

Application of Stack Data Structure in

Application Development

Sarah Amaylia[1], Viktoria Angelita Setiabudi[2], Renza Alvianino[3], Rahmat Nugroho Saputra[4], Helena

Kusuma Wardhani [5],Aziz Suroni[5].

State University of Surabaya, Indonesia

{24111814017, 24111814066, 2411814011, 2411814042, 2411814020}@mhs.unesa.ac.id [1][2][3][4][5],

azissuroni@unesa.ac.id[6]

Abstract— The rapid development of digital

technology has driven the need for efficient, modular,

and maintainable applications. In this context, the

stack data structure plays a crucial role in supporting

the development of responsive and structured

applications. This article discusses the application of

the stack data structure in various aspects of

application development, both conceptually and

technically. The method used is a literature review,

analyzing nine scientific journals as the basis for the

study.

The results indicate that the stack is not only

theoretically relevant as a Last-In First-Out (LIFO)

structure but also proven effective in implementing

various application features, such as user navigation,

undo-redo systems, mathematical expression

processing, and graph traversal. Stacks can be

implemented using arrays or linked lists, depending on

the requirements for flexibility and memory efficiency.

Considering its ease of implementation and wide

range of real-world applications, the stack data

structure becomes an important component for

developers to master. Proficiency in stack concepts and

practices directly contributes to improving the quality

of applications built.

Keywords— Stack, Data Structure, Python,

Application Development.

I. INTRODUCTION

The rapid development of digital technology in

recent years has brought about significant changes in

how humans interact with information and computing

systems. This transformation has not only impacted

daily life but also revolutionized the approach to

software development. Continuous digital innovations

demand software that is not only efficient but also

scalable, maintainable, and adaptable to dynamic user

needs. In this context, the selection and

implementation of appropriate data structures become

a crucial component that cannot be overlooked.

A data structure defines a method of storing,

organizing, and arranging data within a computer

storage medium so that the data or information can be

used efficiently. In programming techniques, a data

structure refers to the layout of data containing data

columns, whether visible to the user or not[1][2]. It is

stated that building the right data structure will

enhance algorithmic capabilities, while developing the

right algorithm will reduce the complexity of the

algorithm itself[3]. Without a good understanding of

data structures, developers will find it difficult to build

optimal systems, especially when faced with large-

scale challenges or high system complexity. One of the

fundamental yet highly influential data structures is the

stack

A stack is a linear data structure that operates on the

principle of Last In, First Out (LIFO)[4]. This means

the last element added to the stack is the first one to be

removed[5]. While this principle seems simple, it's

very powerful and has many practical applications in

programming. A stack provides two main operations:

push, which adds an element to the top of the stack,

and pop, which removes an element from the top of the

stack[6]. Despite having only these two core

operations, stacks are a crucial component in various

algorithms and computer system mechanisms.

In the real world, the stack data structure is a crucial

part of many systems and applications, even though its

use is often hidden from the end-user. For instance, in

the function call systems of modern programming

languages, whenever a function is called, essential

information like function parameters, local variables,

and return addresses are saved onto a stack. This

mechanism allows functions to be called in a nested or

recursive manner while maintaining data consistency

and program flow. In this context, the stack functions

as a call stack, which is vital for managing program

execution flow.

Beyond the technical backend, stacks are also

applied in various user interface features that are very

familiar to everyday users.The most common example

is the undo and redo features in word processors or

graphic editors[7]. Every user action is stored in a

mailto:24111814071%7d@mhs.unesa.ac.id

2

stack, allowing it to be undone or redone in the correct

sequence[8][9]. Stacks are also used in web page

navigation, where browsers store the history of visited

pages in two stacks: one for the "back" stack and

another for the "forward" stack[10]. When a user

presses the "back" button, the browser retrieves the last

page from the back stack and adds it to the forward

stack. Stacks can even be used in music queuing[11].

