.

Approach analysis complexity use a layered
methodology  that includes three  analytical
perspectives: worst-case scenario analysis using Big-O
notation, average-case evaluation through probabilistic
analysis, and best-case checking for completeness [10].
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Each analytical layer uses mathematical tools and proof
techniques that conform to a defined complexity limit
[2].Simplification of complex expressions into standard
asymptotic forms [8].

This framework combines formal mathematical
verification through constructive proof methodology,
ensuring that complexity bounds are mathematically
sound and academically rigorous [4].

B. Devices Mathematics used

This mathematical tool for theoretical analysis
This mathematical tool for theoretical analysis
combines a number of draft And technique mathematics
protocol analysis algorithm Which already exists,
starting with the decomposition of the algorithm,
continuing with the identification and enumeration of
operations, and ending with a mathematical proof of the
complexity bounds [1]. An important basis for rigorous
complexity evaluation [8].

The main tools include summation analysis for
evaluating repetition nesting, in where... represents
model mathematics For operation comparison Selection
Sort [1]. Induction mathematics serves as a formal proof
technique to establish limit complexity in various size
input [3]. Additional mathematical tools include
recurrence relation analysis, probability theory for
average case evaluation, and discrete mathematics for
combinatorial analysis. [9]. Framework Work
mathematical using limit theory to characterize
asymptotic behavior, specifically examining the
quadratic  complexity bounds [7]. Algebraic
manipulation techniques allow this toolkit includes a
formal proof construction methodology, using direct
proof, proof by contradiction, and constructive proof
techniques appropriate for different aspects of
complexity analysis [6]. Graph theory concepts support
the visualization of algorithms and analysis structures,
while probability theory discrete allow analysis

statistics algorithm behavior on different input
distributions [9].

C. Analysis Method

Evaluation  algorithm  Selection  Sort  done

systematically through the following stages:
e Initialization Process Sequencing
The algorithm starts by iterating from the first index
to the last. index final in array. Every iteration aims
to move the smallest element of an unsorted subarray
to its proper position.
e Search Element Minimum
Value of the unsorted elements. Process This
involving comparison between element in a nested
loop structure.
e ExchangeElements
After element the smallest found, algorithm will
perform one exchange to place the element in the
correct position.
e [teration/Repetition

Step This will repeated until all over element in the
array are in the right order. The algorithm will not
stop until all position has processed And ensure the
array is completely sorted. This Process produce
amount comparison as much as n n—1. Model This
state that the amount operation 2 grow in a way
quadratic to size input n, Which show that
complexity time algorithm This is O (n 2 ) for all
cases [1].

D. Proof Techniques Used
Analysis and validation of the efficiency of the
Selection Sort algorithm is carried out by applying the
following mathematical proof techniques:
e Direct Proof
This technique is used to show the exact number
combines a number of draft And technique
mathematics of comparisons and exchanges
performed by the algorithm. This proof is done by
calculating the number of iterations of nested loops
and reducing them to a quadratic mathematical
formula.
e Loop Invariant
This technique is used to show the exact number of
comparisons and exchanges performed by the
algorithm. This proof is done by calculating the
number of iterations of nested loops and reducing
them to a quadratic mathematical formula.
e Mathematical Induction
This technique is used to prove that Selection Sort
will always sort the array correctly, regardless of the
number of elements.

o Base Case: For n=1, the array is already
sorted.

o Induction Step: Assuming the algorithm
works for n=Kk, it is also proven to apply for
n=k+1.

e Asymtotic Analysis
Using the limit theory:

limTnn-—1):2=12
77—0
It can therefore be concluded that the execution time
of the Selection Sort algorithm is at the upper limit
of quadratic, namely O(n?) [1].

IV. . THEORITICAL ANALYSIS

A. Algorithm Decomposition

This refers to partitioning a complex algorithm into
smaller, more tractable components so that each part
can be understood, implemented, and analysed more
efficiently [16]. This approach, widely adopted in
software engineering and algorithm design, enhances
modularity and problem-solving effectiveness. The
present theoretical investigation examines the
selection-sort algorithm by means of three six-
element arrays [15]. The primary objective is to sort
each array in ascending order through five manual
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iterations. The analytical stages are summarised
below.
o Initialization and Selection of Minimum- Value
Selection.
Beginning at index 0, the algorithm
searches the remaining sub-array for
the smallest element. Once identified,
this minimum value is swapped with
the element at the current index. The
procedure is repeated from index 0 to
index (n — 2), yielding n — 1 iterations.
e Manual Iteration
During every iteration, the current element is
compared with each subsequent element. In-line
comments document whether a swap occurs and
which indices are involved.Three Array Examples
Analyzed.

