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Abstract—This paper discusses various Minimum 

Spanning Tree (MST)-based approaches in a number 

of modern computing applications. The main focus 

includes an improved Kruskal algorithm, MST 

clustering using a multi-objective genetic algorithm, 

MST-based wireless sensor network optimization, 

MST-based anomaly detection in high-dimensional 

data and energy-efficient IoT routing using MST and 

clustering. Each method is described in detail, 

covering underlying principles, algorithms, and real-

world applications. Related research findings are 

compared in a comparative table, and illustrative 

application examples are provided. The general 

findings show that optimized MST algorithms (e.g., 

improved Kruskal) can produce minimumcost trees 

with higher computational efficiency; MST-based 

clustering allows data partitioning without being 

constrained to specific cluster shapes; while 

integration of multi-objective genetic methods 

balances the conflict between minimizing intracluster 

distance and maximizing intercluster separation. MST 

applications in sensor and IoT networks exploit edge 

weights that incorporate energy and reliability factors, 

resulting in communication paths that are more energy 

efficient and secure. MST-based anomaly detection 

proves more sensitive to data manifold structures, 

outperforming traditional distance metrics on many 

benchmark datasets. Overall, this paper shows that 

MST utilization can be enhanced and applied across 

different domains to achieve diverse optimization 

objectives.  
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I. INTRODUCTION 

Minimum Spanning Tree (MST) is a fundamental 

concept in graph theory, defined as an acyclic subgraph 

of a connected graph that spans all vertices with the 

minimum total edge weight. In other words, MST 

connects all nodes in the graph while discarding 

cycles, minimizing the total sum of edge weights. MST 

has the property that the number of edges is always 

V − 1 for V vertices, and many efficient algorithms 

(like Prim’s or Kruskal’s) have been developed to 

compute it. MST’s applications are vast, from 

communication network design, data clustering, to 

multivariate data structure analysis.  

Recent studies have developed MST variants and 

applications to solve practical problems. Zhang & 

Wang (2022) proposed an enhanced Kruskal algorithm 

to speed up MST construction. Singh & Chauhan 

(2021) applied MST in data clustering using multi-

objective genetic algorithms to achieve Pareto-optimal 

solutions between cluster compactness and separation. 

Liu & Zhao (2023) adapted MST for wireless sensor 

network (WSN) optimization, considering energy 

efficiency and connection reliability. Li & Sun (2020) 

used MST for anomaly detection in highdimensional 

data, where tree structure helps identify unusual data 

points. Kaur & Sharma (2022) integrated MST with 

clustering for energy-efficient routing in large IoT 

networks.  

This paper offers an in-depth review of these five 

MST-based approaches, covering theoretical 

background, methodology, and real-world outcomes. 

The structure is: Literature Review with definitions, 

basic algorithms, and related work; Methodology 

detailing each approach's steps; Results and 

Discussion with performance comparisons, tables, 

graphs, and application examples; Conclusion 

summarizing findings and future directions.  

  

II. LITERATURE REVIEW 

A. Definition and Basic MST Algorithms  

Before delving into specific methods, it is important 

to understand MST in general. An MST is a subset of 

edges that connects all vertices without cycles and with 

the minimum possible total weight. This property 
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makes MST useful for many applications, such as 

network design where the total cost of wiring or links 

must be minimized.  

Classic MST algorithms include Prim and Kruskal. 

Kruskal’s algorithm (1956) follows a greedy approach: 

it sorts all edges by increasing weight, then adds edges 

one by one to the growing forest, ensuring no cycle is 

formed, until V − 1 edges are picked. Its computational 

complexity is generally O(E log E) or O(E log V) using 

a disjoint-set data structure. Prim’s algorithm builds 

the tree incrementally from one starting vertex. This 

article focuses on Kruskal’s variants.  

Despite Kruskal’s existing efficiency, the demand 

from large applications motivates enhanced Kruskal 

variants. For example, Li et al. (2019) introduced a 

two-branch Kruskal that uses a median pivot to reduce 

comparison counts. This reduces runtime complexity 

and simplifies the process, making the improved 

Kruskal more effective than the classic version. Zhang 

& Wang (2022) adapted similar ideas to propose a new 

MST algorithm, claimed to be faster and more 

efficient.  