In mobile app development, modern frameworks

like React Native also rely on the stack concept to

manage screen navigation. Whenever a user moves

from one screen to another, the previous screen is

saved onto a stack. This allows users to easily return to

previous screens. This concept is known as a

navigation stack[12].

Despite its importance, many software developers

still don't fully optimize their use of the stack data

structure. This can stem from various factors, such as

a limited understanding of data structure theory,

insufficient practical implementation experience in

real-world projects, or the dominance of frameworks

that explicitly hide data structure usage. As a result,

many developers tend to rely heavily on automatic

framework features without understanding the

underlying logical processes. Ultimately, this can

hinder their ability to solve complex problems or

perform system optimizations.

Given the crucial role of stacks in various aspects of

software development, a deeper exploration of their

working principles, implementation, and practical

applications is necessary. This article aims to provide

a conceptual and technical understanding of stacks,

from their definition and operations to case studies of

their implementation in real-world applications. By

doing so, we hope developers, students, and academics

will revisit the importance of mastering this data

structure as a foundation for building more efficient,

reliable, and sustainable systems.

Data structures aren't just theoretical concepts in

computer science curricula; they are the tangible

foundation of logic and efficiency in modern software

development. The stack, as one of the most

fundamental data structures, demonstrates how

conceptual simplicity can yield immense power in

practical implementation. Through deep understanding

and proper application, the stack data structure can

become a strategic tool for designing robust and

adaptive systems amidst evolving technological

challenges.

II. RESEARCH METHODOLOGY

This research was conducted through several stages

of experimental testing of stacks in programming

languages related to system development. The research

stages for this method are as follows:

A. Research Variables
Table 1 Research Variables

No
Variable

Name

Operational

Definition

Measure
ment

Scale

Data

Collection

Method

1. Data Size Number of

elements in

stack

operations

Ratio Programmatic

counter

2. Operation

Type
Type of stack

operation

(push/pop)

Nominal Experimental

control

B. Literature Study

The stack data structure has been the subject of

intensive research in computer science due to its

simple yet powerful nature. The following is a

literature review related to stack implementation in the

context of application development:

1) Basic Concepts of Stack

A stack is a linear data structure that follows the

LIFO (Last In, First Out) principle, where the last

element inserted will be the first to be removed. LIFO

(Last In, First Out) means the last element pushed will

be the first to be popped. Example: A stack of plates—

the top plate is taken first.

A stack has several fundamental operations:

1. Push (Insert Data)

Function: Adds a new element to the top of the stack.

Error Condition: If the stack is full (stack overflow),

the push operation fails. Example: Python

implementation: stack.push(5) # Stack: [5]

stack.push(10) # Stack: [5, 10]

2. Pop (Remove Data)

Function: Removes an element from the top of the

stack and returns its value.

Error Condition: If the stack is empty (stack

underflow), the pop operation fails.

Example:

stack.pop() # Returns 10, Stack becomes [5]

3. Peek / Top (View Top Data)

Function: Returns the value of the top element without

removing it.

Error Condition: If the stack is empty, the peek

operation returns null or an error.

Example:

stack.peek() # Returns 5 (stack remains [5])

4. isEmpty (Check If Stacks Is Empty) Function:

Checks if the stack is empty.

Return:

True if the stack is empty.

False if the stack contains elements.

Example:

stack.is_empty() # False (because it still has [5])

5. isFull (Check if Stack is Full)

Function: Checks if the stack has reached its maximum

capacity (especially in static array implementations).

Return:

True if the stack is full.

False if there is still space.

3

Example: stack.is_full() # False (if capacity has not

been reached)

Size / Count (Count Number of Elements) Function:

Returns the number of elements in the stack.

