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Abstract—Algorithm complexity analysis is a 

fundamental aspect in computer science education and 

research, providing a critical framework for evaluating 

computational efficiency. This study presents a 

comprehensive theoretical evaluation of the Selection 

Sort algorithm using Big-O notation analysis to 

determine formal complexity bounds. The research 

aims to rigorously assess the time complexity of 

Selection Sort across best-case, average-case, and 

worst-case scenarios through asymptotic analysis 

methodology. The theoretical framework employs Big-

O, Big-Theta, and Big-Omega notations alongside 

mathematical proof techniques including summation 

analysis and formal verification methods. A systematic 

operation-counting methodology is applied to derive 

precise complexity characterizations for each 

algorithmic phase. The analysis shows that Selection 

Sort exhibits uniform quadratic time complexity 𝑂(𝑛²) 

under all input conditions, unlike other sorting 

algorithms whose performance varies based on input 

characteristics. Mathematical evidence confirms that 

the algorithm performs exactly 𝑛(𝑛−1)/2 comparisons 

regardless of the initial data arrangement, thereby 

establishing a strict boundary for theoretical 

complexity. These2 findings provide a complete 

mathematical basis for evaluating Selection Sort 

complexity, making a significant contribution to 

algorithm analysis literature and educational 

methodologies. Despite its consistent performance 

predictability, the quadratic complexity limits its 

scalability for large datasets. This theoretical evaluation 

serves as a comprehensive reference for algorithm 

selection decisions and complexity analysis instruction. 
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I. INTRODUCTION 

Algorithms are key elements inccomputer science 

that function to arrange items in a specific order, either 

ascending or descending. Some common sorting 

algorithms include Bubble Sort, Selection Sort, 

Insertion Sort, Merge Sort, Quick Sort, and Heap Sort. 

Each algorithm own characteristics typical in matter 

complexity time, memory usage [18][43], and 

efficiency in different data contexts. The complexity of 

sorting algorithms can be classified based on best case, 

average case, and worst case. For example, Quick Sort 

has an average complexity of 𝑂(𝑛 log 𝑛), but in the 

worst case it can reach 𝑂(𝑛2). On the other hand, 

Merge Sort always has a complexity of 𝑂(𝑛 log 𝑛) in 

all cases, although it requires a considerable amount of 

extra space. Selection Sort, although simple, has a time 

complexity of 𝑂(𝑛2) for all types of cases [16]. 

Algorithm analysis has undergone significant 

development And become aspect important in theory 

computers. With the increasing need to process large 

amounts of data in real-time, the study of algorithm 

efficiency has become increasingly necessary. The 

analysis not only focuses on execution time, but also 

considers aspects such as stability, space efficiency, 

adaptability, and parallel capabilities. These 

innovations have bring up various method analysis 

advanced such as amortized analysis, probabilistic 

analysis, And parameterized complexity [44][19]. 

Research in the field of sorting algorithms tends to 

be grouped into several structural approaches, 

including  

• Divide and Conquer Methods: For example Quick 

Sort and Merge Sort. 

• Iterative Selection Based Methods: Such as 

Selection Sort and Bubble Sort. 

• Data Structure Based Methods: Such as Heap Sort 

which utilizes a heap structure, or the radix and 

bucket algorithm which uses arrays and hashes 

[45]. 

 

 

mailto:24111814069
mailto:24111814016@mhs.unesa.ac.id
mailto:2411814006@mhs.unesa.ac.id
mailto:24111814121
mailto:24111814068%7D@mhs.unesa.ac.id
mailto:azissuroni@unesa.ac.id


2   

A. The background of the importance of algorithm 

analysis in computer science 

Algorithm analysis is very important in the field of 

computer science as it helps in selecting the best solution 

for a problem. a problem. Algorithm is a series steps or 

procedures used to solve problems in an organized 

manner, and in the programming process, algorithms 

relate to the logic of determining what program to create 

or write. In software development, selecting the right 

algorithm has a significant impact on system 

performance, especially for large-scale applications 

such as data processing, compression, and artificial 

intelligence [20]. Without sufficient analysis, software 

is at risk of experiencing performance bottlenecks or 

inefficient use of resources. Algorithms can understood 

as a series step or calculation Which required For finish 

problems, especially the processes followed by the 

computer. A good algorithm is one that uses the right 

tools for the purpose, while choosing the wrong 

algorithm is like cooking a dish that does not follow the 

recipe and tool And material Which required, so that the 

result inefficient or inappropriate, because cooking also 

has procedures and rules that must be followed [46]. 

 

B. Algorithm in Knowledge Computer 

Algorithm analysis is very important in the field of 

computer science as it helps in selecting the best solution 

for a problem. a problem. Algorithm is a series steps or 

procedures used to solve problems in an organized 

manner, and in the programming process, algorithms 

relate to the logic for determining the program to be 

created or written.[21] In software development, 

selecting the right algorithm very impact on system 

performance, especially for large-scale applications 

such as data processing, compression, and artificial 

intelligence. Without sufficient analysis, software risks 

experiencing performance bottlenecks or inefficient use 

of resources. An algorithm can be understood as a series 

of steps or calculations Which required For finish 

problems, especially the processes followed by the 

computer. A good algorithm is one that uses the right 

tools for the purpose, while choosing the wrong 

algorithm is like cooking a dish that does not follow the 

recipe and tool And material Which required, so that the 

result inefficient or inappropriate, because cooking also 

has procedures and rules that must be followed [47]. 

