

Evaluation Theoretical
Efficiency Selection Sort By

Big-O Notation Analysis

Aurora Ilmannafia[1] , Alfina Berlian Yudianti[2] , Febriana Nur Aini[3] , Faiz ramadhani

Ghilman Nugroho[4] , Muhammad Dava Khoirur Roziqy[5] , Azis Suroni[6]

State University of Surabaya

{24111814069, 24111814016, 2411814006,24111814121,

24111814068}@mhs.unesa.ac.id[1][2][3][4][5], azissuroni@unesa.ac.id[6]

Abstract—Algorithm complexity analysis is a

fundamental aspect in computer science education and

research, providing a critical framework for evaluating

computational efficiency. This study presents a

comprehensive theoretical evaluation of the Selection

Sort algorithm using Big-O notation analysis to

determine formal complexity bounds. The research

aims to rigorously assess the time complexity of

Selection Sort across best-case, average-case, and

worst-case scenarios through asymptotic analysis

methodology. The theoretical framework employs Big-

O, Big-Theta, and Big-Omega notations alongside

mathematical proof techniques including summation

analysis and formal verification methods. A systematic

operation-counting methodology is applied to derive

precise complexity characterizations for each

algorithmic phase. The analysis shows that Selection

Sort exhibits uniform quadratic time complexity 𝑂(𝑛²)

under all input conditions, unlike other sorting

algorithms whose performance varies based on input

characteristics. Mathematical evidence confirms that

the algorithm performs exactly 𝑛(𝑛−1)/2 comparisons

regardless of the initial data arrangement, thereby

establishing a strict boundary for theoretical

complexity. These2 findings provide a complete

mathematical basis for evaluating Selection Sort

complexity, making a significant contribution to

algorithm analysis literature and educational

methodologies. Despite its consistent performance

predictability, the quadratic complexity limits its

scalability for large datasets. This theoretical evaluation

serves as a comprehensive reference for algorithm

selection decisions and complexity analysis instruction.

Keywords—Selection Sort, asymptotic analysis,

computational complexity, algorithm evaluation

I. INTRODUCTION

Algorithms are key elements inccomputer science

that function to arrange items in a specific order, either

ascending or descending. Some common sorting

algorithms include Bubble Sort, Selection Sort,

Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

Each algorithm own characteristics typical in matter

complexity time, memory usage [18][43], and

efficiency in different data contexts. The complexity of

sorting algorithms can be classified based on best case,

average case, and worst case. For example, Quick Sort

has an average complexity of 𝑂(𝑛 log 𝑛), but in the

worst case it can reach 𝑂(𝑛2). On the other hand,

Merge Sort always has a complexity of 𝑂(𝑛 log 𝑛) in

all cases, although it requires a considerable amount of

extra space. Selection Sort, although simple, has a time

complexity of 𝑂(𝑛2) for all types of cases [16].

Algorithm analysis has undergone significant

development And become aspect important in theory

computers. With the increasing need to process large

amounts of data in real-time, the study of algorithm

efficiency has become increasingly necessary. The

analysis not only focuses on execution time, but also

considers aspects such as stability, space efficiency,

adaptability, and parallel capabilities. These

innovations have bring up various method analysis

advanced such as amortized analysis, probabilistic

analysis, And parameterized complexity [44][19].

Research in the field of sorting algorithms tends to

be grouped into several structural approaches,

including

• Divide and Conquer Methods: For example Quick

Sort and Merge Sort.

• Iterative Selection Based Methods: Such as

Selection Sort and Bubble Sort.

• Data Structure Based Methods: Such as Heap Sort

which utilizes a heap structure, or the radix and

bucket algorithm which uses arrays and hashes

[45].

mailto:24111814069
mailto:24111814016@mhs.unesa.ac.id
mailto:2411814006@mhs.unesa.ac.id
mailto:24111814121
mailto:24111814068%7D@mhs.unesa.ac.id
mailto:azissuroni@unesa.ac.id

2

A. The background of the importance of algorithm

analysis in computer science

Algorithm analysis is very important in the field of

computer science as it helps in selecting the best solution

for a problem. a problem. Algorithm is a series steps or

procedures used to solve problems in an organized

manner, and in the programming process, algorithms

relate to the logic of determining what program to create

or write. In software development, selecting the right

algorithm has a significant impact on system

performance, especially for large-scale applications

such as data processing, compression, and artificial

intelligence [20]. Without sufficient analysis, software

is at risk of experiencing performance bottlenecks or

inefficient use of resources. Algorithms can understood

as a series step or calculation Which required For finish

problems, especially the processes followed by the

computer. A good algorithm is one that uses the right

tools for the purpose, while choosing the wrong

algorithm is like cooking a dish that does not follow the

recipe and tool And material Which required, so that the

result inefficient or inappropriate, because cooking also

has procedures and rules that must be followed [46].

B. Algorithm in Knowledge Computer

Algorithm analysis is very important in the field of

computer science as it helps in selecting the best solution

for a problem. a problem. Algorithm is a series steps or

procedures used to solve problems in an organized

manner, and in the programming process, algorithms

relate to the logic for determining the program to be

created or written.[21] In software development,

selecting the right algorithm very impact on system

performance, especially for large-scale applications

such as data processing, compression, and artificial

intelligence. Without sufficient analysis, software risks

experiencing performance bottlenecks or inefficient use

of resources. An algorithm can be understood as a series

of steps or calculations Which required For finish

problems, especially the processes followed by the

computer. A good algorithm is one that uses the right

tools for the purpose, while choosing the wrong

algorithm is like cooking a dish that does not follow the

recipe and tool And material Which required, so that the

result inefficient or inappropriate, because cooking also

has procedures and rules that must be followed [47].

C. Role Notation Big O in Efficiency Evaluation

Application of Big O Notation to evaluate the

efficiency of algorithms. Notation O Big, Which Also

known as Landau Notation or Notation Asymptotic,

is symbol mathematical term used to describe the

characteristics of an asymptotic function. The purpose

of this is to understand behavior A function on mark

input extremes, whether very large or very small, in a

simple but precise manner so that they can be

compared with other functions.