o ArraysUnder Examination

Example 1

Input: 6,45, 34,20, 100, 38
Sorted Output: 6,20, 34, 38,45, 100

Input: 89, 40, 33, 56, 99, 39
Sorted Output: 33,39, 40, 56, 89, 99

Input: 28,30,37,2,78, 23
Sorted Output: 2,23,28,30,37,78

¢ Observation on the Iterative Procces

Each example requires five iterations (n— 1). The
number of swaps and the indices involved are
recorded. No swap occurs in several iterations of
Examples 1 and 2, whereas every iteration in Example
3 triggers a swap, indicating a more dynamic
positional adjustment. T

To clarify the iteration process of the selection sort
algorithm, the following is a step-by-step visualization
in table form. This visualization shows how the
elements in the array are processed in each iteration,
including the elements being compared, the
minimum value found, the indices involved, and
whether a data swap occurs.

5 6,20,34, | 45 5 100 2
38, 100, 45 45
B. Elementary Operations and Complexity
o Identification of Elementary Operations
Two fundamental operations are counted
explicitly:

¢ Comparison — Evaluating two array elements
e Swap — Exchanging two elements when

necessary For array sizen =6, done n—1
= 5 iteration. In each iteration, the number of
comparisons is n — i — 1 . Hence, the total
comparisons are (n—1)+(n—-2)+--+1=
n(n—1)2.
e Manual Trace and Visualization
A complete operation trace is recorded, detailing
every comparison, minimum update, and swap. This
explicit trace provides a transparent account of
algorithmic behaviour.
e Time Complexity
Given the quadratic growth in the number of
comparisons, selection sort exhibits O(n?) time
complexity. Consequently, it is unsuitable for
large-scale data sets because of the high
comparison overhead [15].

C. Mathematical Proof of Complexity

Mathematical complexity is the analysis of the
number of operations required by an algorithm to
complete its task that can be completed in some
situations. It is usually interpreted in terms of Big-
O notation (such as O(n?), which indicates the
execution time in terms of the number of elements n
sorted).

e Best case analysis

In selection sort, even though the initial data is

already in an ascending order, the algorithm will still

make comparisons between as many elements as

possible. n(n-1)2* (n(n-1):2n(n-1)time. This

is because selection sort does not have a

mechanism for stop early if the data is already sorted.

For example, If data beginning is: 6, 20, 34, 38, 45,

100 Fixed Algorithms will look for element the

Example Array: 6, 45, 34, 20, 100, 38

The following table shows the steps of the iteration in

the selection sort algorithm.

Iteration| Curr Minimu | Minimu | Swap
ent m m
Arra Found Indeks
y

1 6,45,34, 6 0 No
20, 100,
38

2 6,45, 34,| 20 3 452
20, 100, 20
38
6, 20, 34,

3 45100, 34 2 No
38

4 6,20,34, | 38 5 452
45,100, 38 38

smallest in unordered parts and compare each pair.
e Average Case Analysis

In the average case, the elements are arranged
randomly. Selection sort will still perform the same
number of comparisons as in the best and worst
cases, namely:
T(n) = n(n —1)2T(n) = n(n -1):2 T(n) = 2n(n —
1). The number of exchanges also remains at a
maximum of one per iteration (a total of n - 1 swaps).
Therefore, even though the data is randomized, the
number of main steps remains the same, so the time
complexity in the average case is also O(n?)
generating data exchanges.
e Worst Case Analysis

In the worst case — for example, when the data is



arranged in descending order, such as: 100, 45, 38,
34, 20, 6 — the algorithm must still perform data
swapping;:

nn—1)2 *(n(n—1):2)*2n(n — 1)

 comparisons, and

 n - 1 swaps (because each iteration will
inevitably find an element smaller than the current
element and must be swapped). However, the number
of comparisons remains the same, so the time
complexity remains: O(n2). Based on the above
analysis, Selection Sort has a time complexity of
O(n?) in all cases (best, average, worst), because the
number of comparisons performed is constant and
follows the formula for the sum of an arithmetic
series.This indicates that this algorithm is not
efficient for large data sets, despite being simple and
using constant memory O(1).