B. MST-based Clustering and Multi-objective Genetic 

Algorithm  

MST is also used for clustering, exploiting the fact 

that clusters correspond to subtrees within a global 

MST of data points. Data, modeled as a complete 

weighted graph (e.g., pairwise distances), is 

transformed into an MST. Clusters are then obtained 

by removing heavy edges (outliers). This method is 

shape-agnostic, as MST preserves essential distance 

information, making it effective for irregular cluster 

shapes and highdimensional data. Xu et al. (2001) 

demonstrated its efficiency and optimality for such 

data types.  

Singh & Chauhan (2021) extended MST clustering 

using a Multi-Objective Genetic Algorithm (MOGA). 

Common clustering conflicts—such as minimizing 

intracluster distance vs. maximizing intercluster 

separation— are handled using evolutionary 

optimization. Chromosomes are encoded as MST 

structures, allowing Pareto-optimal solutions. 

Crossover and mutation operations are simpler due to 

tree structure, preserving cluster information. The 

resulting solutions are robust and adaptable for high-

dimensional or complex distributions.  

C. MST in Wireless Sensor Networks (WSN) and IoT  

In WSN and IoT, MST is used to design 

energyefficient routing paths. These networks consist 

of resource-constrained sensor nodes, requiring 

optimized data transmission routes to prolong network 

lifetime. Liu & Zhao (2023) modeled sensor nodes as 

graph vertices, with edges weighted by a combined 

function of transmission energy cost and reliability. 

They applied an enhanced Kruskal on this weighted 

graph to construct MSTs that minimize total energy 

while maximizing reliability.  

Their simulations demonstrated improved energy 

efficiency, reduced packet loss, and extended WSN 

lifetime. Similarly, Kaur & Sharma (2022) introduced 

an Energy-Efficient MST (EEMST) for IoT. The 

method divides the IoT network into clusters based on 

energy and distance, computes MST within clusters 

using Euclidean weights, selects cluster heads (CH) 

based on topology, and implements intra-cluster multi-

hop routing and inter-cluster single-hop routing. 

Dynamic CH selection improves network lifetime 

significantly compared to conventional static 

protocols.  

D.  MST-based Anomaly Detection  

Anomaly detection in high-dimensional data can 

also utilize MST. The underlying idea is that anomalies 

often appear far from normal clusters. By constructing 

an MST, edges with unusually large weights indicate 

potential outliers, especially leaf nodes connected by 

long edges. Ahmed et al. (2018) proposed an 

unsupervised MST-based anomaly detection method 

which captures manifold structure better than 

Euclidean distance. Testing on 20 benchmark datasets, 

it outperformed 13 other popular methods and 

performed well in real-world hydroelectric turbine 

data. Li & Sun (2020) adapted this concept to high-

dimensional settings, calculating anomaly scores 

based on MST edge lengths. Their approach excels at 

handling highdimensional manifold data without 

strong distributional assumptions, achieving superior 

detection performance.  

III. INTRODUCTION 

This section outlines the methodological steps of the 

five MST approaches reviewed above.  

A. Improved Kruskal Algorithm  

Zhang & Wang present a new Kruskal variant to 

speed up MST construction. While exact 

implementation details are not fully disclosed, the 

general approach includes pivot-based branching to 

reduce edge comparisons. Steps:  

1. Initialize: Represent input graph G(V, E) with edge 

list and weights.  

2. Sort edges by increasing weight (or use a 

heap/priority queue).  

3. Select edges iteratively, using disjoint-set to avoid 

cycles.  

4. Optimization: apply branching rules or pivot 

thresholds to skip unnecessary edges.  

5. Terminate when MST contains V − 1 edges.  

The resulting MST remains optimal, but with fewer 

comparisons and improved time complexity 

compared to classic Kruskal. Empirical results 

show enhanced efficiency on large-scale graphs.  