 

C. Role Notation Big O in Efficiency Evaluation 

Application of Big O Notation to evaluate the 

efficiency of algorithms. Notation O Big, Which Also 

known as Landau Notation or Notation Asymptotic, 

is symbol mathematical term used to describe the 

characteristics of an asymptotic function. The purpose 

of this is to understand behavior A function on mark 

input extremes, whether very large or very small, in a 

simple but precise manner so that they can be 

compared with other functions. 

 

Besides That, symbol O functioning For show limit 

above from the asymptotic behavior of a distance or 

measure of a simpler function. There are also other 

symbols such as O and T that represent boundaries top, 

bottom, and average. Its implementation divided to in 

two field: in mathematics, this notation is used to 

specify the characteristics of the remaining terms in a 

truncated infinite region, especially in analysis series 

asymptotic. In In computer science, this notation is 

used to study the complexity of an algorithm [23]. 

In general, big O notation is used to express 

asymptotic limits. However, these asymptotic limits 

are more often and accurately expressed by the symbol 

T (big theta), as will be explained further below. This 

notation was first introduced in Germany by a number 

theorist, Paul Bachmann, in 1894 in the second edition 

of his book entitled Analytische Zahlentheorie, which 

the first edition published in 1892 did not cover the 

theme of big O notation. This notation became more 

famous thanks to the contribution of another German 

number theorist, Edmund Landau, so it is sometimes 

also called Landau notation. Big O comes from the 

English term "order of" and was originally the symbol 

Omicron big, but Then adopted with letter Latin has a 

similar form, namely a capital letter “O”, and not the 

number zero (0) [48]. 

 

D. Election Algorithm Selection Sort as Case Studies 

We conducted a study on the application of the 

Selection Sort algorithm to manage inventory data in 

this article. This algorithm was chosen because it is easy 

to use and shows effectiveness on small to medium 

sized datasets. The way it works is by taking the 

smallest element from the unsorted section and 

exchanging it with the first element in that section. This 

process is repeated until the entire dataset succeed 

sorted. Study This carry out the implementation 

algorithm Selection Sort on system inventory 

management using Python programming language. The 

results of the study show that this algorithm increases 

efficiency in sorting data, making it easier for users to 

find the information they need. need, as well as reduce 

time needed to manage inventory. In addition, this 

system provides convenience for employees and store 

managers in accessing product availability information 

more easily. fast And easy, so that speed up decision 

making in inventory management. Overall, the 

application of the Selection Sort algorithm in inventory 

management inventory goods has proven effective in 

optimizing data management processes [24]. With thus, 

study This play a role in developing a better and more 

efficient inventory management system. 

 

E. Research Gap: Lack of Comprehensive Theoretical 

Analysis 

Understanding research gaps is crucial for 

researchers. By identifying areas in which knowledge 

remains limited, researchers can better focus their 
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studies and ensure that their work contributes 

meaningfully to existing literature [25]. This awareness 

not only promotes innovation by highlighting 

unanswered questions, but also enables the 

development of more rigorous methodologies, improves 

the validity of research findings, and broadens the 

scientific landscape by addressing underexplored areas. 

Studying research gaps also serves to clarify which 

areas require further investigation [26]. 

While Selection Sort has been widely discussed in 

the literature, particularly in classical algorithm 

textbooks such as that of Sedgewick and Wayne [25], 

the treatment often remains at the level of basic 

implementation and general performance analysis. 

However, to date, limited attention has been given to in-

depth theoretical exploration or contextual adaptability 

of this algorithm.To clarify the distinction between prior 

work and the present study, a structured comparison is 

provided in Table 1: 

 

Table 1. the distinction between prior work and the 

present study 
Aspect Sedwick & Wayne 

(2011) 

This Study 

Primary 

Focus 

Provides an overview 

of sorting algorithms, 

including Selection 

Sort,   with   an 

emphasis on 

implementation and 

general performance 

analysis 

Offers an  in- 

depth 

theoretical 

examination of 

Selection Sort, 

focusing    on 

structural 

properties and 

algorithmic 
complexity. 

Theoritical 

Depth 

Limited to 

introductory-level 

explanations  aimed 

at practical 
understanding. 

Develops a 

comprehensive 

and  systematic 
theoretical 

framework. 

Comparative 

Perspective 
Focuses primarily 

on asymptotic 

analysis   (Big-O) 

and empirical 

performance 

metrics. 

I ncorporates 

both  technical 

(Big-O)  and 

non-technical 

aspects such as 

implementation 

simplicity and 
determinism. 

Application 

Context 

Does not address 

algorithm adaptation 

in specialized 

domains such as 

hybrid systems or 

embedded 
computing. 

Explores the 

adaptability of 

Selection Sort in 

hybrid sorting 

models and 

embedded 

system 

scenarios. 
Research Lacks exploration of Identifies and 

Contribution recent trends or addresses 

 underexplored areas research gaps by 

 related to Selection mapping current 

 Sort. trends and 

  proposing novel 

  perspectives  in 

  sorting 

  algorithm 

  studies. 

 

This comparative overview highlights a significant 

gap in the existing literature: the lack of a 

comprehensive theoretical and contextual analysis of 

the Selection Sort algorithm. This study aims to fill that 

gap by not only analyzing the algorithm’s internal 

structure and complexity, but also by exploring its 

relevance and adaptability in modern computational 

settings. In doing so, the research contributes to both the 

theoretical advancement and practical application of 

sorting algorithm studies. 