Besides That, symbol O functioning For show limit

above from the asymptotic behavior of a distance or

measure of a simpler function. There are also other

symbols such as O and T that represent boundaries top,

bottom, and average. Its implementation divided to in

two field: in mathematics, this notation is used to

specify the characteristics of the remaining terms in a

truncated infinite region, especially in analysis series

asymptotic. In In computer science, this notation is

used to study the complexity of an algorithm [23].

In general, big O notation is used to express

asymptotic limits. However, these asymptotic limits

are more often and accurately expressed by the symbol

T (big theta), as will be explained further below. This

notation was first introduced in Germany by a number

theorist, Paul Bachmann, in 1894 in the second edition

of his book entitled Analytische Zahlentheorie, which

the first edition published in 1892 did not cover the

theme of big O notation. This notation became more

famous thanks to the contribution of another German

number theorist, Edmund Landau, so it is sometimes

also called Landau notation. Big O comes from the

English term "order of" and was originally the symbol

Omicron big, but Then adopted with letter Latin has a

similar form, namely a capital letter “O”, and not the

number zero (0) [48].

D. Election Algorithm Selection Sort as Case Studies

We conducted a study on the application of the

Selection Sort algorithm to manage inventory data in

this article. This algorithm was chosen because it is easy

to use and shows effectiveness on small to medium

sized datasets. The way it works is by taking the

smallest element from the unsorted section and

exchanging it with the first element in that section. This

process is repeated until the entire dataset succeed

sorted. Study This carry out the implementation

algorithm Selection Sort on system inventory

management using Python programming language. The

results of the study show that this algorithm increases

efficiency in sorting data, making it easier for users to

find the information they need. need, as well as reduce

time needed to manage inventory. In addition, this

system provides convenience for employees and store

managers in accessing product availability information

more easily. fast And easy, so that speed up decision

making in inventory management. Overall, the

application of the Selection Sort algorithm in inventory

management inventory goods has proven effective in

optimizing data management processes [24]. With thus,

study This play a role in developing a better and more

efficient inventory management system.

E. Research Gap: Lack of Comprehensive Theoretical

Analysis

Understanding research gaps is crucial for

researchers. By identifying areas in which knowledge

remains limited, researchers can better focus their

3

studies and ensure that their work contributes

meaningfully to existing literature [25]. This awareness

not only promotes innovation by highlighting

unanswered questions, but also enables the

development of more rigorous methodologies, improves

the validity of research findings, and broadens the

scientific landscape by addressing underexplored areas.

Studying research gaps also serves to clarify which

areas require further investigation [26].

While Selection Sort has been widely discussed in

the literature, particularly in classical algorithm

textbooks such as that of Sedgewick and Wayne [25],

the treatment often remains at the level of basic

implementation and general performance analysis.

However, to date, limited attention has been given to in-

depth theoretical exploration or contextual adaptability

of this algorithm.To clarify the distinction between prior

work and the present study, a structured comparison is

provided in Table 1:

Table 1. the distinction between prior work and the

present study
Aspect Sedwick & Wayne

(2011)

This Study

Primary

Focus

Provides an overview

of sorting algorithms,

including Selection

Sort, with an

emphasis on

implementation and

general performance

analysis

Offers an in-

depth

theoretical

examination of

Selection Sort,

focusing on

structural

properties and

algorithmic
complexity.

Theoritical

Depth

Limited to

introductory-level

explanations aimed

at practical
understanding.

Develops a

comprehensive

and systematic
theoretical

framework.

Comparative

Perspective
Focuses primarily

on asymptotic

analysis (Big-O)

and empirical

performance

metrics.

I ncorporates

both technical

(Big-O) and

non-technical

aspects such as

implementation

simplicity and
determinism.

Application

Context

Does not address

algorithm adaptation

in specialized

domains such as

hybrid systems or

embedded
computing.

Explores the

adaptability of

Selection Sort in

hybrid sorting

models and

embedded

system

scenarios.
Research Lacks exploration of Identifies and

Contribution recent trends or addresses

 underexplored areas research gaps by

 related to Selection mapping current

 Sort. trends and

 proposing novel

 perspectives in

 sorting

 algorithm

 studies.

This comparative overview highlights a significant

gap in the existing literature: the lack of a

comprehensive theoretical and contextual analysis of

the Selection Sort algorithm. This study aims to fill that

gap by not only analyzing the algorithm’s internal

structure and complexity, but also by exploring its

relevance and adaptability in modern computational

settings. In doing so, the research contributes to both the

theoretical advancement and practical application of

sorting algorithm studies.

II. LITERATURE REVIEW

A. The Basics Notation Big- O

Formal Definitions of Big-O, Big-Theta, Big

Omega.The mathematical foundation of algorithm

analysis is very relies on asymptotic notation, which

provides a convenient framework for characterizing

computational complexity [1]. Big-O notation, formally

introduced by Bachmann and popularized by Knuth,

represents an upper bound on algorithmic complexity

[4]. According to Cormen et al., Big- O notation is

formally defined as: for a given function 𝑔 (𝑛) , 𝑂(𝑔 (

𝑛)) represents the set of functions 𝑓 (𝑛) so that there

is constant positive c And n₀ in where 0 ≤ 𝑓 (𝑛) ≤ 𝑐 −

𝑔 (𝑛) for all 𝑛 ≥ 𝑛 0 [1].

Complementary notation provides a complete

asymptotic characterization. Big-Omega (Ω) notation

describe the boundaries lower, in where Ω (𝑔 (𝑛)

) − { 𝑓 (𝑛) : } There is constant positive 𝑐 And 𝑛 𝑜 so

that 0 ≤ 𝑐 − 𝑔 (𝑛) ≤ 𝑓 (𝑛) for all 𝑛 ≥ 𝑛 𝑜 [2]. Big-Theta

Notation (Θ) represents a strict constraint, defined as

Θ (𝑔 (𝑛)) = { 𝑓 (𝑛)} there is a constant positive 𝐶 1 ,

𝐶 2 , and 𝑛 𝑜 so that 0 ≤ 𝑐 1 − 𝑔 (𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐 2 − 𝑔

(𝑛) For all 𝑛 ≥ 𝑛 𝑜 [1]. This tripartite notation system

allows the characterization of complexity. Which

appropriate in various perspective analytic different [3].

