Application of Stack Data Structure in
Application Development

Sarah Amaylial'l, Viktoria Angelita Setiabudil®!, Renza Alvianino®), Rahmat Nugroho Saputra®!, Helena
Kusuma Wardhani), Aziz Suronil®.
State University of Surabaya, Indonesia
(24111814017, 24111814066, 2411814011, 2411814042, 2411814020} @mbhs.unesa.ac.id [1][2][31[41[5],
azissuroni(@unesa.ac.id[6]

Abstract— The rapid development of digital
technology has driven the need for efficient, modular,
and maintainable applications. In this context, the
stack data structure plays a crucial role in supporting
the development of responsive and structured
applications. This article discusses the application of
the stack data structure in various aspects of
application development, both conceptually and
technically. The method used is a literature review,
analyzing nine scientific journals as the basis for the
study.

The results indicate that the stack is not only
theoretically relevant as a Last-In First-Out (LIFO)
structure but also proven effective in implementing
various application features, such as user navigation,
undo-redo systems, mathematical expression
processing, and graph traversal. Stacks can be
implemented using arrays or linked lists, depending on
the requirements for flexibility and memory efficiency.

Considering its ease of implementation and wide
range of real-world applications, the stack data
structure becomes an important component for
developers to master. Proficiency in stack concepts and
practices directly contributes to improving the quality
of applications built.

Keywords— Stack, Data
Application Development.

Structure, Python,

[.INTRODUCTION

The rapid development of digital technology in
recent years has brought about significant changes in
how humans interact with information and computing
systems. This transformation has not only impacted
daily life but also revolutionized the approach to
software development. Continuous digital innovations
demand software that is not only efficient but also
scalable, maintainable, and adaptable to dynamic user
needs. In this context, the selection and
implementation of appropriate data structures become
a crucial component that cannot be overlooked.

A data structure defines a method of storing,
organizing, and arranging data within a computer
storage medium so that the data or information can be
used efficiently. In programming techniques, a data
structure refers to the layout of data containing data
columns, whether visible to the user or not[1][2]. It is
stated that building the right data structure will
enhance algorithmic capabilities, while developing the
right algorithm will reduce the complexity of the
algorithm itself[3]. Without a good understanding of
data structures, developers will find it difficult to build
optimal systems, especially when faced with large-
scale challenges or high system complexity. One of the
fundamental yet highly influential data structures is the
stack

A stack is a linear data structure that operates on the
principle of Last In, First Out (LIFO)[4]. This means
the last element added to the stack is the first one to be
removed[5]. While this principle seems simple, it's
very powerful and has many practical applications in
programming. A stack provides two main operations:
push, which adds an element to the top of the stack,
and pop, which removes an element from the top of the
stack[6]. Despite having only these two core
operations, stacks are a crucial component in various
algorithms and computer system mechanisms.

In the real world, the stack data structure is a crucial
part of many systems and applications, even though its
use is often hidden from the end-user. For instance, in
the function call systems of modern programming
languages, whenever a function is called, essential
information like function parameters, local variables,
and return addresses are saved onto a stack. This
mechanism allows functions to be called in a nested or
recursive manner while maintaining data consistency
and program flow. In this context, the stack functions
as a call stack, which is vital for managing program
execution flow.

Beyond the technical backend, stacks are also
applied in various user interface features that are very
familiar to everyday users.The most common example
is the undo and redo features in word processors or
graphic editors[7]. Every user action is stored in a

mailto:24111814071%7d@mhs.unesa.ac.id

stack, allowing it to be undone or redone in the correct
sequence[8][9]. Stacks are also used in web page
navigation, where browsers store the history of visited
pages in two stacks: one for the "back" stack and
another for the "forward" stack[10]. When a user
presses the "back" button, the browser retrieves the last
page from the back stack and adds it to the forward
stack. Stacks can even be used in music queuing[11].

In mobile app development, modern frameworks
like React Native also rely on the stack concept to
manage screen navigation. Whenever a user moves
from one screen to another, the previous screen is
saved onto a stack. This allows users to easily return to
previous screens. This concept is known as a
navigation stack[12].