 

II. LITERATURE REVIEW 

A. The Basics Notation Big- O 

Formal Definitions of Big-O, Big-Theta, Big 

Omega.The mathematical foundation of algorithm 

analysis is very relies on asymptotic notation, which 

provides a convenient framework for characterizing 

computational complexity [1]. Big-O notation, formally 

introduced by Bachmann and popularized by Knuth, 

represents an upper bound on algorithmic complexity 

[4]. According to Cormen et al., Big- O notation is 

formally defined as: for a given function 𝑔 ( 𝑛) , 𝑂(𝑔 ( 

𝑛 ) ) represents the set of functions 𝑓 ( 𝑛 ) so that there 

is constant positive c And n₀ in where 0 ≤ 𝑓 ( 𝑛 ) ≤ 𝑐 − 

𝑔 ( 𝑛 ) for all 𝑛 ≥ 𝑛 0 [1]. 

Complementary notation provides a complete 

asymptotic characterization. Big-Omega ( Ω ) notation 

describe the boundaries   lower,   in   where   Ω (𝑔 ( 𝑛 ) 

) − { 𝑓 (𝑛 ) : } There is constant positive 𝑐 And 𝑛 𝑜 so 

that 0 ≤ 𝑐 − 𝑔 (𝑛 ) ≤ 𝑓 ( 𝑛 ) for all 𝑛 ≥ 𝑛 𝑜 [2]. Big-Theta 

Notation ( Θ ) represents a strict constraint, defined as 

Θ (𝑔 ( 𝑛 ) ) = { 𝑓 ( 𝑛)} there is a constant positive 𝐶 1 , 

𝐶 2 , and 𝑛 𝑜 so that 0 ≤ 𝑐 1 − 𝑔 ( 𝑛 ) ≤ 𝑓 ( 𝑛 ) ≤ 𝑐 2 − 𝑔 

( 𝑛 ) For all 𝑛 ≥ 𝑛 𝑜 [1]. This tripartite notation system 

allows the characterization of complexity. Which 

appropriate in various perspective analytic different [3]. 

Knuth emphasizes that these notations serve not only as 

computational tools, but also as fundamental 

mathematical constructs that enable rigorous 

algorithmic analysis [4]. Formal definitions establish 

the theoretical framework necessary to perform 

systematic complexity evaluations, providing the 

mathematical rigor necessary for academic research [5]. 

 

B. Foundation Mathematics 

The mathematical foundation underlying asymptotic 

analysis comes from advanced mathematical concepts 

including limits, calculus, and discrete mathematics [6]. 

Sedgewick and Wayne showed that asymptotic analysis 

requires an understanding of growth rates, where 

functions are classified by their dominant terms as the 

input size approaches infinity [7]. Their mathematical 

framework uses the theory limits, specifically lim lim 
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𝑓(𝑛) / g (n), for build 𝑛→∞connection asymptotic 

between function [1]. Graham et al. provide a 

comprehensive mathematical tool for asymptotic 

analysis, including summation and generating function 

techniques [8]. Its mathematical foundation includes 

several key principles: first, the dominance of the 

highest-order terms in polynomial expressions; second, 

the insignificance of constant factors in asymptotic 

growth; and third, the application of mathematical 

induction. For construction proof formal [8]. Principle- 

This principle forms the theoretical basis for evaluating 

algorithm complexity. 

The mathematical rigor required for asymptotic 

analysis demands precise formulation of assumptions, 

clear statements of theorems, and systematic 

construction of proofs [9]. Sipser emphasizes that the 

mathematical foundation must include an 

understanding of discrete probability, combinatorics, 

and algebraic manipulation techniques that are essential 

for complexity analysis [9]. Exchange element the 

smallest that have been selected with elements in the 

unsorted part of the array. This process will continue 

until all elements in the array are completely sorted[12]. 

The Selection Sort algorithm is the simplest algorithm, 

but this algorithm is not efficient in large data sets 

[13][14]. 

 

C. Pseudocode 

Algorithm Selection Sort started with look for 

smallest element from subarray Which Not yet sorted. 

Element then exchanged with the first element of the 

subarray. This step is repeated for all elements until the 

array is sorted. Here is an example of a pseudocode for 

the Selection Sort algorithm: 

Void selectionsort(int arr[], int n) 

{ 

int i, min, time; 

for(int i=0;i<n- 1;i++) 

{ 

min=i; 

for(int j=i+1;j<n;j++) 

{ 

if(arr[j]<arr[min]) min=j; 

} 

temp=arr[min]; arr[min]=arr[j]; arr[j]=temp; 

} 

  

The principles of asymptotic analysis guide the 

systematic evaluation of algorithmic efficiency through 

a methodological framework that has been established 

[10]. Roughgarden identified three basic principles: 

worst-case analysis for determining upper bounds, 

average-case analysis for evaluating practical 

performance, and best-case analysis for determining 

lower bounds [10]. These principles collectively 

provide a comprehensive algorithmic characterization. 

The asymptotic dominance principle states that higher-

order terms determine computational complexity, 

making lower- order terms and constants asymptotically 

insignificant [1]. This principle allows comparison of 

algorithms based on fundamental growth characteristics 

rather than specific details. implementation [7]. 