Knuth emphasizes that these notations serve not only as

computational tools, but also as fundamental

mathematical constructs that enable rigorous

algorithmic analysis [4]. Formal definitions establish

the theoretical framework necessary to perform

systematic complexity evaluations, providing the

mathematical rigor necessary for academic research [5].

B. Foundation Mathematics

The mathematical foundation underlying asymptotic

analysis comes from advanced mathematical concepts

including limits, calculus, and discrete mathematics [6].

Sedgewick and Wayne showed that asymptotic analysis

requires an understanding of growth rates, where

functions are classified by their dominant terms as the

input size approaches infinity [7]. Their mathematical

framework uses the theory limits, specifically lim lim

4

𝑓(𝑛) / g (n), for build 𝑛→∞connection asymptotic

between function [1]. Graham et al. provide a

comprehensive mathematical tool for asymptotic

analysis, including summation and generating function

techniques [8]. Its mathematical foundation includes

several key principles: first, the dominance of the

highest-order terms in polynomial expressions; second,

the insignificance of constant factors in asymptotic

growth; and third, the application of mathematical

induction. For construction proof formal [8]. Principle-

This principle forms the theoretical basis for evaluating

algorithm complexity.

The mathematical rigor required for asymptotic

analysis demands precise formulation of assumptions,

clear statements of theorems, and systematic

construction of proofs [9]. Sipser emphasizes that the

mathematical foundation must include an

understanding of discrete probability, combinatorics,

and algebraic manipulation techniques that are essential

for complexity analysis [9]. Exchange element the

smallest that have been selected with elements in the

unsorted part of the array. This process will continue

until all elements in the array are completely sorted[12].

The Selection Sort algorithm is the simplest algorithm,

but this algorithm is not efficient in large data sets

[13][14].

C. Pseudocode

Algorithm Selection Sort started with look for

smallest element from subarray Which Not yet sorted.

Element then exchanged with the first element of the

subarray. This step is repeated for all elements until the

array is sorted. Here is an example of a pseudocode for

the Selection Sort algorithm:

Void selectionsort(int arr[], int n)

{

int i, min, time;

for(int i=0;i<n- 1;i++)

{

min=i;

for(int j=i+1;j<n;j++)

{

if(arr[j]<arr[min]) min=j;

}

temp=arr[min]; arr[min]=arr[j]; arr[j]=temp;

}

The principles of asymptotic analysis guide the

systematic evaluation of algorithmic efficiency through

a methodological framework that has been established

[10]. Roughgarden identified three basic principles:

worst-case analysis for determining upper bounds,

average-case analysis for evaluating practical

performance, and best-case analysis for determining

lower bounds [10]. These principles collectively

provide a comprehensive algorithmic characterization.

The asymptotic dominance principle states that higher-

order terms determine computational complexity,

making lower- order terms and constants asymptotically

insignificant [1]. This principle allows comparison of

algorithms based on fundamental growth characteristics

rather than specific details. implementation [7].

Methodology This emphasize in scalability analysis,

examining the behavior of the algorithm as the input

size increases towards infinity [3].

Aho et al. showed that the principles of asymptotic

analysis should combine theoretical rigor and practical

application [8]. These principles include: methodology.

calculation operation Which systematic, verification of

mathematical proofs, and a comparative analysis

framework for evaluation algorithm [8]. Principles This

building the foundation For do analysis theoretical

Which strict to algorithmic complexity.

E. Selection Sort Algorithm Definition Algorithm

Selection Sort

The Selection Sort algorithm is an algorithm that

sorts data based on comparison. This algorithm will

examine an array of elements and will try to find the

smallest element in the array. Then this algorithm swaps

the smallest element with the element in the first

position. Then after it is done, it tries to select

the smallest element from the unsorted part of the array

after performing each iteration. Then he Characteristics

Base Algorithm Selection Sort. Selection Sort is a

comparison-based sorting algorithm that has the basic

characteristic of working in-place and has a lower

number of data exchanges compared to other simple

algorithms. However, this algorithm has a time

complexity. 𝑂 (𝑛 2) in every condition input, so it

doesn't efficient for large data [15].

F. Analysis Complexity Previous theoretical work exists

In computer science, algorithms are used to solve

various problems in an organized manner. The

effectiveness of an algorithm is assessed through

complexity analysis, which assesses the amount of

resources (time and memory) required depending on the

size of the input. This assessment is very important

because it directly affects the performance of the

software, especially when handling large amounts of

data [28][27].

1. Donation Donald E. Knuth

In his book entitled The Art of Computer

Programming, Knuth serve runway mathematics solid

to understand algorithms, especially algorithms for

sorting and searching. He introduced the methods of

average analysis, worst-case analysis, and probabilistic

approaches to evaluating the performance of algorithms

[29].

2. Cormen and his colleagues. and Compilation of Book

Analysis

"Introduction Algorithm" Which written by Cormen

and his colleagues. Serve method Whichregular to

analyze algorithms using asymptotic notation ,Which

covers notation Big-O, Omega, And Theta. They Also

5

introduce approach in construct an algorithm like for

And conquer, greedy, and dynamic programming

[31][30].

3. Visual and Experimental Methods by Sedgewick and

Wayne

Sedgewick and Wayne contributed through

experimental methods in analyzing algorithms. They

combined theoretical methods and data visualization to

provide a practical understanding of algorithm

performance, especially in the area of sorting

algorithms.

4. A Study of Data Structures and Complexity by Weiss.

Mark Allen

Weiss emphasizes the importance of analyzing

algorithms in relation to data structures, as well as

presenting the efficiency of various operations (such as

searching, inserting, And deletion) on diverse structure

such as trees and hash tables [32]. The theoretical work

that has been done has created a very solid framework

for analyzing algorithms. However, there is still scope

for integrating theoretical and empirical approaches in

research on algorithm performance. The mastery of

Good to theory very crucial as foundation to create more

flexible and effective algorithms in the context of use in

everyday life.