D. Analysis Comparative

An element smaller than the current element and
must be swapped). However, the number of comparisons
remains the same, so the time complexity remains:
O(n2) Comparison with other sorting algorithms
Choosing the appropriate sorting algorithm can have a
significant impact on program efficiency, especially
when  managing large amounts of  data.
AlthoughSelection Sort is considered less efficient in
analysis. Asymptotically, this method is still used in
simple systems or for teaching basic algorithms. This
article compares this algorithm with other algorithms in
terms of complexity and actual performance [37].

Table 3. Comparison of Sorting Algorithms Based on
Time Complexity, Space, and Stability

Algorit Best |Average Worst [Spacg Stablg Suitable
m Time | Time | Time for

Selecti | O(n?) | O(m?) | O(n?) |O(1)] No | Data
on small,

Sort educatior]
Inserti Om) | O(m») | Om? | O(1)] Yes| Data
on small,
Sort almost
sorted

Merge | O(n log O | O |O(n) Yes |Data big,
Sort n) log n) logn) stable
needed

Quick | O(n log O(n | O(n?) | O(d No [Performaq

Sort n) log n) g n) nce tall,

No need

stability

Selection Sort still more superior in matter simplicity
and predictability—suitable for systems with limited

resources or for learning purposes.

»  Merge Sort is preferred in applications that require
stability and can be scaled through parallel
processing.

* Quick Sort still become choice main in Lots library
standard Because speed its performance in condition
average

+ Insertion Sort effective used on list Which small
sized and when data is almost regular [38][39].

Theoretical evaluation of the algorithm is a crucial
element in process development device soft. The
theoretical position explains how an algorithm can be
categorized according to its time and space complexity,
stability, and relationship to data structures. In the
research academic, method This useful For distinguish
between basic algorithms and more complex algorithms.
This analysis is very important as a basis for selecting
algorithms in real applications [40]. Computational
Model: Many studies use the RAM (Random Access
Machine) model as a basis for assumptions [41][42].

Table 4. Comparison of Sorting Algorithm Based on
Paradigm, Efficiency, and Stability

Algorithm | Paradig | Averag| Stablili
m e ty
Comple

Xity

Theory
Related

Brute
Force

Selection
Sort

Om?) Iterative,

determinis
tic,

simple

Yes | Suitable
for almos
sorted

lists

Insertion |Increment
Sort al

Om?)

Recursion
stability,
optimal,
supports

theoreticg

1 proof

Merge Sort| Divide- | O(n log

Conquer n)

Yes

Quick Sort| Divide- | O(n log

Conquer n)

No |Probabilis
tic proof,
flat
average

analysis

+ Asymptotic Complexity: Assessing the effectiveness
of algorithms on a large scale by utilizing Big-O,
Omega, and Theta notations.

« Algorithm Stability: Whether the algorithm can



maintain the order of elements that have the same

key.

« Principles of Algorithm Design: Such as divide and
conquer, greed, coercion, and dynamic
programming.

+ Sequencing Selection considered as algorithm

education and appropriate used in system Which own
memory limitation due to the need for O(1)
additional space. Insertion Sort very effective in
situation in where data almost sorted And become
base for development more optimal hybrid
algorithm.

Merge Sort in a way theoretical is method Which
most efficient for all situations due to its stable nature
and time complexity O ( n log n ) which always
consistent.

* Quick Sort is very effective on average, but its

theoretical position prone to to condition worst O (n 2y,
which depends on the pivot selection.

The theoretical position of the sorting algorithm
provides a deep understanding of the proper way and
time For use the algorithm. Selection Sort has mark
education Which tall, temporary Merge Sort and Quick
Sort excel in terms of performance. In the future,
theoretical understanding will remain the basis for
flexible and effective software engineering.

V. RESULT AND DISCUSSION

A. Theoritical Findings

The results of a theoretical analysis of the selection
sort algorithm show that this algorithm has a time
complexity of O(n?) [15]. This complexity was
confirmed through a
detailed manual approach, by analyzing the number of
basic operations in the form of comparisons and data
exchanges in each iteration. In the three case studies
analyzed, each consisting of six elements, the algorithm
required five iterations to complete the sorting process.
Each iteration involved searching for the minimum
element in the unsorted portion of the array, followed by
an exchange operation if necessary. This pattern reflects
the number of comparisons performed, which is n(n -
1):2 , which is a characteristic of algorithms with
quadratic complexity. Furthermore, eventhough the
number of comparisons reaches 15 times for n=6, the
number of exchanges performed is relatively small.
This indicates the efficiency of the algorithm in terms of
saving exchange (swap) operations, even though the
number of comparisons remains high. Therefore,
selection sort is more suitable for small datasets, where
clarity of logic and simplicity of implementation are
prioritized over time efficiency at a large scale [15].