Methodology This emphasize in scalability analysis, 

examining the behavior of the algorithm as the input 

size increases towards infinity [3]. 

Aho et al. showed that the principles of asymptotic 

analysis should combine theoretical rigor and practical 

application [8]. These principles include: methodology. 

calculation operation Which systematic, verification of 

mathematical proofs, and a comparative analysis 

framework for evaluation algorithm [8]. Principles This 

building the foundation For do analysis theoretical 

Which strict to algorithmic complexity. 

 

E. Selection Sort Algorithm Definition Algorithm 

Selection Sort 

The Selection Sort algorithm is an algorithm that 

sorts data based on comparison. This algorithm will 

examine an array of elements and will try to find the 

smallest element in the array. Then this algorithm swaps 

the smallest element with the element in the first 

position. Then after it is done, it tries to select 

the smallest element from the unsorted part of the array 

after performing each iteration. Then he Characteristics 

Base Algorithm Selection Sort. Selection Sort is a 

comparison-based sorting algorithm that has the basic 

characteristic of working in-place and has a lower 

number of data exchanges compared to other simple 

algorithms. However, this algorithm has a time 

complexity. 𝑂 ( 𝑛 2 )  in every condition input, so it 

doesn't efficient for large data [15]. 

 

F. Analysis Complexity Previous theoretical work exists 

In computer science, algorithms are used to solve 

various problems in an organized manner. The 

effectiveness of an algorithm is assessed through 

complexity analysis, which assesses the amount of 

resources (time and memory) required depending on the 

size of the input. This assessment is very important 

because it directly affects the performance of the 

software, especially when handling large amounts of 

data [28][27]. 

1. Donation Donald E. Knuth 

In his book entitled The Art of Computer 

Programming, Knuth serve runway mathematics solid 

to understand algorithms, especially algorithms for 

sorting and searching. He introduced the methods of 

average analysis, worst-case analysis, and probabilistic 

approaches to evaluating the performance of algorithms 

[29]. 

2. Cormen and his colleagues. and Compilation of Book 

Analysis  

"Introduction Algorithm" Which written by Cormen 

and his colleagues. Serve method Whichregular to 

analyze algorithms using asymptotic notation ,Which 

covers notation Big-O, Omega, And Theta. They Also 
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introduce approach in construct an algorithm like for 

And conquer, greedy, and dynamic programming 

[31][30]. 

3. Visual and Experimental Methods by Sedgewick and 

Wayne 

Sedgewick and Wayne contributed through 

experimental methods in analyzing algorithms. They 

combined theoretical methods and data visualization to 

provide a practical understanding of algorithm 

performance, especially in the area of sorting 

algorithms. 

4. A Study of Data Structures and Complexity by Weiss. 

Mark Allen  

Weiss emphasizes the importance of analyzing 

algorithms in relation to data structures, as well as 

presenting the efficiency of various operations (such as 

searching, inserting, And deletion) on diverse structure 

such as trees and hash tables [32]. The theoretical work 

that has been done has created a very solid framework 

for analyzing algorithms. However, there is still scope 

for integrating theoretical and empirical approaches in 

research on algorithm performance. The mastery of 

Good to theory very crucial as foundation to create more 

flexible and effective algorithms in the context of use in 

everyday life. 

5. The Gap in literature At the moment 

Despite significant advances in algorithmic theory— 

particularly in the development of formal models such 

as Big-O notation—there remains a critical gap between 

theoretical complexity and practical implementation. 

This study aims to investigate these overlooked aspects, 

particularly regarding simple algorithms like Selection 

Sort, which are often excluded from contemporary 

algorithmic research. 

• Lack of Evaluation of Simple Algorithms 

Most algorithm textbooks and research papers 

tend to focus on advanced algorithms with lower 

time complexities, often disregarding simpler ones 

such as Selection Sort. For instance, Baase and Van 

Gelder [33] provide minimal theoretical treatment of 

Selection Sort, describing it only briefly in the 

context of introductory examples. Similarly, Cormen 

et al. [34] and Sedgewick & Wayne [35] emphasize 

efficient algorithms like Merge Sort, Quick Sort, and 

Heap Sort, while relegating Selection Sort to a 

marginal position without detailed exploration. This 

omission is problematic because Selection Sort 

remains relevant in educational settings, where its 

deterministic behavior and conceptual simplicity 

make it ideal for teaching core algorithmic 

principles. Moreover, it is often still used in 

embedded systems, where memory and resource 

constraints make simpler, predictable algorithms 

preferable. The lack of in-depth theoretical and 

applied analysis of such algorithms represents a 

blind spot in the current literature. 

• Discrepancy Between Theory and Practice 

As noted by Cormen et al. [34], algorithm 

analysis often centers on asymptotic behavior (e.g., 

Big-O) without considering empirical performance 

under real-world hardware conditions. Factors like 

cache utilization, branch prediction, and memory 

hierarcy are rarely addressed. This hierarchy are 

rarely addressed. This results in a disconnect 

between theoretical efficiency and practical 

execution times. 

• Over-Reliance on Idealized Models 

Many analyses use the RAM (Random Access 

Machine) model, which assumes constant-time 

access for all operations and ignores delays from 

system-level behaviors such as caching, latency, and 

instruction pipelining. Sedgewick and Wayne [35] 

acknowledge these limitations but do not integrate 

them into their complexity evaluations. 