5. The Gap in literature At the moment

Despite significant advances in algorithmic theory—

particularly in the development of formal models such

as Big-O notation—there remains a critical gap between

theoretical complexity and practical implementation.

This study aims to investigate these overlooked aspects,

particularly regarding simple algorithms like Selection

Sort, which are often excluded from contemporary

algorithmic research.

• Lack of Evaluation of Simple Algorithms

Most algorithm textbooks and research papers

tend to focus on advanced algorithms with lower

time complexities, often disregarding simpler ones

such as Selection Sort. For instance, Baase and Van

Gelder [33] provide minimal theoretical treatment of

Selection Sort, describing it only briefly in the

context of introductory examples. Similarly, Cormen

et al. [34] and Sedgewick & Wayne [35] emphasize

efficient algorithms like Merge Sort, Quick Sort, and

Heap Sort, while relegating Selection Sort to a

marginal position without detailed exploration. This

omission is problematic because Selection Sort

remains relevant in educational settings, where its

deterministic behavior and conceptual simplicity

make it ideal for teaching core algorithmic

principles. Moreover, it is often still used in

embedded systems, where memory and resource

constraints make simpler, predictable algorithms

preferable. The lack of in-depth theoretical and

applied analysis of such algorithms represents a

blind spot in the current literature.

• Discrepancy Between Theory and Practice

As noted by Cormen et al. [34], algorithm

analysis often centers on asymptotic behavior (e.g.,

Big-O) without considering empirical performance

under real-world hardware conditions. Factors like

cache utilization, branch prediction, and memory

hierarcy are rarely addressed. This hierarchy are

rarely addressed. This results in a disconnect

between theoretical efficiency and practical

execution times.

• Over-Reliance on Idealized Models

Many analyses use the RAM (Random Access

Machine) model, which assumes constant-time

access for all operations and ignores delays from

system-level behaviors such as caching, latency, and

instruction pipelining. Sedgewick and Wayne [35]

acknowledge these limitations but do not integrate

them into their complexity evaluations.

Consequently, algorithms may perform quite

differently on real hardware than theoretical models

suggest.

• Limited Integration with Modern Computing

Architectures

The algorithm literature often fails to reflect the

demands of parallel systems, GPU-based

computation, or big data environments. Existing

complexity analyses rarely incorporate modern

workloads or architectural features such as

concurrency or data locality. As a result, there is a

lack of algorithmic strategies optimized for these

emerging domains.

• Lack of Interdisciplinary Applicability

Although algorithms are widely applied in

domains like bioinformatics, finance, and

computational linguistics, most literature remains

highly technical and insular to computer science.

There is little effort to simplify or adapt

algorithms—especially simple ones—for cross-

disciplinary usage. Bridging this gap requires

making algorithms more accessible and practically

grounded.

III. METHODLOGY

A. Framework Work Theoretical

Framework theoretical For analysis complexity

Selection Sort uses a systematic approach based on

notation theory. asymptotic And methodology proof

mathematical [1]. The analysis framework follows the

established paradigm of evaluating algorithms through

the enumeration of operations, modeling mathematics,

And construction proof formal [3]. This approach

ensures a rigorous theoretical evaluation that is

consistent with academic standards for algorithm

analysis research.

Approach analysis complexity use a layered

methodology that includes three analytical

perspectives: worst-case scenario analysis using Big-O

notation, average-case evaluation through probabilistic

analysis, and best-case checking for completeness [10].

6

Each analytical layer uses mathematical tools and proof

techniques that conform to a defined complexity limit

[2].Simplification of complex expressions into standard

asymptotic forms [8].

This framework combines formal mathematical

verification through constructive proof methodology,

ensuring that complexity bounds are mathematically

sound and academically rigorous [4].

B. Devices Mathematics used

This mathematical tool for theoretical analysis

This mathematical tool for theoretical analysis

combines a number of draft And technique mathematics

protocol analysis algorithm Which already exists,

starting with the decomposition of the algorithm,

continuing with the identification and enumeration of

operations, and ending with a mathematical proof of the

complexity bounds [1]. An important basis for rigorous

complexity evaluation [8].

The main tools include summation analysis for

evaluating repetition nesting, in where… represents

model mathematics For operation comparison Selection

Sort [1]. Induction mathematics serves as a formal proof

technique to establish limit complexity in various size

input [3]. Additional mathematical tools include

recurrence relation analysis, probability theory for

average case evaluation, and discrete mathematics for

combinatorial analysis. [9]. Framework Work

mathematical using limit theory to characterize

asymptotic behavior, specifically examining the

quadratic complexity bounds [7]. Algebraic

manipulation techniques allow this toolkit includes a

formal proof construction methodology, using direct

proof, proof by contradiction, and constructive proof

techniques appropriate for different aspects of

complexity analysis [6]. Graph theory concepts support

the visualization of algorithms and analysis structures,

while probability theory discrete allow analysis

statistics algorithm behavior on different input

distributions [9].

C. Analysis Method

Evaluation algorithm Selection Sort done

systematically through the following stages:

• Initialization Process Sequencing

The algorithm starts by iterating from the first index

to the last. index final in array. Every iteration aims

to move the smallest element of an unsorted subarray

to its proper position.

• Search Element Minimum

Value of the unsorted elements. Process This

involving comparison between element in a nested

loop structure.

• ExchangeElements

After element the smallest found, algorithm will

perform one exchange to place the element in the

correct position.

• Iteration/Repetition

Step This will repeated until all over element in the

array are in the right order. The algorithm will not

stop until all position has processed And ensure the

array is completely sorted. This Process produce

amount comparison as much as 𝑛 𝑛−1. Model This

state that the amount operation 2 grow in a way

quadratic to size input n, Which show that

complexity time algorithm This is 𝑂 (𝑛 2) for all

cases [1].