B. Crossover exchanges subtrees while ensuring the 

resulting graph remains a valid MST, and mutation 

swaps edges to maintain connectivity and minimality

  

Their proposed methodology involves:  
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1. Chromosome representation: each individual 

encodes an MST over data points.  

2. Objective functions: e.g., minimize intracluster 

variance and maximize intercluster separation.  

3. Population initialization: generate random MSTs 

via stochastic Kruskal or other heuristics.  

4. Genetic operations: selection, crossover (exchange 

subtrees), mutation (swap edges).  

5. Pareto optimality: evolve individuals towards 

Pareto-optimal front.  

6. Final solution: choose one or multiple Pareto 

solutions to obtain final cluster partitions.  

Because MST structure simplifies crossover and 

mutation, the method is robust, particularly for 

high-dimensional, complex data.  

C. WSN Optimization via MST   

The procedure involves:  

1. Graph modeling: sensor nodes as vertices, 

potential communications as edges.  

2. Weight calculation: combine transmission energy 

consumption and reliability score for each edge.  

3. Malicious node removal: filter nodes with low 

trust.  

4. MST construction: use enhanced Kruskal to 

compute MST over filtered graph.  

5. Rooting and routing: root MST at sink node, and 

route data along tree branches. Simulations show 

significant improvements in energy efficiency, 

reduced packet loss, and extended network 

lifetime.  

D.  Anomaly Detection with MST   

Their method:  

1. Build a complete graph on data points using 

Euclidean (or other) distances.  

2. Construct MST using Kruskal or Prim.  

3. Identify anomalies: detect leaves connected by 

large-weight edges.  

4. Score anomalies: assign anomaly scores per point 

based on edge weights.  

5. Thresholding: classify data points above a 

threshold as outliers.  

Li & Sun report improved anomaly detection 

accuracy on benchmarks compared to 

conventional methods.  

E.  IoT Routing with MST & Clustering  

The approach includes:  

1. Cluster formation: divide IoT network spatially; 

select cluster-head (CH) candidates based on 

residual energy and node distances.  

2. Weighted MST construction per cluster using 

Euclidean edges. Identify CH as root of local MST.  

3. Routing: intra-cluster multi-hop via MST to CH; 

inter-cluster single-hop from CH to sink (or via 

CH-to-CH).  

4. Iterative optimization: re-select CH after major 

energy drops. The EEMST protocol dynamically 

adapts  

to extend network lifetime compared to static 

clustering approaches.  

 

IV. RESULT AND DISCUSSION 

The following comparative summary (Table 1) 

highlights each MST-based approach in terms of 

objective, key advantages, limitations, and application 

domains: 

 

Table 1. Summary of MST-Based Methods 

Method Objecti

ve 

Advant

ages 

Limitat

ions 

Applicat

ion 

Kruskal[

1] 

Acceler

ate 

MST 

comput

ation 

Reduce

d 

runtime 

Parame

ter 

tuning 

require

d 

WSN 

routing 

MST+M

OGA [2] 

Multi-

objectiv

e 

clusteri

ng 

Pareto-

optimal

, 

flexible 

clusters 

Slower 

comput

ation 

High-

dimensio

nal 

clusterin

g 

MST-

Anomal

y [4] 

High-

dimensi

onal 

anomal

y 

detectio

n 

Capture

s 

manifol

d 

structur

e 

Thresh

old 

selectio

n 

sensitiv

e 

IT 

security, 

maintena

nce 

MST-

WSN [3] 

Energy-

efficien

t WSN 

routing 

Lower 

energy 

use, 

longer 

networ

k life 

Needs 

energy/

trust 

info 

Environ

mental 

monitori

ng 

MST-

IoT [5] 

Efficien

t IoT 

data 

routing 

Multi-

hop, 

dynami

c CH 

improv

es 

lifetime 

Overhe

ad from 

dynami

c 

routing 

Smart 

city 

infrastruc

ture 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of a Minimum Spanning Tree 

(MST) on a simple undirected graph. The green lines 

connect nodes (1, 2, 3) without cycles, forming a tree 

with minimum total weight. 
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Singh & Chauhan [2] tested their MST+MOGA 

method on multidimensional datasets such as images 

and genetic data. Their results demonstrated that the 

multi-objective approach produced 15% lower 

intracluster distances and 18% higher intercluster 

separation compared to standard K-Means, approaching 

Pareto-optimal partitions. Although the computation 

time increased, the resulting clusters were more 

accurate for irregular data shapes. Xu et al. [6] also 

emphasized the interpretability of MST subtrees in 

clustering. 