Consequently, algorithms may perform quite 

differently on real hardware than theoretical models 

suggest. 

• Limited Integration with Modern Computing 

Architectures 

The algorithm literature often fails to reflect the 

demands of parallel systems, GPU-based 

computation, or big data environments. Existing 

complexity analyses rarely incorporate modern 

workloads or architectural features such as 

concurrency or data locality. As a result, there is a 

lack of algorithmic strategies optimized for these 

emerging domains. 

• Lack of Interdisciplinary Applicability 

Although algorithms are widely applied in 

domains like bioinformatics, finance, and 

computational linguistics, most literature remains 

highly technical and insular to computer science. 

There is little effort to simplify or adapt 

algorithms—especially simple ones—for cross-

disciplinary usage. Bridging this gap requires 

making algorithms more accessible and practically 

grounded. 

 

III. METHODLOGY 

A. Framework Work Theoretical 

Framework theoretical For analysis complexity 

Selection Sort uses a systematic approach based on 

notation theory. asymptotic And methodology proof 

mathematical [1]. The analysis framework follows the 

established paradigm of evaluating algorithms through 

the enumeration of operations, modeling mathematics, 

And construction proof formal [3]. This approach 

ensures a rigorous theoretical evaluation that is 

consistent with academic standards for algorithm 

analysis research. 

Approach analysis complexity use a layered 

methodology that includes three analytical 

perspectives: worst-case scenario analysis using Big-O 

notation, average-case evaluation through probabilistic 

analysis, and best-case checking for completeness [10]. 
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Each analytical layer uses mathematical tools and proof 

techniques that conform to a defined complexity limit 

[2].Simplification of complex expressions into standard 

asymptotic forms [8]. 

This framework combines formal mathematical 

verification through constructive proof methodology, 

ensuring that complexity bounds are mathematically 

sound and academically rigorous [4].  

  

B. Devices Mathematics used 

This mathematical tool for theoretical analysis 

This mathematical tool for theoretical analysis 

combines a number of draft And technique mathematics 

protocol analysis algorithm Which already exists, 

starting with the decomposition of the algorithm, 

continuing with the identification and enumeration of 

operations, and ending with a mathematical proof of the 

complexity bounds [1]. An important basis for rigorous 

complexity evaluation [8].  

The main tools include summation analysis for 

evaluating repetition nesting, in where… represents 

model mathematics For operation comparison Selection 

Sort [1]. Induction mathematics serves as a formal proof 

technique to establish limit complexity in various size 

input [3]. Additional mathematical tools include 

recurrence relation analysis, probability theory for 

average case evaluation, and discrete mathematics for 

combinatorial analysis. [9]. Framework Work 

mathematical using limit theory to characterize 

asymptotic behavior, specifically examining the 

quadratic complexity bounds [7]. Algebraic 

manipulation techniques allow this toolkit includes a 

formal proof construction methodology, using direct 

proof, proof by contradiction, and constructive proof 

techniques appropriate for different aspects of 

complexity analysis [6]. Graph theory concepts support 

the visualization of algorithms and analysis structures, 

while probability theory discrete allow analysis 

statistics algorithm behavior on different input 

distributions [9]. 

 

C. Analysis Method 

Evaluation algorithm Selection Sort done 

systematically through the following stages: 

• Initialization Process Sequencing 

The algorithm starts by iterating from the first index 

to the last. index final in array. Every iteration aims 

to move the smallest element of an unsorted subarray 

to its proper position. 

• Search Element Minimum 

Value of the unsorted elements. Process This 

involving comparison between element in a nested 

loop structure. 

• ExchangeElements 

After element the smallest found, algorithm will 

perform one exchange to place the element in the 

correct position. 

• Iteration/Repetition 

Step This will repeated until all over element in the 

array are in the right order. The algorithm will not 

stop until all position has processed And ensure the 

array is completely sorted. This Process produce 

amount comparison as much as 𝑛 𝑛−1. Model This 

state that the amount operation 2 grow in a way 

quadratic to size input n, Which show that 

complexity time algorithm This is 𝑂 ( 𝑛 2 ) for all 

cases [1]. 

 

D. Proof Techniques Used 

Analysis and validation of the efficiency of the 

Selection Sort algorithm is carried out by applying the 

following mathematical proof techniques: 

• Direct Proof 

This technique is used to show the exact number 

combines a number of draft And technique 

mathematics of comparisons and exchanges 

performed by the algorithm. This proof is done by 

calculating the number of iterations of nested loops 

and reducing them to a quadratic mathematical 

formula. 

• Loop Invariant 

This technique is used to show the exact number of 

comparisons and exchanges performed by the 

algorithm. This proof is done by calculating the 

number of iterations of nested loops and reducing 

them to a quadratic mathematical formula. 

• Mathematical Induction 

This technique is used to prove that Selection Sort 

will always sort the array correctly, regardless of the 

number of elements. 

o Base Case: For n=1, the array is already 

sorted. 

o Induction Step: Assuming the algorithm 

works for n= k, it is also proven to apply for 

n= k + 1. 

• Asymtotic Analysis 

Using the limit theory: 

 

lim T 𝑛(𝑛 − 1) : 2 =1/2 

𝑛→∞ 

It can therefore be concluded that the execution time 

of the Selection Sort algorithm is at the upper limit 

of quadratic, namely O(n²) [1]. 