B. Implication

Theoretical analysis of the Selection Sort algorithm
confirms that it maintains O(n?) time complexity across
all input types and makes it example ideal For introduce

the concept of deterministic algorithms in time
complexity analysis. This is due to the structure nested
loop that produces the number of comparisons as many
as n(n-1):2 [15]. which is a characteristic of algorithms
with quadratic complexity. Its simplicity allows for a
deep understanding of how control structures affect
algorithm efficiency. Due to its stable execution pattern
and ease of mathematical modeling, Selection Sort is
relevant as a basic model for understanding the
fundamental concepts of Big-O notation and the
influence of loop structures on algorithm efficiency.
Selection Sort has high educational value in algorithm
and data structure learning. The simplicity of its steps,
the search for the minimum element, and the exchange
process facilitate understanding of nested loops, the
comparison and exchange of elements, the introduction
of asymptotic notation such as O(n?), and proof
techniques like loop invariants and mathematical
induction [15].

It is a characteristic of algorithms with quadratic
complexity. Its simplicity allows for a deep
understanding of how control structures affect algorithm
efficiency. Due to its stable execution pattern and ease of
mathematical modeling, Selection Sort is relevant as a
basic model for understanding the fundamental concepts
of Big-O notation and the influence of loop structures on
algorithm efficiency. A comparative study also confirms
that Selection Sort is often chosen as the initial algorithm
in programming education due to its simple structure,
easy-to-understand logic, and clear steps. This algorithm
facilitates understanding of loop structures, minimum
value search, and element exchange[l17]. It is a
characteristic  of  algorithms  with  quadratic
complexity. Its simplicity allows for a deep
understanding of how control structures affect algorithm
efficiency. Due to its stable execution pattern and ease of
mathematical modeling, Selection Sort is relevant as a
basic model for understanding the fundamental
concepts of Big-O notation and the influence of
loop structures on algorithm efficiency. Practical
Considerations Although Selection Sort has high time
complexity and is not suitable for large datasets, the
algorithm still has practical uses and benefits in
certain situations. Its main advantages lie in its
simplicity of implementation, minimal number of
exchanges, and in-place nature, which saves memory.
This algorithm is ideal for small datasets, systems
with memory constraints, or conditions where swap
operations are expensive[ 15][17].

VI. CONCLUSION

This comprehensive theoretical analysis of the
Selection Sort algorithm reveals fundamental insights
into its computational behavior and practical
applications in computer science. The research
demonstrates that Selection Sort maintains a uniform
quadratic time complexity of O(n?) across all input
conditions, performing exactly n(n-1)/2 comparisons
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regardless of the initial data arrangement. This
deterministic characteristic distinguishes it from other
sorting algorithms whose performance varies based on
input characteristics, making Selection Sort highly
predictable in its execution pattern.The mathematical
analysis confirms the algorithm's nested loop structure
produces consistent behavior with minimal swap
operations, validated through rigorous proof techniques
including direct proof, loop invariants, and
mathematical induction. While the quadratic complexity
limits its scalability for large datasets, Selection Sort
offers significant advantages in specific contexts,
particularly its O(1) space complexity that makes it ideal
for memory- constrained systems and scenarios where
exchange operations are computationally expensive.
The study establishes Selection Sort's exceptional
educational value as a pedagogical tool for teaching
fundamental algorithmic concepts. Its simplicity
facilitates understanding of Big-O notation, nested
loops, and complexity analysis principles, making
complex theoretical concepts accessible to students
learning computer science fundamentals. The algorithm
serves as an exemplary model for introducing
asymptotic analysis and mathematical proof techniques
in academic settings. Despite its limitations for large-
scale data processing, this research concludes that
Selection Sort's consistent performance predictability,
educational significance, and implementation simplicity
ensure its continued relevance in computer science
education and specialized applications requiring
deterministic behavior and minimal memory usage. The
study provides a comprehensive theoretical framework
that fills a significant gap in the literature by offering
thorough analysis of fundamental algorithms often
overlooked in favor of more sophisticated sorting
methods, thereby contributing valuable insights to both
algorithmic theory and educational methodology.
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