D. Proof Techniques Used

Analysis and validation of the efficiency of the

Selection Sort algorithm is carried out by applying the

following mathematical proof techniques:

• Direct Proof

This technique is used to show the exact number

combines a number of draft And technique

mathematics of comparisons and exchanges

performed by the algorithm. This proof is done by

calculating the number of iterations of nested loops

and reducing them to a quadratic mathematical

formula.

• Loop Invariant

This technique is used to show the exact number of

comparisons and exchanges performed by the

algorithm. This proof is done by calculating the

number of iterations of nested loops and reducing

them to a quadratic mathematical formula.

• Mathematical Induction

This technique is used to prove that Selection Sort

will always sort the array correctly, regardless of the

number of elements.

o Base Case: For n=1, the array is already

sorted.

o Induction Step: Assuming the algorithm

works for n= k, it is also proven to apply for

n= k + 1.

• Asymtotic Analysis

Using the limit theory:

lim T 𝑛(𝑛 − 1) : 2 =1/2

𝑛→∞

It can therefore be concluded that the execution time

of the Selection Sort algorithm is at the upper limit

of quadratic, namely O(n²) [1].

IV. . THEORITICAL ANALYSIS

A. Algorithm Decomposition

This refers to partitioning a complex algorithm into

smaller, more tractable components so that each part

can be understood, implemented, and analysed more

efficiently [16]. This approach, widely adopted in

software engineering and algorithm design, enhances

modularity and problem-solving effectiveness. The

present theoretical investigation examines the

selection-sort algorithm by means of three six-

element arrays [15]. The primary objective is to sort

each array in ascending order through five manual

7

iterations. The analytical stages are summarised

below.

• Initialization and Selection of Minimum- Value

Selection.
Beginning at index 0, the algorithm

searches the remaining sub-array for
the smallest element. Once identified,
this minimum value is swapped with
the element at the current index. The
procedure is repeated from index 0 to
index (n − 2), yielding n − 1 iterations.

• Manual Iteration

During every iteration, the current element is

compared with each subsequent element. In-line

comments document whether a swap occurs and

which indices are involved.Three Array Examples

Analyzed.

• ArraysUnder Examination

 Example 1

Input: 6, 45, 34, 20, 100, 38
Sorted Output: 6, 20, 34, 38, 45, 100

Input: 89, 40, 33, 56, 99, 39
Sorted Output: 33, 39, 40, 56, 89, 99

Input: 28, 30, 37, 2, 78, 23
Sorted Output: 2, 23, 28, 30, 37, 78

• Observation on the Iterative Procces

Each example requires five iterations (n − 1). The

number of swaps and the indices involved are

recorded. No swap occurs in several iterations of

Examples 1 and 2, whereas every iteration in Example

3 triggers a swap, indicating a more dynamic

positional adjustment. T

To clarify the iteration process of the selection sort

algorithm, the following is a step-by-step visualization
in table form. This visualization shows how the
elements in the array are processed in each iteration,
including the elements being compared, the
minimum value found, the indices involved, and
whether a data swap occurs.

Example Array: 6, 45, 34, 20, 100, 38

The following table shows the steps of the iteration in

the selection sort algorithm.
Iteration Curr

ent
Arra
y

Minimu
m
Found

Minimu
m
Indeks

Swap

1 6, 45, 34,
20, 100,
38

6 0 No

2 6, 45, 34,
20, 100,
38

20 3 45 ⇄
20

3 6, 20, 34,
45, 100,
38

34 2 No

4 6, 20, 34,
45, 100, 38

38 5 45 ⇄
38

5 6, 20, 34,
38, 100, 45

45 5 100 ⇄
45

B. Elementary Operations and Complexity

• Identification of Elementary Operations

 Two fundamental operations are counted

explicitly:

• Comparison – Evaluating two array elements

• Swap – Exchanging two elements when

necessary For array size 𝑛 = 6 , done 𝑛 − 1

= 5 iteration. In each iteration, the number of

comparisons is 𝑛 − 𝑖 − 1 . Hence, the total

comparisons are (𝑛 − 1) + (𝑛 − 2) + ⋯ + 1 =

𝑛 (𝑛 − 1) 2.

• Manual Trace and Visualization

 A complete operation trace is recorded, detailing

every comparison, minimum update, and swap. This

explicit trace provides a transparent account of

algorithmic behaviour.

• Time Complexity

 Given the quadratic growth in the number of

comparisons, selection sort exhibits 𝑂(𝑛²) time

complexity. Consequently, it is unsuitable for

large‑scale data sets because of the high

comparison overhead [15].

C. Mathematical Proof of Complexity

 Mathematical complexity is the analysis of the

number of operations required by an algorithm to

complete its task that can be completed in some

situations. It is usually interpreted in terms of Big-

O notation (such as O(n²), which indicates the

execution time in terms of the number of elements n

sorted).

• Best case analysis

In selection sort, even though the initial data is

already in an ascending order, the algorithm will still

make comparisons between as many elements as

possible. n (n - 1) 2* (n (n - 1) : 2n (n -1) time. This

is because selection sort does not have a

mechanism for stop early if the data is already sorted.

For example, If data beginning is: 6, 20, 34, 38, 45,

100 Fixed Algorithms will look for element the

smallest in unordered parts and compare each pair.

• Average Case Analysis

In the average case, the elements are arranged

randomly. Selection sort will still perform the same

number of comparisons as in the best and worst

cases, namely:

𝑇(𝑛) = 𝑛(𝑛 − 1)2𝑇(𝑛) = n(n -1):2 𝑇(𝑛) = 2𝑛(𝑛 −

1). The number of exchanges also remains at a

maximum of one per iteration (a total of n - 1 swaps).

Therefore, even though the data is randomized, the

number of main steps remains the same, so the time

complexity in the average case is also O(n²)

generating data exchanges.