 

IV. . THEORITICAL ANALYSIS 

A. Algorithm Decomposition 

This refers to partitioning a complex algorithm into 

smaller, more tractable components so that each part 

can be understood, implemented, and analysed more 

efficiently [16]. This approach, widely adopted in 

software engineering and algorithm design, enhances 

modularity and problem-solving effectiveness. The 

present theoretical investigation examines the 

selection-sort algorithm by means of three six-

element arrays [15]. The primary objective is to sort 

each array in ascending order through five manual 
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iterations. The analytical stages are summarised 

below. 

• Initialization and Selection of Minimum- Value 

Selection. 
Beginning at index 0, the algorithm 

searches the remaining sub-array for 
the smallest element. Once identified, 
this minimum value is swapped with 
the element at the current index. The 
procedure is repeated from index 0 to 
index (n − 2), yielding n − 1 iterations. 

• Manual Iteration 

During every iteration, the current element is 

compared with each subsequent element. In-line 

comments document whether a swap occurs and 

which indices are involved.Three Array Examples 

Analyzed. 

• ArraysUnder Examination 

 Example 1 

Input: 6, 45, 34, 20, 100, 38 
Sorted Output: 6, 20, 34, 38, 45, 100 

Input: 89, 40, 33, 56, 99, 39 
Sorted Output: 33, 39, 40, 56, 89, 99 

Input: 28, 30, 37, 2, 78, 23 
Sorted Output: 2, 23, 28, 30, 37, 78 

• Observation on the Iterative Procces 

Each example requires five iterations (n − 1). The 

number of swaps and the indices involved are 

recorded. No swap occurs in several iterations of 

Examples 1 and 2, whereas every iteration in Example 

3 triggers a swap, indicating a more dynamic 

positional adjustment. T 
 
To clarify the iteration process of the selection sort 

algorithm, the following is a step-by-step visualization 
in table form. This visualization shows how the 
elements in the array are processed in each iteration, 
including the elements being compared, the 
minimum value found, the indices involved, and 
whether a data swap occurs. 

Example Array: 6, 45, 34, 20, 100, 38 

The following table shows the steps of the iteration in 

the selection sort algorithm. 
Iteration Curr

ent 
Arra
y 

Minimu
m 
Found 

Minimu
m 
Indeks 

Swap 

1 6, 45, 34, 
20, 100, 
38 

6 0 No 

2 6, 45, 34, 
20, 100, 
38 

20 3 45 ⇄ 
20 

3 6, 20, 34, 
45, 100, 
38 

34 2 No 

4 6, 20, 34, 
45, 100, 38 

38 5 45 ⇄ 
38 

5 6, 20, 34, 
38, 100, 45 

45 5 100 ⇄ 
45 

 

B. Elementary Operations and Complexity 

• Identification of Elementary Operations 

 Two fundamental operations are counted 

explicitly: 

• Comparison – Evaluating two array elements 

• Swap – Exchanging two elements when 

necessary For array size 𝑛 = 6 , done 𝑛 − 1 

= 5 iteration. In each iteration, the number of 

comparisons is 𝑛 − 𝑖 − 1 . Hence, the total 

comparisons are ( 𝑛 − 1 ) + ( 𝑛 − 2 ) + ⋯ + 1 = 

𝑛 ( 𝑛 − 1 ) 2. 

• Manual Trace and Visualization 

  A complete operation trace is recorded, detailing 

every comparison, minimum update, and swap. This 

explicit trace provides a transparent account of 

algorithmic behaviour. 

• Time Complexity 

  Given the quadratic growth in the number of 

comparisons, selection sort exhibits 𝑂(𝑛²) time 

complexity. Consequently, it is unsuitable for 

large‑scale  data  sets  because  of  the  high 

comparison overhead [15]. 

 

C. Mathematical Proof of Complexity  

  Mathematical complexity is the analysis of the 

number of operations required by an algorithm to 

complete its task that can be completed in some 

situations. It is usually interpreted in terms of Big-

O notation (such as O(n²), which indicates the 

execution time in terms of the number of elements n 

sorted). 

• Best case analysis 

In selection sort, even though the initial data is 

already in an ascending order, the algorithm will still 

make comparisons between as many elements as 

possible. n ( n - 1) 2* (n ( n - 1) : 2n ( n -1) time. This 

is because selection sort  does not have a 

mechanism for stop early if the data is already sorted. 

For example, If data beginning is: 6, 20, 34, 38, 45, 

100 Fixed Algorithms will look for element the 

smallest in unordered parts and compare each pair. 

• Average Case Analysis 

In the average case, the elements are arranged 

randomly. Selection sort will still perform the same 

number of comparisons as in the best and worst 

cases, namely: 

𝑇(𝑛) = 𝑛(𝑛 − 1)2𝑇(𝑛) = n( n -1):2 𝑇(𝑛) = 2𝑛(𝑛 − 

1). The number of exchanges also remains at a 

maximum of one per iteration (a total of n - 1 swaps). 

Therefore, even though the data is randomized, the 

number of main steps remains the same, so the time 

complexity in the average case is also O(n²) 

generating data exchanges. 