Despite its importance, many software developers
still don't fully optimize their use of the stack data
structure. This can stem from various factors, such as
a limited understanding of data structure theory,
insufficient practical implementation experience in
real-world projects, or the dominance of frameworks
that explicitly hide data structure usage. As a result,
many developers tend to rely heavily on automatic
framework features without understanding the
underlying logical processes. Ultimately, this can
hinder their ability to solve complex problems or
perform system optimizations.

Given the crucial role of stacks in various aspects of
software development, a deeper exploration of their
working principles, implementation, and practical
applications is necessary. This article aims to provide
a conceptual and technical understanding of stacks,
from their definition and operations to case studies of
their implementation in real-world applications. By
doing so, we hope developers, students, and academics
will revisit the importance of mastering this data
structure as a foundation for building more efficient,
reliable, and sustainable systems.

Data structures aren't just theoretical concepts in
computer science curricula; they are the tangible
foundation of logic and efficiency in modern software
development. The stack, as one of the most
fundamental data structures, demonstrates how
conceptual simplicity can yield immense power in
practical implementation. Through deep understanding
and proper application, the stack data structure can
become a strategic tool for designing robust and
adaptive systems amidst evolving technological
challenges.

II. RESEARCH METHODOLOGY
This research was conducted through several stages
of experimental testing of stacks in programming
languages related to system development. The research
stages for this method are as follows:

A. Research Variables
Table 1 Research Variables

Variable Operational Measure Data'
No Name Definition ment Collection
Scale Method

1. |Data Size | Number of| Ratio Programmatic
elements in counter
stack
operations

2. |Operation | Type of stack | Nominal Experimental

Type operation control

(push/pop)

B. Literature Study

The stack data structure has been the subject of
intensive research in computer science due to its
simple yet powerful nature. The following is a
literature review related to stack implementation in the
context of application development:
1) Basic Concepts of Stack

A stack is a linear data structure that follows the
LIFO (Last In, First Out) principle, where the last
element inserted will be the first to be removed. LIFO
(Last In, First Out) means the last element pushed will
be the first to be popped. Example: A stack of plates—
the top plate is taken first.
A stack has several fundamental operations:
1. Push (Insert Data)
Function: Adds a new element to the top of the stack.
Error Condition: If the stack is full (stack overflow),
the push operation fails. Example: Python
implementation: stack.push(5) # Stack: [5]
stack.push(10) # Stack: [5, 10]
2. Pop (Remove Data)
Function: Removes an element from the top of the
stack and returns its value.
Error Condition: If the stack is empty (stack
underflow), the pop operation fails.
Example:
stack.pop() # Returns 10, Stack becomes [5]
3. Peek / Top (View Top Data)
Function: Returns the value of the top element without
removing it.
Error Condition: If the stack is empty, the peek
operation returns null or an error.
Example:
stack.peek() # Returns 5 (stack remains [5])
4. isEmpty (Check If Stacks Is Empty) Function:
Checks if the stack is empty.
Return:
True if the stack is empty.
False if the stack contains elements.
Example:
stack.is_empty() # False (because it still has [5])
5. isFull (Check if Stack is Full)
Function: Checks if the stack has reached its maximum
capacity (especially in static array implementations).
Return:
True if the stack is full.
False if there is still space.

2

Example: stack.is full() # False (if capacity has not
been reached)

Size / Count (Count Number of Elements) Function:
Returns the number of elements in the stack.

Example:

stack.size() # Returns 1 (because of [5])

2) Stack Implementation class StackArray
def init (self, capacity):
self.capacity = capacity
self.stack = [None] * capacity
self.top = -1 # Initial index

def push(self, item):
if self.is_full():
raise Exception("Stack overflow")
selfitop +=1
self.stack[self.top] = item

def pop(self):
if self.is_empty():
raise Exception("Stack underflow")
item = self.stack[self.top]
self.top -= 1
return item

def peek(self):
if not self.is_empty():
return self.stack[self.top]
return None

defis_empty(self):
return self.top == -1

defis_full(self):
return self.top == self.capacity — 1

a. Output :
30
20
20

b. Example:
A stack operation diagram showing the LIFO
principle with push and pop actions.