• Worst Case Analysis

 In the worst case — for example, when the data is

8

arranged in descending order, such as: 100, 45, 38,

34, 20, 6 — the algorithm must still perform data

swapping:

 𝑛(𝑛 − 1)2 *(𝑛(𝑛−1):2)*2𝑛(𝑛 − 1)

• comparisons, and

• n - 1 swaps (because each iteration will

inevitably find an element smaller than the current

element and must be swapped). However, the number

of comparisons remains the same, so the time

complexity remains: 𝑂(𝑛2). Based on the above

analysis, Selection Sort has a time complexity of

𝑂(𝑛²) in all cases (best, average, worst), because the

number of comparisons performed is constant and

follows the formula for the sum of an arithmetic

series.This indicates that this algorithm is not

efficient for large data sets, despite being simple and

using constant memory O(1).

D. Analysis Comparative

An element smaller than the current element and

must be swapped). However, the number of comparisons

remains the same, so the time complexity remains:

𝑂(𝑛2) Comparison with other sorting algorithms

Choosing the appropriate sorting algorithm can have a

significant impact on program efficiency, especially

when managing large amounts of data.

AlthoughSelection Sort is considered less efficient in

analysis. Asymptotically, this method is still used in

simple systems or for teaching basic algorithms. This

article compares this algorithm with other algorithms in

terms of complexity and actual performance [37].

Table 3. Comparison of Sorting Algorithms Based on

Time Complexity, Space, and Stability

Algorit

m

Best

Time

Average

Time

Worst

Time

Space

Stable

Suitable

for

Selecti

on

Sort

O(n²)

O(n²)

O(n²)

O(1)

No

Data

small,

education

Inserti

on

Sort

O(n)

O(n²)

O(n²)

O(1)

Yes

Data

small,

almost

sorted

Merge

Sort

O(n log

n)

O(n

log n)

O(n

log n)

O(n)

Yes

Data big,

stable

needed

Quick

Sort

O(n log

n)

O(n

log n)

O(n²)

O(lo

g n)

No

Performa

nce tall,

No need

stability

Selection Sort still more superior in matter simplicity

and predictability—suitable for systems with limited

resources or for learning purposes.

• Merge Sort is preferred in applications that require

stability and can be scaled through parallel

processing.

• Quick Sort still become choice main in Lots library

standard Because speed its performance in condition

average

• Insertion Sort effective used on list Which small

sized and when data is almost regular [38][39].

Theoretical evaluation of the algorithm is a crucial

element in process development device soft. The

theoretical position explains how an algorithm can be

categorized according to its time and space complexity,

stability, and relationship to data structures. In the

research academic, method This useful For distinguish

between basic algorithms and more complex algorithms.

This analysis is very important as a basis for selecting

algorithms in real applications [40]. Computational

Model: Many studies use the RAM (Random Access

Machine) model as a basis for assumptions [41][42].

Table 4. Comparison of Sorting Algorithm Based on

Paradigm, Efficiency, and Stability

Algorithm

Paradig

m

Averag

e

Comple

xity

Stablili

ty

Theory

Related

Selection

Sort

Brute

Force

O(n²)

No

Iterative,

determinis

tic,

simple

Insertion

Sort

Increment

al

O(n²)

Yes

Suitable

for almost

sorted

lists

Merge Sort

Divide-

Conquer

O(n log

n)

Yes

Recursion,

stability,

optimal,

supports

theoretica

l proof

Quick Sort

Divide-

Conquer

O(n log

n)

No

Probabilis

tic proof,

flat

average

analysis

• Asymptotic Complexity: Assessing the effectiveness

of algorithms on a large scale by utilizing Big-O,

Omega, and Theta notations.

• Algorithm Stability: Whether the algorithm can

9

maintain the order of elements that have the same

key.

• Principles of Algorithm Design: Such as divide and

conquer, greed, coercion, and dynamic

programming.

• Sequencing Selection considered as algorithm

education and appropriate used in system Which own

memory limitation due to the need for O(1)

additional space. Insertion Sort very effective in

situation in where data almost sorted And become

base for development more optimal hybrid

algorithm.

Merge Sort in a way theoretical is method Which

most efficient for all situations due to its stable nature

and time complexity 𝑂 (𝑛 log 𝑛) which always

consistent.

• Quick Sort is very effective on average, but its

theoretical position prone to to condition worst 𝑂 (𝑛 2) ,

which depends on the pivot selection.

The theoretical position of the sorting algorithm

provides a deep understanding of the proper way and

time For use the algorithm. Selection Sort has mark

education Which tall, temporary Merge Sort and Quick

Sort excel in terms of performance. In the future,

theoretical understanding will remain the basis for

flexible and effective software engineering.

V. RESULT AND DISCUSSION

A. Theoritical Findings

The results of a theoretical analysis of the selection

sort algorithm show that this algorithm has a time

complexity of O(n²) [15]. This complexity was

confirmed through a

detailed manual approach, by analyzing the number of

basic operations in the form of comparisons and data

exchanges in each iteration. In the three case studies

analyzed, each consisting of six elements, the algorithm

required five iterations to complete the sorting process.

Each iteration involved searching for the minimum

element in the unsorted portion of the array, followed by

an exchange operation if necessary. This pattern reflects

the number of comparisons performed, which is n(n -

1):2 , which is a characteristic of algorithms with

quadratic complexity. Furthermore, eventhough the

number of comparisons reaches 15 times for n=6, the

number of exchanges performed is relatively small.

This indicates the efficiency of the algorithm in terms of

saving exchange (swap) operations, even though the

number of comparisons remains high. Therefore,

selection sort is more suitable for small datasets, where

clarity of logic and simplicity of implementation are

prioritized over time efficiency at a large scale [15].

B. Implication

Theoretical analysis of the Selection Sort algorithm

confirms that it maintains O(n²) time complexity across

all input types and makes it example ideal For introduce

the concept of deterministic algorithms in time

complexity analysis. This is due to the structure nested

loop that produces the number of comparisons as many

as n(n-1):2 [15]. which is a characteristic of algorithms

with quadratic complexity. Its simplicity allows for a

deep understanding of how control structures affect

algorithm efficiency. Due to its stable execution pattern

and ease of mathematical modeling, Selection Sort is

relevant as a basic model for understanding the

fundamental concepts of Big-O notation and the

influence of loop structures on algorithm efficiency.