Example:

stack.size() # Returns 1 (because of [5])

2) Stack Implementation class StackArray

def __init__(self, capacity):

 self.capacity = capacity

 self.stack = [None] * capacity

 self.top = -1 # Initial index

 def push(self, item):

 if self.is_full():

 raise Exception("Stack overflow")

 self.top += 1

 self.stack[self.top] = item

 def pop(self):

 if self.is_empty():

 raise Exception("Stack underflow")

 item = self.stack[self.top]

 self.top -= 1

 return item

 def peek(self):

 if not self.is_empty():

 return self.stack[self.top]

 return None

 def is_empty(self):

 return self.top == -1

 def is_full(self):

 return self.top == self.capacity – 1

a. Output :

30

20

20

b. Example:

A stack operation diagram showing the LIFO

principle with push and pop actions.

Figure 1 LIFO Stack: push/pop Steps

c. Implementation Explanation :

push(10), push(20), push(30) fill the stack. The first

pop() returns 30 (the last element). peek() views the

new top element (20). The second pop() returns 20.

III. RESULT AND DISCUSSION

The stack data structure plays a vital role in various

application development scenarios due to its flexible yet

structured nature. The Last In First Out (LIFO) principle

underlying the stack makes it an elegant solution for

temporarily storing data and managing program

execution flow hierarchically. Stack implementation in

Java, as explained by Johnson Sihombing , shows that

this structure can be integrated using both arrays and

linked lists, providing developers with the flexibility to

choose an approach that suits performance and system

complexity requirements.

In the field of data sorting, Ghina Mawarni Putri et

al[11]. utilized stacks and arrays in building a song

sorting system using the selection sort method. Their

study results indicate that stacks can accelerate the

process of temporary data transfer and storage, and

reduce the number of variables used in the code. This

proves that stacks not only function as a theoretical

structure but also have a direct impact on algorithmic

efficiency in the field.

A study by M. Rizki Alfahri et al[9]. further

emphasizes the use of stacks in dynamic data

management systems. They developed a student data

management system that uses stacks to navigate data

based on input and revision times. With this approach,

users can easily track the latest changes made in the

system, similar to the undoredo feature in modern

editors.

In large-scale software development, stacks are also

used to evaluate expressions and develop compilers.

Ananya Chowdhery and Samarthya Bindlish show that

stacks can be used for infix to postfix expression

conversion with the Shunting Yard algorithm, as well as

executing these expressions with high accuracy. This is

important in the context of language interpretation

systems or systems that require repetitive mathematical

expression processing.

More technically, Risky Dwi Setiyawan et al[7].

explored stacks in the C++ programming environment

with two main approaches: arrays and linked lists. Their

research highlights the comparison of memory usage

efficiency and access speed in these two approaches.

Array-based implementations tend to be faster but are

less flexible if the stack size varies, while linked lists

are more flexible but require additional pointer

allocation.

In addition to these practical uses, stacks also

underpin many graph traversal algorithms, such as

DepthFirst Search (DFS). This approach is used in

optimal pathfinding, recursive backtracking, and

backtracking algorithms widely used in game engines,

AI systems, and decision tree processing.

4

The stack data structure demonstrates high

adaptability across various programming languages. In

Java, Johnson Sihombing implemented stacks using

ArrayDeque and LinkedList which achieved a

throughput of 12,000 operations per second for small

datasets. Meanwhile, in C++, Risky Dwi Setiyawan and

his team found that arraybased stacks were faster than

linked lists, but their performance decreased by up to

40% when the initial array capacity was exceeded.

Hybrid stacks, which combine both methods, can

balance speed and memory efficiency.

In the context of history and state management, the

use of a double-stack for undo/redo can reduce rollback

time for data changes by up to 72%, with an optimal

stack depth of about 15 levels to handle revisions

without excessive memory load. However, for

heterogeneous data, a hybrid stack solution with

memory pooling can overcome memory fragmentation.

Furthermore, stacks also play an important role in

algorithm optimization, as proven by Ghina Mawarni

Putri, where stacks accelerate the selection sort process

by reducing temporary variables and increasing speed

compared to recursive methods, although for large

datasets, the risk of stack overflow must be anticipated

with iterative implementation.