In the context of wireless sensor networks (WSN), Liu 

& Zhao [3] performed simulations using 100–1000 

randomly placed nodes. Their enhanced MST method 

achieved up to 80× improvement in network lifetime 

compared to traditional flooding routing. Moreover, 

packet loss was reduced by more than 30%, especially 

in scenarios with faulty or unreliable nodes. These 

findings are consistent with previous studies [13][19] 

that reported improved efficiency using energy-

weighted MSTs. 

For anomaly detection, Li & Sun [4] evaluated their 

MST-based algorithm on 20 benchmark datasets. The 

method outperformed 13 other baseline techniques, 

especially in capturing outliers that aligned with 

manifold structures. Their evaluation on real-world 

hydro-turbine data also confirmed its ability to detect 

critical anomalies missed by conventional distance-

based algorithms. 

EEMST, proposed by Kaur & Sharma [5], was 

evaluated through IoT network simulations involving 

various topologies and data loads. The algorithm 

showed a 25% increase in energy efficiency and 

significantly prolonged network lifetime compared to 

static clustering protocols. Networks using EEMST 

supported more stable data transmissions with lower 

power consumption, highlighting the advantage of 

dynamic cluster head (CH) selection. 

Although each approach varies in goals and techniques, 

a shared advantage is evident: MST can optimize graph-

based structures in diverse ways (e.g., cost, distance, 

energy). Table 2 provides examples of real-world 

applications using these MST methods. 

 

Table 2. Real-World Applications of MST Approaches 

Method Real-World Application Example 

Kruskal+ [1] Design of low-cost communication 

networks (e.g., fiber) 

MST-WSN 

[3] 

IoT-based environmental 

monitoring (forest, agriculture) 

MST-

Anomaly [4] 

Industrial machine anomaly 

detection (predictive) 

MST-IoT [5] Smart city systems (traffic control, 

energy monitoring) 

  

 

 

 

V. CONCLUSION 

This article describes five primary MST-based 

approaches proposed in recent literature. Each 

approach has a specific application domain and 

optimization goal. The improved Kruskal algorithm 

(Zhang & Wang) targets computational speed without 

sacrificing MST optimality [1]. The MST-based 

clustering method using multi-objective genetic 

algorithms (Singh & Chauhan) provides Pareto-

optimal solutions for partitioning problems involving 

internal vs external cluster distances. MST approaches 

in sensor networks (Liu & Zhao) and IoT (Kaur & 

Sharma) demonstrate MST’s effectiveness for 

designing energy-efficient and reliable communication 

paths.  

Lastly, MST-based anomaly detection (Li & Sun) 

adds a new dimension to data analysis by capturing 

outlier patterns via tree structures. The comparative 

results show that no single method is superior in all 

contexts. Instead, method selection depends on the 

objective: if computational efficiency on large graphs 

is critical, the improved Kruskal algorithm [1] is 

suitable; if balanced clustering on large data is desired, 

GA-based methods [2] are preferable; if focus is on 

energy saving in physical networks, WSN/IoT 

approaches [3][5] are effective. MST-based anomaly 

detection [4] is particularly useful in scientific and 

industrial data analysis where highdimensional outliers 

need identification without labels.  

For future research, it is recommended to develop 

real-world implementations (e.g., field tests of WSN 

and IoT networks, industrial case studies) and to 

combine the above techniques. For instance, a multi-

objective GA could be combined with improved 

Kruskal for more efficient clustering. Additionally, 

adapting MST-based anomaly detection for real-time 

data streaming is worth exploring. Thus, this article 

provides a comprehensive understanding of MST usage 

in various optimization applications, bridging graph 

algorithm theory with real-world practice.  
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