Selection Sort has high educational value in algorithm

and data structure learning. The simplicity of its steps,

the search for the minimum element, and the exchange

process facilitate understanding of nested loops, the

comparison and exchange of elements, the introduction

of asymptotic notation such as O(n²), and proof

techniques like loop invariants and mathematical

induction [15].

It is a characteristic of algorithms with quadratic

complexity. Its simplicity allows for a deep

understanding of how control structures affect algorithm

efficiency. Due to its stable execution pattern and ease of

mathematical modeling, Selection Sort is relevant as a

basic model for understanding the fundamental concepts

of Big-O notation and the influence of loop structures on

algorithm efficiency. A comparative study also confirms

that Selection Sort is often chosen as the initial algorithm

in programming education due to its simple structure,

easy-to-understand logic, and clear steps. This algorithm

facilitates understanding of loop structures, minimum

value search, and element exchange[17]. I t is a

characteristic of algorithms with quadratic

complexity. Its simplicity allows for a deep

understanding of how control structures affect algorithm

efficiency. Due to its stable execution pattern and ease of

mathematical modeling, Selection Sort is relevant as a

basic model for understanding the fundamental

concepts of Big-O notation and the influence of

loop structures on algorithm efficiency. Practical

Considerations Although Selection Sort has high time

complexity and is not suitable for large datasets, the

algorithm still has practical uses and benefits in

certain situations. Its main advantages lie in its

simplicity of implementation, minimal number of

exchanges, and in-place nature, which saves memory.

This algorithm is ideal for small datasets, systems

with memory constraints, or conditions where swap

operations are expensive[15][17].

VI. CONCLUSION

This comprehensive theoretical analysis of the

Selection Sort algorithm reveals fundamental insights

into its computational behavior and practical

applications in computer science. The research

demonstrates that Selection Sort maintains a uniform

quadratic time complexity of O(n²) across all input

conditions, performing exactly n(n-1)/2 comparisons

10

regardless of the initial data arrangement. This

deterministic characteristic distinguishes it from other

sorting algorithms whose performance varies based on

input characteristics, making Selection Sort highly

predictable in its execution pattern.The mathematical

analysis confirms the algorithm's nested loop structure

produces consistent behavior with minimal swap

operations, validated through rigorous proof techniques

including direct proof, loop invariants, and

mathematical induction. While the quadratic complexity

limits its scalability for large datasets, Selection Sort

offers significant advantages in specific contexts,

particularly its O(1) space complexity that makes it ideal

for memory- constrained systems and scenarios where

exchange operations are computationally expensive.

The study establishes Selection Sort's exceptional

educational value as a pedagogical tool for teaching

fundamental algorithmic concepts. Its simplicity

facilitates understanding of Big-O notation, nested

loops, and complexity analysis principles, making

complex theoretical concepts accessible to students

learning computer science fundamentals. The algorithm

serves as an exemplary model for introducing

asymptotic analysis and mathematical proof techniques

in academic settings. Despite its limitations for large-

scale data processing, this research concludes that

Selection Sort's consistent performance predictability,

educational significance, and implementation simplicity

ensure its continued relevance in computer science

education and specialized applications requiring

deterministic behavior and minimal memory usage. The

study provides a comprehensive theoretical framework

that fills a significant gap in the literature by offering

thorough analysis of fundamental algorithms often

overlooked in favor of more sophisticated sorting

methods, thereby contributing valuable insights to both

algorithmic theory and educational methodology.

REFERENCE

[1] T. H. Cormen, CE Leiserson, RL Rivest, dan C.

Stein, “Introduction to Algorithms,” 4th ed.

Cambridge, MA: MIT Press, 2022, bab 3, hal. 43-

68.

[2] D. E. Knuth, “Big Omicron and Big Omega and

Big Theta,” ACM SIGACT News, vol. 8, no. 2,

pp. 18-24, Apr. 2021.

[3] R. Sedgewick dan K. Wayne, “Algorithms,” 4th

ed. Boston, MA: Addison-Wesley, 2020, bab 1.4,

hlm. 176-210.

[4] O. Bachmann dan A. Schönhage, “A

Comprehensive Survey of Asymptotic

Complexity Analysis,” Computer Science

Review, vol. 34, pp. 1-28, Nov. 2019.

[5] MIT OpenCourseWare, “Pengantar Algoritma:

Asymptotic Notation,” Massachusetts Institute

of Technology, 2011. [Online]. Tersedia:

https://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-006-

introduction-to-algorithms-fall-2011/lecture-

videos/lecture-1- algorithmic-thinking-peak-

finding/

[6] R. L. Graham, D. E. Knuth, dan O. Patashnik,

“Concrete Mathematics: A Foundation for

Computer Science,” 2nd ed. Boston, MA:

Addison- Wesley Professional, 2018, bab 9, hal.

441-511.

[7] M. Sipser, “Pengantar Teori Komputasi,” 3rd ed.

Boston,MA: Cengage Learning, 2020, bab 7, hlm.

275-327.

[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,

“Data Structures and Algorithms,” Boston, MA:

Addison- Wesley, 2021, bab 1, hlm. 1-45.

[9] T. Roughgarden, “Desain dan Analisis

Algoritma: Teknik Dasar,” Communications of

ACM, vol. 62, no. 3, pp. 87-94, Mar. 2019.

[10] Stanford CS161, “Desain dan Analisis

Algoritma,” Stanford University,2020. [Online].

Tersedia:

https://web.stanford.edu/class/archive/cs/cs161/cs

161.1168/

[11] A. V. Aho, J. E. Hopcroft, dan J. D. Ullman,

“Desain dan Analisis Algoritma Komputer,”

Reading, MA: Addison- Wesley, 1974, ch. 1, pp.

10-25.

[12] Rabiu, A. M., Garba, E. J., Baha, B. Y., &

Mukhtar, M. I. (2022). Comparative Analysis

between Selection Sort and Merge Sort

Algorithms. Nigerian Journal of Basic and

Applied Sciences, 29(1), 43– 48.

https://doi.org/10.4314/njbas.v29i1.5.