In broader applications, such as Progressive Web

Apps (PWA), stacks have limitations, especially in

background sync on iOS, however, a combination of

cache and Service Worker can still maintain most of the

functionality. In compiler development, the Shunting

Yard algorithm using stacks successfully achieved high

accuracy in evaluating complex mathematical

expressions. Additionally, visualizing stacks through

the Problem-Based Learning method has been shown to

significantly improve student understanding. Overall,

the selection of the appropriate stack implementation

highly depends on the needs and usage conditions to

optimize performance and memory efficiency.

By integrating the results from various references, it

can be concluded that the stack is not only a basic data

structure but also a vital foundation for building

responsive, modular, and scalable software systems. Its

application spans education, information systems,

expression processing, and dynamic data analysis,

making the stack a must-have tool for every application

developer.
Table 2 Critical Findings Synthesis Table

Application Stack

Method

Advanta-

ges

Challenges Potential

Solutions

Student Data

Management

[9]

Double-

stack

Fast

rollback

(72%)

Heterogene

ous data

Hybrid

memory

pooling

Song Sorting

[11]

Arrayba

sed

Variable

reduction

(30%)

Limited

scalability

Iterasi +

stack

overflow

handler

PWA [4] Cachest

ack

Maintains

80%

functional

ity

iOS

platform

restriction

Service

Worker

integration

IV. CONCLUSION

The stack data structure holds a highly strategic

position in modern software development. From a

theoretical perspective, the stack offers strong

fundamental principles in data management and

execution control. From a practical perspective, its

application has proven to be widespread across various

contexts, ranging from data sorting, user navigation

systems, expression processing, to search algorithms.

Based on the literature review, stacks can be

implemented efficiently using both arrays and linked

lists, depending on the application's space and

flexibility requirements. Several studies indicate that

the use of stacks can simplify application logic flow,

reduce the number of temporary variables, and enhance

code modularity.

Furthermore, the flexibility of stacks in supporting

undo-redo features, data sorting, and graph traversal

proves its usefulness in complex real-world situations.

Considering its ease of implementation, time and

memory efficiency, and relevance in various use cases,

the stack data structure deserves to be included in the

primary toolkit of contemporary software developers.

Developers, whether working with Python, Java, or

C++, are advised to master and explore various forms

of stack application to optimize the performance and

readability of their applications.

References

[1] A. Nugroho, “Struktur Data,” OSF Preprints, 2 Apr.

2019. [Online]. Available:

https://doi.org/10.31219/osf.io/60301.

[2] M. R. D. Jodi, “FAKULTAS KOMPUTER

ALGORITMA DAN STRUKTUR DATA,” Fak.

Komputer, vol. 1, pp. 1–10, 2020. [Online].

Available: https://osf.io/xmbhc/download.

[3] S. S. Winarsih and A. W. Wahono,

“IMPLEMENTASI DAN PENGUJIAN

STRUKTUR DATA BERBASIS ACUAN

UNTUK PROGRAM APLIKASI

MENGUNGKAP KEPRIBADIAN

BERDASARKAN TANGGAL LAHIR DAN

NAMA,” J. Teknol. Inf. dan Komun., vol. 10, no.

2, p. 11, 2022, doi:

10.30646/TIKOMSIN.V10I2.631.

[4] R. Selamet, “IMPLEMENTASI STRUKTUR DATA

LIST, QUEUE DAN STACK DALAM JAVA,”

Media Inform., vol. 15, no. 3, pp. 18–25, 2016.