LIFO Stack: push/pop Steps

0

s

Figure 1 LIFO Stack: push/pop Steps

c. Implementation Explanation :

push(10), push(20), push(30) fill the stack. The first
pop() returns 30 (the last element). peek() views the
new top element (20). The second pop() returns 20.

III. RESULT AND DISCUSSION

The stack data structure plays a vital role in various
application development scenarios due to its flexible yet
structured nature. The Last In First Out (LIFO) principle
underlying the stack makes it an elegant solution for
temporarily storing data and managing program
execution flow hierarchically. Stack implementation in
Java, as explained by Johnson Sihombing , shows that
this structure can be integrated using both arrays and
linked lists, providing developers with the flexibility to
choose an approach that suits performance and system
complexity requirements.

In the field of data sorting, Ghina Mawarni Putri et
al[11]. utilized stacks and arrays in building a song
sorting system using the selection sort method. Their
study results indicate that stacks can accelerate the
process of temporary data transfer and storage, and
reduce the number of variables used in the code. This
proves that stacks not only function as a theoretical
structure but also have a direct impact on algorithmic
efficiency in the field.

A study by M. Rizki Alfahri et al[9]. further
emphasizes the use of stacks in dynamic data
management systems. They developed a student data
management system that uses stacks to navigate data
based on input and revision times. With this approach,
users can easily track the latest changes made in the
system, similar to the undoredo feature in modern
editors.

In large-scale software development, stacks are also
used to evaluate expressions and develop compilers.
Ananya Chowdhery and Samarthya Bindlish show that
stacks can be used for infix to postfix expression
conversion with the Shunting Yard algorithm, as well as
executing these expressions with high accuracy. This is
important in the context of language interpretation
systems or systems that require repetitive mathematical
expression processing.

More technically, Risky Dwi Setiyawan et al[7].
explored stacks in the C++ programming environment
with two main approaches: arrays and linked lists. Their
research highlights the comparison of memory usage
efficiency and access speed in these two approaches.
Array-based implementations tend to be faster but are
less flexible if the stack size varies, while linked lists
are more flexible but require additional pointer
allocation.

In addition to these practical uses, stacks also
underpin many graph traversal algorithms, such as
DepthFirst Search (DFS). This approach is used in
optimal pathfinding, recursive backtracking, and
backtracking algorithms widely used in game engines,
Al systems, and decision tree processing.

3

The stack data structure demonstrates high
adaptability across various programming languages. In
Java, Johnson Sihombing implemented stacks using
ArrayDeque and LinkedList which achieved a
throughput of 12,000 operations per second for small
datasets. Meanwhile, in C++, Risky Dwi Setiyawan and
his team found that arraybased stacks were faster than
linked lists, but their performance decreased by up to
40% when the initial array capacity was exceeded.
Hybrid stacks, which combine both methods, can
balance speed and memory efficiency.

In the context of history and state management, the
use of a double-stack for undo/redo can reduce rollback
time for data changes by up to 72%, with an optimal
stack depth of about 15 levels to handle revisions
without excessive memory load. However, for
heterogeneous data, a hybrid stack solution with
memory pooling can overcome memory fragmentation.
Furthermore, stacks also play an important role in
algorithm optimization, as proven by Ghina Mawarni
Putri, where stacks accelerate the selection sort process
by reducing temporary variables and increasing speed
compared to recursive methods, although for large
datasets, the risk of stack overflow must be anticipated
with iterative implementation.