[13] Chauhan, Y., & Duggal, A. (2020). Different

Sorting Algorithms comparison based upon the

Time Complexity. International Journal of

Research and Analytical Reviews, 7(3), 114–121.

www.ijrar.org

[14] Vilchez, R. N. (2019). Bidirectional Enhanced

Selection Sort Algorithm Technique.

International Journal of Applied and Physical

Sciences, 5(1), 28–35.

https://doi.org/10.20469/ijaps.5.50004-1

[15] R. Purnomo dan T. D. Putra, “Theoretical

Analysis of Standard Selection Sort Algorithm,”

Sinkron: Jurnal dan Penelitian Teknik

Informatika, vol. 8, no. 2, hlm. 163–168, Apr.

2023. [Daring]. Tersedia di:

https://www.researchgate.net/publication/3705485

88

[16] Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to Algorithms (3rd

ed.). The MIT Press.

[17] Fahriye, “A Comparative Study of Selection Sort

and Insertion Sort Algorithms,” ResearchGate,

2016. [Online]. Tersedia

di:https://www.researchgate.net/publication/33211

0710

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/lecture-videos/lecture-1-algorithmic-thinking-peak-finding/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/
https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/
https://doi.org/10.4314/njbas.v29i1.5
http://www.ijrar.org/
https://doi.org/10.20469/ijaps.5.50004-1
https://www.researchgate.net/publication/370548588
https://www.researchgate.net/publication/370548588
https://www.researchgate.net/publication/370548588
https://www.researchgate.net/publication/332110710
https://www.researchgate.net/publication/332110710
https://www.researchgate.net/publication/332110710

11

C. (2009). Introduction to Algorithms (3rd ed.).

MIT Press. (hlm. 157–197)

[18] Sedgewick, R., & Wayne, K. (2011). Algorithms

(4th ed.). Addison-Wesley. (hlm. 245–267)

[19] Knuth, D. E. (1998). The Art of Computer

Programming, Volume 3: Sorting and Searching

(2nd ed.). Addison-Wesley. (hlm. 106– 120)

[20] Weiss, M. A. (2013). Data Structures and

Algorithm Analysis in C++ (4th ed.). Pearson.

(hlm. 205–210)

[21] McConnell, J. J. (2007). Analysis of Algorithms:

An Active Learning Approach. Jones & Bartlett.

(hlm. 95–110)

[22] Knuth, D. E. (1998). The Art of Computer

Programming, Volume 3: Sorting and Searching.

Addison- Wesley. Hal: 80–150.

[23] Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to Algorithms (3rd

ed.). MIT Press. Hal: 25–70.

[24] Sedgewick, R., & Wayne, K. (2011).

Algorithms (4th ed.). Addison-Wesley. Hal: 245–

310.

[25] Weiss, M. A. (2012). Data Structures and

Algorithm Analysis in C++ (4th ed.). Pearson.

Hal: 135– 180.

[26] Baase, S., & Van Gelder, A. (2000). Computer

Algorithms: Introduction to Design and Analysis

(3rd ed.). Pearson. Hal: 70–120.

[27] Knuth, D. E. (1998). The Art of Computer

Programming, Volume 3: Sorting and Searching.

Addison-Wesley. Hal: 100–120.

[28] Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to Algorithms (3rd

ed.). MIT Press. Hal: 25–35.

[29] Sedgewick, R., & Wayne, K. (2011). Algorithms

(4th ed.). Addison-Wesley. Hal: 260–270.

[30] McGeoch, C. C. (2012). A Guide to Experimental

Algorithmics. Cambridge University Press. Hal:

15–40.

[31] Weiss, M. A. (2012). Data Structures and

Algorithm Analysis in C++ (4th ed.). Pearson.

Hal: 155–165.

[32] Baase, S., & Van Gelder, A. (2000). Computer

Algorithms: Introduction to Design and Analysis

(3rd ed.). Pearson. Hal: 110–125.

[33] Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to Algorithms (3rd

ed.). MIT Press. Hal: 157–180.

[34] Sedgewick, R., & Wayne, K. (2011). Algorithms

(4th ed.). Addison-Wesley. Hal: 310–340.

[35] Weiss, M. A. (2012). Data Structures and

Algorithm Analysis in C++ (4th ed.). Pearson.

Hal: 145–190.

[36] Knuth, D. E. (1998). The Art of Computer

Programming, Volume 3: Sorting and Searching.

Addison-Wesley. Hal: 100–150.

[37] Weiss, M. A. (2012). Data Structures and

Algorithm Analysis in C++ (4th ed.). Pearson.

Hal: 145–180.

[38] Sedgewick, R., & Wayne, K. (2011). Algorithms

(4th ed.). Addison-Wesley. Hal: 310–340.

[39] Baase, S., & Van Gelder, A. (2000). Computer

Algorithms: Introduction to Design and Analysis

(3rd ed.). Pearson. Hal: 80–120.

[40] McGeoch, C. C. (2012). A Guide to Experimental

Algorithmics. Cambridge University Press. Hal:

33–65.

[41] Cormen, T. H., Leiserson, C. E., Rivest, R. L., &

Stein, C. (2009). Introduction to Algorithms (3rd

ed.). MIT Press. (hlm. 157–170)

[42] Knuth, D. E. (1998). The Art of Computer

Programming, Volume 3: Sedgewick, R., &

Wayne, K. (2011). Algorithms (4th ed.). Addison-

Wesley. (hlm. 235–240)

[43] Dasgupta, S., Papadimitriou, C. H., & Vazirani, U.

V. (2006). Algorithms. McGraw-Hill. (hlm. 35–50)

[44] Estivill-Castro, V., & Wood, D. (1992). A survey of

adaptive sorting algorithms. ACM Computing

Surveys (CSUR), 24(4), 441–476.

https://doi.org/10.1145/146370.146381

[45] McGeoch, C. C. (2012). A Guide to Experimental

Algorithmics. Cambridge University Press. (hlm.

10–30)

https://doi.org/10.1145/146370.146381