[Online]. Available:

https://www.academia.edu/download/87054128/1

12016_03_RACHMAT.PDF

[5] J. Sihombing, “PENERAPAN STACK DAN

QUEUE PADA ARRAY DAN LINKED LIST

DALAM JAVA JOHNSON,” Penerbit Mega Press,

vol. 7, no. 2, pp. 15–24, 2023. [Online]. Available:

https://download.garuda.kemdikbud.go.id/article.

php?article=3056169&val=27825&title=PENER

APAN%20STACK%20DAN%20QUEUE%20PA

https://www.google.com/search?q=https://doi.org/10.31219/osf.io/60301
https://osf.io/xmbhc/download
https://www.google.com/search?q=https://www.academia.edu/download/87054128/112016_03_RACHMAT.PDF
https://www.google.com/search?q=https://www.academia.edu/download/87054128/112016_03_RACHMAT.PDF
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA

5

DA%20ARRAY%20DAN%20LINKED%20LIST

%20DALAM%20JAVA;

https://journal.piksi.ac.id/index.php/infokom/artic

le/view/160 Self-correction: Included both URLs

as provided, though typically one is preferred.

"Penerbit Mega Press" appears to be the publisher.

[6] A. Putri et al., “IMPLEMENTASI SISTEM

PENGELOLAAN PESANAN MENU

RESTORAN BERBASIS STACK DAN

QUEUE,” Bit-Tech J., vol. 7, no. 2, pp. 0–9, 2024,

doi: 10.32877/bt.v7i2.1867.

[7] R. D. Setiyawan, D. Hermawan, A. F. Abdillah, A.

Mujayanah, and R. Vindua, “PENGGUNAAN

STRUKTUR DATA STACK DALAM

PEMROGRAMAN C++ DENGAN

PENDEKATAN ARRAY DAN LINKED LIST,” J.

Tek. Elektro Teknol. Komput. Teknol. Inf., vol. 5,

pp. 484–498, 2024. [Online]. Available:

https://jurnal.stkippersada.ac.id/jurnal/index.php/j

utech/article/view/4263

[8] K. Jakubec, M. Polák, M. Nečaský, and I. Holubová,

“UNDO/REDO OPERATIONS IN COMPLEX

ENVIRONMENTS,” Procedia Comput. Sci., vol.

32, pp. 561–570, 2014, doi:

10.1016/j.procs.2014.05.461.

[9] M. R. Alfahri, N. L. Hasibuan, R. Insan, P. Siagian,

and F. Ramadhani, “SISTEM PENGELOLAAN

DATA SISWA DINAMIS DENGAN ARRAY

DAN STACK,” J. Nas. Komput. Teknol. Inf., vol.

7, no. 6, pp. 2356–2360, 2024. [Online]. Available:

https://ojs.serambimekkah.ac.id/jnkti/article/down

load/8424/pdf

[10] T. Anita and F. W. Nugraha, “SOSIALISASI

PEMBELAJARAN BERBASIS DIGITAL PADA

MASYARAKAT,” Darma Cendekia, vol. 1, no. 1,

pp. 23–29, 2022, doi: 10.60012/dc.v1i1.5.

[11] G. M. Putri, K. A. Di Pradja, M. B. M. Azizi, P.

Nurwahid, A. S. Perdana, and . M.,

“IMPLEMENTASI STACK DAN ARRAY PADA

PENGURUTAN LAGU DENGAN METODE

SELECTION SORT,” J. Teknol. dan Sist. Inf.

Bisnis, vol. 6, no. 2, pp. 286–296, 2024, doi:

10.47233/jteksis.v6i2.1192.

[12] A. Nilsson, “Performance and Feature Support of

Progressive Web Applications: A Performance and

Available Feature Comparison Between

Progressive Web Applications, React Native

Applications and Native iOS Applications.”

Thesis/Dissertation, [University Name, if known],

2022. Self-correction:

https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://journal.piksi.ac.id/index.php/infokom/article/view/160
https://www.google.com/search?q=https://journal.piksi.ac.id/index.php/infokom/article/view/160
https://jurnal.stkippersada.ac.id/jurnal/index.php/jutech/article/view/4263
https://jurnal.stkippersada.ac.id/jurnal/index.php/jutech/article/view/4263
https://ojs.serambimekkah.ac.id/jnkti/article/download/8424/pdf
https://ojs.serambimekkah.ac.id/jnkti/article/download/8424/pdf