• Worst Case Analysis 

 In the worst case — for example, when the data is 
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arranged in descending order, such as: 100, 45, 38, 

34, 20, 6 — the algorithm must still perform data 

swapping: 

  𝑛(𝑛 − 1)2 *(𝑛(𝑛−1):2)*2𝑛(𝑛 − 1) 

• comparisons, and 

• n - 1 swaps (because each iteration will 

inevitably find an element smaller than the current 

element and must be swapped). However, the number 

of comparisons remains the same, so the time 

complexity remains: 𝑂(𝑛2). Based on the above 

analysis, Selection Sort has a time complexity of 

𝑂(𝑛²) in all cases (best, average, worst), because the 

number of comparisons performed is constant and 

follows the formula for the sum of an arithmetic 

series.This indicates that this algorithm is not 

efficient for large data sets, despite being simple and 

using constant memory O(1). 

 

D. Analysis Comparative 

An element smaller than the current element and 

must be swapped). However, the number of comparisons 

remains the same, so the time complexity remains: 

𝑂(𝑛2) Comparison with other sorting algorithms 

Choosing the appropriate sorting algorithm can have a 

significant impact on program efficiency, especially 

when managing large amounts of data. 

AlthoughSelection Sort is considered less efficient in 

analysis. Asymptotically, this method is still used in 

simple systems or for teaching basic algorithms. This 

article compares this algorithm with other algorithms in 

terms of complexity and actual performance [37]. 

 

Table 3. Comparison of Sorting Algorithms Based on 

Time Complexity, Space, and Stability 

 

Algorit

m 

 

Best 

Time 

 

Average 

Time 

 

Worst  

Time 

 

Space 

 

Stable 

 

Suitable 

for 

 

Selecti

on 

Sort 

 

O(n²) 

 

O(n²) 

 

O(n²) 

 

O(1) 

 

No 

 

Data 

small, 

education 

 

Inserti

on 

Sort 

 

O(n) 

 

O(n²) 

 

O(n²) 

 

O(1) 

 

Yes 

 

Data 

small, 

almost 

sorted 

 

Merge 

Sort 

 

O(n log 

n) 

 

O(n 

log n) 

 

O(n 

log n) 

 

O(n) 

 

Yes 

 

Data big, 

stable 

needed 

 

Quick 

Sort 

 

O(n log 

n) 

 

O(n 

log n) 

 

O(n²) 

 

O(lo

g n) 

 

No 

 

Performa

nce tall, 

No need 

stability 

 

Selection Sort still more superior in matter simplicity 

and predictability—suitable for systems with limited 

resources or for learning purposes. 

• Merge Sort is preferred in applications that require 

stability and can be scaled through parallel 

processing. 

• Quick Sort still become choice main in Lots library 

standard Because speed its performance in condition 

average 

• Insertion Sort effective used on list Which small 

sized and when data is almost regular [38][39]. 

 

Theoretical evaluation of the algorithm is a crucial 

element in process development device soft. The 

theoretical position explains how an algorithm can be 

categorized according to its time and space complexity, 

stability, and relationship to data structures. In the 

research academic, method This useful For distinguish 

between basic algorithms and more complex algorithms. 

This analysis is very important as a basis for selecting 

algorithms in real applications [40]. Computational 

Model: Many studies use the RAM (Random Access 

Machine) model as a basis for assumptions [41][42]. 

 

Table 4. Comparison of Sorting Algorithm Based on 

Paradigm, Efficiency, and Stability 

 

 

Algorithm 

 

Paradig

m 

 

Averag

e 

Comple

xity 

 

Stablili

ty 

 

Theory 

Related 

 

Selection 

Sort 

 

Brute 

Force 

 

O(n²) 

 

No 

 

Iterative, 

determinis

tic, 

simple 

 

Insertion 

Sort 

 

Increment

al 

 

O(n²) 

 

Yes 

 

Suitable 

for almost 

sorted 

lists 

 

Merge Sort 

 

Divide- 

Conquer 

 

O(n log 

n) 

 

Yes 

 

Recursion, 

stability, 

optimal, 

supports 

theoretica

l proof 

 

Quick Sort 

 

Divide- 

Conquer 

 

O(n log 

n) 

 

No 

 

Probabilis

tic proof, 

flat 

average 

analysis 

 

• Asymptotic Complexity: Assessing the effectiveness 

of algorithms on a large scale by utilizing Big-O, 

Omega, and Theta notations. 

• Algorithm Stability: Whether the algorithm can 
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maintain the order of elements that have the same 

key. 

• Principles of Algorithm Design: Such as divide and 

conquer, greed, coercion, and dynamic 

programming. 

• Sequencing Selection considered as algorithm 

education and appropriate used in system Which own 

memory limitation due to the need for O(1) 

additional space. Insertion Sort very effective in 

situation in where data almost sorted And become 

base for development more optimal hybrid 

algorithm. 

 

Merge Sort in a way theoretical is method Which 

most efficient for all situations due to its stable nature 

and time complexity 𝑂 ( 𝑛 log  𝑛 ) which always 

consistent. 

• Quick Sort is very effective on average, but its 

theoretical position prone to to condition worst 𝑂 ( 𝑛 2 ) , 

which depends on the pivot selection. 

The theoretical position of the sorting algorithm 

provides a deep understanding of the proper way and 

time For use the algorithm. Selection Sort has mark 

education Which tall, temporary Merge Sort and Quick 

Sort excel in terms of performance. In the future, 

theoretical understanding will remain the basis for 

flexible and effective software engineering. 