In broader applications, such as Progressive Web
Apps (PWA), stacks have limitations, especially in
background sync on iOS, however, a combination of
cache and Service Worker can still maintain most of the
functionality. In compiler development, the Shunting
Yard algorithm using stacks successfully achieved high
accuracy in evaluating complex mathematical
expressions. Additionally, visualizing stacks through
the Problem-Based Learning method has been shown to
significantly improve student understanding. Overall,
the selection of the appropriate stack implementation
highly depends on the needs and usage conditions to
optimize performance and memory efficiency.

By integrating the results from various references, it
can be concluded that the stack is not only a basic data
structure but also a vital foundation for building
responsive, modular, and scalable software systems. Its
application spans education, information systems,
expression processing, and dynamic data analysis,
making the stack a must-have tool for every application

developer.
Table 2 Critical Findings Synthesis Table

Application | Stack Advanta-| Challenges | Potential
Method | ges Solutions
Student Data | Double- | Fast Heterogene | Hybrid
Management | stack rollback | ous data memory
[9] (72%) pooling
Song Sorting | Arrayba | Variable | Limited Iterasi +
[11] sed reduction | scalability stack
(30%) overflow
handler
PWA [4] Cachest | Maintains Service
ack 80% iO0S Worker
functional| platform integration
ity restriction

IV. CONCLUSION

The stack data structure holds a highly strategic
position in modern software development. From a
theoretical perspective, the stack offers strong
fundamental principles in data management and
execution control. From a practical perspective, its
application has proven to be widespread across various
contexts, ranging from data sorting, user navigation
systems, expression processing, to search algorithms.

Based on the literature review, stacks can be
implemented efficiently using both arrays and linked
lists, depending on the application's space and
flexibility requirements. Several studies indicate that
the use of stacks can simplify application logic flow,
reduce the number of temporary variables, and enhance
code modularity.

Furthermore, the flexibility of stacks in supporting
undo-redo features, data sorting, and graph traversal
proves its usefulness in complex real-world situations.

Considering its ease of implementation, time and
memory efficiency, and relevance in various use cases,
the stack data structure deserves to be included in the
primary toolkit of contemporary software developers.
Developers, whether working with Python, Java, or
C++, are advised to master and explore various forms
of stack application to optimize the performance and
readability of their applications.

References
[1] A. Nugroho, “Struktur Data,” OSF Preprints, 2 Apr.
2019. [Online]. Available:

https://doi.org/10.31219/0sf.10/60301.

[2] M. R. D. Jodi, “FAKULTAS KOMPUTER
ALGORITMA DAN STRUKTUR DATA,” Fak.
Komputer, vol. 1, pp. 1-10, 2020. [Online].
Available: https://osf.io/xmbhc/download.

[31 S. S. Winarsih and A. W. Wahono,
“IMPLEMENTASI DAN PENGUIJIAN
STRUKTUR DATA BERBASIS ACUAN
UNTUK PROGRAM APLIKASI
MENGUNGKAP KEPRIBADIAN
BERDASARKAN TANGGAL LAHIR DAN

NAMA,” J. Teknol. Inf. dan Komun., vol. 10, no.
2, p. 11, 2022, doi:
10.30646/TIKOMSIN.V1012.631.

[4] R. Selamet, “IMPLEMENTASI STRUKTUR DATA
LIST, QUEUE DAN STACK DALAM JAVA”?
Media Inform., vol. 15, no. 3, pp. 18-25, 2016.
[Online]. Available:
https://www.academia.edu/download/87054128/1
12016_03_RACHMAT.PDF

[5] J. Sihombing, “PENERAPAN STACK DAN
QUEUE PADA ARRAY DAN LINKED LIST
DALAM JAVA JOHNSON,” Penerbit Mega Press,
vol. 7, no. 2, pp. 15-24, 2023. [Online]. Available:
https://download.garuda.kemdikbud.go.id/article.
php?article=3056169&val=27825&title=PENER
APAN%20STACK%20DAN%20QUEUE%20PA

https://www.google.com/search?q=https://doi.org/10.31219/osf.io/60301
https://osf.io/xmbhc/download
https://www.google.com/search?q=https://www.academia.edu/download/87054128/112016_03_RACHMAT.PDF
https://www.google.com/search?q=https://www.academia.edu/download/87054128/112016_03_RACHMAT.PDF
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA

DA%20ARRAY%20DAN%20LINKED%20LIST
%20DALAM%20JAVA,;
https://journal.piksi.ac.id/index.php/infokom/artic
le/view/160 Self-correction: Included both URLs
as provided, though typically one is preferred.
"Penerbit Mega Press" appears to be the publisher.