 

V. RESULT AND DISCUSSION 

A. Theoritical Findings 

The results of a theoretical analysis of the selection 

sort algorithm show that this algorithm has a time 

complexity of O(n²) [15]. This complexity was 

confirmed through a 

detailed manual approach, by analyzing the number of 

basic operations in the form of comparisons and data 

exchanges in each iteration. In the three case studies 

analyzed, each consisting of six elements, the algorithm 

required five iterations to complete the sorting process. 

Each iteration involved searching for the minimum 

element in the unsorted portion of the array, followed by 

an exchange operation if necessary. This pattern reflects 

the number of comparisons performed, which is n(n - 

1):2 , which is a characteristic of algorithms with 

quadratic complexity. Furthermore, eventhough the 

number of comparisons reaches 15 times for n=6, the 

number of exchanges performed is relatively small. 

This indicates the efficiency of the algorithm in terms of 

saving exchange (swap) operations, even though the 

number of comparisons remains high. Therefore, 

selection sort is more suitable for small datasets, where 

clarity of logic and simplicity of implementation are 

prioritized over time efficiency at a large scale [15]. 

 

B. Implication 

Theoretical analysis of the Selection Sort algorithm 

confirms that it maintains O(n²) time complexity across 

all input types and makes it example ideal For introduce 

the concept of deterministic algorithms in time 

complexity analysis. This is due to the structure nested 

loop that produces the number of comparisons as many 

as n(n-1):2 [15]. which is a characteristic of algorithms 

with quadratic complexity. Its simplicity allows for a 

deep understanding of how control structures affect 

algorithm efficiency. Due to its stable execution pattern 

and ease of mathematical modeling, Selection Sort is 

relevant as a basic model for understanding the 

fundamental concepts of Big-O notation and the 

influence of loop structures on algorithm efficiency. 

Selection Sort has high educational value in algorithm 

and data structure learning. The simplicity of its steps, 

the search for the minimum element, and the exchange 

process facilitate understanding of nested loops, the 

comparison and exchange of elements, the introduction 

of asymptotic notation such as O(n²), and proof 

techniques like loop invariants and mathematical 

induction [15].   

It is a characteristic of algorithms with quadratic 

complexity. Its simplicity allows for a deep 

understanding of how control structures affect algorithm 

efficiency. Due to its stable execution pattern and ease of 

mathematical modeling, Selection Sort is relevant as a 

basic model for understanding the fundamental concepts 

of Big-O notation and the influence of loop structures on 

algorithm efficiency. A comparative study also confirms 

that Selection Sort is often chosen as the initial algorithm 

in programming education due to its simple structure, 

easy-to-understand logic, and clear steps. This algorithm 

facilitates understanding of loop structures, minimum 

value search, and element exchange[17]. I t  is a 

characteristic of algorithms with quadratic 

complexity. Its simplicity allows for a deep 

understanding of how control structures affect algorithm 

efficiency. Due to its stable execution pattern and ease of 

mathematical modeling, Selection Sort is relevant as a 

basic model for understanding the fundamental 

concepts of Big-O notation and the influence of 

loop structures on algorithm efficiency. Practical 

Considerations Although Selection Sort has high time 

complexity and is not suitable for large datasets, the 

algorithm still has practical uses and benefits in 

certain situations. Its main advantages lie in its 

simplicity of implementation, minimal number of 

exchanges, and in-place nature, which saves memory. 

This algorithm is ideal for small datasets, systems 

with memory constraints, or conditions where swap 

operations are expensive[15][17]. 

 

VI. CONCLUSION 

This comprehensive theoretical analysis of the 

Selection Sort algorithm reveals fundamental insights 

into its computational behavior and practical 

applications in computer science. The research 

demonstrates that Selection Sort maintains a uniform 

quadratic time complexity of O(n²) across all input 

conditions, performing exactly n(n-1)/2 comparisons 
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regardless of the initial data arrangement. This 

deterministic characteristic distinguishes it from other 

sorting algorithms whose performance varies based on 

input characteristics, making Selection Sort highly 

predictable in its execution pattern.The mathematical 

analysis confirms the algorithm's nested loop structure 

produces consistent behavior with minimal swap 

operations, validated through rigorous proof techniques 

including direct proof, loop invariants, and 

mathematical induction. While the quadratic complexity 

limits its scalability for large datasets, Selection Sort 

offers significant advantages in specific contexts, 

particularly its O(1) space complexity that makes it ideal 

for memory- constrained systems and scenarios where 

exchange operations are computationally expensive. 

The study establishes Selection Sort's exceptional 

educational value as a pedagogical tool for teaching 

fundamental algorithmic concepts. Its simplicity 

facilitates understanding of Big-O notation, nested 

loops, and complexity analysis principles, making 

complex theoretical concepts accessible to students 

learning computer science fundamentals. The algorithm 

serves as an exemplary model for introducing 

asymptotic analysis and mathematical proof techniques 

in academic settings. Despite its limitations for large-

scale data processing, this research concludes that 

Selection Sort's consistent performance predictability, 

educational significance, and implementation simplicity 

ensure its continued relevance in computer science 

education and specialized applications requiring 

deterministic behavior and minimal memory usage. The 

study provides a comprehensive theoretical framework 

that fills a significant gap in the literature by offering 

thorough analysis of fundamental algorithms often 

overlooked in favor of more sophisticated sorting 

methods, thereby contributing valuable insights to both 

algorithmic theory and educational methodology. 
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