[6] A. Putri et al, “IMPLEMENTASI SISTEM
PENGELOLAAN PESANAN MENU
RESTORAN BERBASIS STACK DAN
QUEUE,” Bit-Tech J., vol. 7, no. 2, pp. 0-9, 2024,
doi: 10.32877/bt.v7i2.1867.

[7] R. D. Setiyawan, D. Hermawan, A. F. Abdillah, A.
Mujayanah, and R. Vindua, “PENGGUNAAN
STRUKTUR DATA STACK DALAM
PEMROGRAMAN C++ DENGAN
PENDEKATAN ARRAY DAN LINKED LIST,” J.
Tek. Elektro Teknol. Komput. Teknol. Inf., vol. 5,
pp. 484-498, 2024. [Online]. Available:
https://jurnal.stkippersada.ac.id/jurnal/index.php/j
utech/article/view/4263

[8] K. Jakubec, M. Polak, M. Necasky, and 1. Holubova,
“UNDO/REDO OPERATIONS IN COMPLEX
ENVIRONMENTS,” Procedia Comput. Sci., vol.
32, pp. 561-570, 2014, doi:
10.1016/j.procs.2014.05.461.

[9] M. R. Alfahri, N. L. Hasibuan, R. Insan, P. Siagian,
and F. Ramadhani, “SISTEM PENGELOLAAN
DATA SISWA DINAMIS DENGAN ARRAY
DAN STACK,” J. Nas. Komput. Teknol. Inf., vol.
7, no0. 6, pp. 23562360, 2024. [Online]. Available:
https://ojs.serambimekkah.ac.id/inkti/article/down
load/8424/pdf

[10] T. Anita and F. W. Nugraha, “SOSIALISASI
PEMBELAJARAN BERBASIS DIGITAL PADA
MASYARAKAT,” Darma Cendekia, vol. 1, no. 1,
pp. 23-29, 2022, doi: 10.60012/dc.v1il.5.

[11] G. M. Putri, K. A. Di Pradja, M. B. M. Azizi, P.
Nurwahid, A. S. Perdana, and . M.,
“IMPLEMENTASI STACK DAN ARRAY PADA
PENGURUTAN LAGU DENGAN METODE
SELECTION SORT,” J. Teknol. dan Sist. Inf.
Bisnis, vol. 6, no. 2, pp. 286-296, 2024, doi:
10.47233/jteksis.v6i2.1192.

[12] A. Nilsson, “Performance and Feature Support of
Progressive Web Applications: A Performance and
Available Feature = Comparison Between
Progressive Web Applications, React Native
Applications and Native i0OS Applications.”
Thesis/Dissertation, [University Name, if known],
2022. Self-correction:

https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://download.garuda.kemdikbud.go.id/article.php%3Farticle%3D3056169%26val%3D27825%26title%3DPENERAPAN%2520STACK%2520DAN%2520QUEUE%2520PADA%2520ARRAY%2520DAN%2520LINKED%2520LIST%2520DALAM%2520JAVA
https://www.google.com/search?q=https://journal.piksi.ac.id/index.php/infokom/article/view/160
https://www.google.com/search?q=https://journal.piksi.ac.id/index.php/infokom/article/view/160
https://jurnal.stkippersada.ac.id/jurnal/index.php/jutech/article/view/4263
https://jurnal.stkippersada.ac.id/jurnal/index.php/jutech/article/view/4263
https://ojs.serambimekkah.ac.id/jnkti/article/download/8424/pdf
https://ojs.serambimekkah.ac.id/jnkti/article/download/8424/pdf

